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Sparse Predictive Structures

Considerable effort expended on building
complex models from vast amounts of data,
not enough to make models comprehensible.

NEED COMPACT MODELS TO ENABLE ANALYSIS AND VISUALIZATION

LEVERAGING EXISTING STRUCTURE IN DATA - HIGH PERFORMANCE

COMPACT ENSEMBLES OF COMPLEMENTARY LOW-D SOLVERS

BORDER CONTROL

DIAGNOSTICS

VEHICLE CHECKS




Sparse Predictive Structures

High dimensional data is often heterogeneous




Learning Sparse Predictive Structures
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Learning Sparse Predictive Structures

3)

Local Models




Learning Sparse Predictive Structures
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Trade-off: compact data partitioning models




Learning Sparse Predictive Structures

split on X




Thesis

It is possible to identify low dimensional
structures in complex high-dimensional data, if
such structures exist, and leverage them to

construct compact interpretable models for

various machine learning tasks.




Thesis Outline

Informative Projection Retrieval

e Projection Retrieval as a combinatorial problem
e Optimization procedure for IPR
e RIPR for classification, clustering, regression, active learning

| Applying RIPR to Clinical Alert Classification |

e Building interpretable classification models for clinical alerts
e Annotation Framework using Active RIPR

‘ Proposed research

e [PR for multi-task learning and time series
e Low-dimensional model learning for feature hierarchies
e Online cost-constrained subset selection policies
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Informative Projection Retrieval (IPR)
Projection Retrieval for a Learning Task

 problem of selecting low-d (2D, 3D) subspaces

* s.t. queries are resolved with high-confidence

* models perform the task with low expected risk
example: features represent vital signs and derived features;

considering only the duty cycles of the signals might be sufficient
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A multitude of projections where data is ‘noisy’ A small set where there

is a clear separation

RIPR = Regression-based Informative Projection Retrieval*

[1] Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances in Neural Information
Processing Systems 25 (NIPS), pages 3032-3040, 2012.
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RIPR Target Datasets

Most of the low-dimensional projections are non-informative
= But there are at least a few with useful structure

= Each such structure could only involve a subset of data

= Butjointly, these subsets cover all data
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* Engineered data - unintentionally introduced artifacts
usually show in low-dimensional patterns

» (linical data - multiple sub-models reflect specifics of
particular conditions and patient characteristics




FA Dual-Objective Training Process

1. Data is split across informative projections
FEATURES

All
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Al3

2. Each projection has a solver trained using

only E?e data assigned to that projection
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RIPR Framework

QUERY SELECTOR PROJECTIONS SOLVERS CONTEXT




T RIPR Model

Model components:

* Set of #~dimensional, axis-aligned sub-spaces of the original
feature space P eIl

 Each projection has an assigned solver of the task T; the
solvers are selected from some solver class 7

* A selection function g, which yields, for a query point x, the
projection/solver pair (7y), 74z)) for the point;

o U7y (mg2) (7)), y) represents the model loss at point »

Dataset > X = {x1...2,} € X" where z; € X CR™
Small set of

Mg =A{ll ={m; 7 €I, || < d}, </ projections

T:{T; T¢€T,Ti:7ri(‘)()_>y Vi:1°°-|H|}\

Target gE{f:X;{l...|H|}}}.
model

Solvers

Selection function




T RIPR Objective Function

Model components:

* Set of #~dimensional, axis-aligned sub-spaces of the original
feature space P eIl

 Each projection has an assigned solver of the task T; the
solvers are selected from some solver class 7

* A selection function g, which yields, for a query point x, the
projection/solver pair (7y), 74z)) for the point;
U(792)(Tg2) (7)), y) represents the model loss at point x

Minimization:
M* = argminyrem,Ex y [y A hg(x)(wg(x)(az))

T

Expected loss for task solver trained
on projection assigned to point




T Starting point: the loss matrix

Loss
estimators Projections

B lowloss

moderate loss

high loss

LOW LOSS

i llll

HIGH LOSS




T Starting point: the loss matrix

Loss
estimators Projections
N
B lowloss
v
=2 moderate loss
3
= high loss
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¥ The Optimization Procedure

Matrix of Loss Estimators (L)
Projections /

Data Points
N UT A WN R
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nearly  Penalty - limits
optimal 4 of projections




T The Optimization Procedure

Matrix of Loss Estimators (L)
Projections /

=

Data Points
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T The Optimization Procedure

Matrix of Loss Estimators (L)

Projections / " L; is the loss of sample i

I at projection j
= For each point|, let T, be
. . the lowest loss over the
] projections T; = min L;,

Data Points

| = B binary selection matrix

|| = B;;is 1 if projection j is to
be used to solve point i
Target Loss (T) and 0 otherwise

* B =ming||T-LOB ||, +
regularization (B)

[ optimal

nearly
optimal

de e
where L © B = Z L. jB.;
j=1




il The Optimization Procedure

Matrix of Loss Estimators (L)

Projections /

*2 I B IPR problem -
E B solved through
g this regression
: ]
a |
||
» Target Loss (T) |
optimal
1 * B =ming||T-LOB ||, +
ggiﬁgal regularization (B)

def

where L OB = ZL.,jB.,j
j=1




Regression for Informative Projection
Recovery (RIPR)

= RIPR learns the binary selection matrix B in a manner
resembling the adaptive lasso

= [terative procedure =TT

e |nitialize selection matrix B

* Compute multiplier ¢ inv. prV ]

with projection popularity

\'4

» Use penalty |Bo|; - new B
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Applicability to Learning Tasks

RIPR can solve the following tasks!?!:

= (Classification

» Semi-supervised classification

= Clustering

= Regression
Loss matrix computed differently for each task
Generality:

RIPR can solve any learning task for which the risk can
be decomposed using consistent loss estimators.

[2] Madalina Fiterau and Artur Dubrawski. Informative projection recovery for classification, clustering and
regression. In International Conference on Machine Learning and Applications, volume 12, 2013.




5 LLoss Estimators: Classification

Neighbor-based estimator for conditional entropy*:

(n — Ddisty(m(@:), m(Xy(z,) \ W(xi))d)lo‘
ndisty(m(z;), 7(X_y) \ 2i))?

HY|7(X); X € A(n szzeA I

For a projection 7, the estimator is H(Y|n(X);9(X) — 7)

The optimal model can be computed through the minimization:

n— Dg(m(z;), 7(Xy@) \ 7(z:))4\ 1
—mmz ZI 332—>7r(( Jvi(7( (Xy(@) \ 7 )

MEMd nyk(ﬂ-(xi)aﬂ-(X—'y(xi) \xl)>d

\ ? Selection matrix B;; ,[

x\' O

O Loss matrix L;

Based on the divergence estimator by Poczos and Schneider, “On the estimation of alpha-divergences” (AISTATS 2011)
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Loss Estimators: Semi-supervised
Classification

* For labeled samples: same as for classification

= For unlabeled samples:
 Consider all possible label assignments
« Assume the most ‘confident’ label (with smallest loss)
Equivalent to

* Penalizing unlabeled samples proportional to how
ambivalent they are to the label assigned




*  Loss Estimators: Semi-supervised

Classification

* For labeled samples: same as for classification

* For unlabeled samples:
 Consider all possible label assignments
« Assume the most ‘confident’ label (with smallest loss)
Equivalent to

* Penalizing unlabeled samples proportional to how
ambivalent they are to the label assigned
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i Loss Estimators: Clustering

= Point-wise estimators are problematic for clustering
* An ensemble view of the data is typically required

* [tis unknown which data should be assigned to which
projection prior to clustering




¥ Loss Estimators: Clustering

= Point-wise estimators are problematic for clustering
* An ensemble view of the data is typically required

* [t is unknown which data should be assigned to which
projection prior to clustering

= We focus on density-based clustering
= The loss is lower for densely packed regions

» We eliminate dimensionality issues by considering
negative KL divergence from uniform on the same space

POOR GOOD




T Loss Estimators: Clustering

= Point-wise estimators are problematic for clustering
* An ensemble view of the data is typically required

* [tis unknown which data should be assigned to which
projection prior to clustering

= We focus on density-based clustering
* The loss is lower for densely packed regions

= We eliminate dimensionality issues by considering
negative KL divergence to uniform on the same space*

Repu(mi(x), 78%) = — K L(m(X)|[|m:(U))

d(m;(z), (X)) ) i (1—c)
d(m;(x),U)

fo (75 (), 761 %(

* some scaling issues remain
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Low-d Clustering: Why it Works

K-Means model projected on (known) informative features
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The hidden structure in data is clearly revealed by the RIPR model.
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Feature 12

Low-d Clustering: Why it Works

K-Means model projected on (known) informative features
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The hidden structure in data is clearly revealed by the RIPR model.
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32 . .
Loss Estimators: Regression

= Estimates error in point neighborhood

breg(mi(2), i(mi(2))) = (F(mi(x)) = 9)®  breg —= 0

k
1 WY 1
Ti(mi(x)) = Zz_kl T ), where w(;) =
Zz:l W(4) HZE N x(z)||2
O
@ '. ® o ® ‘o
o' e o _9 O
® o @ ®0
00 o ©0 o4 ® ®
® ® o Yoo
® O @ O

POOR DECENT GOOD




* Loss /Risk for common Learning Tasks

Learning
Task

Loss/Risk

Classification!!] Classification error approximated by conditional entropy

Conditional entropy for labeled samples plus best case

Semi-supervised entropy over label assignments for unlabeled samples

classification[?]

Negative divergence between distribution of data and a
Clusteringl?! uniform distribution on the same sample space

Regression Mean squared error

[1] Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances in Neural
Information Processing Systems 25 (NIPS), pages 3032-3040, 2012.

[2] Madalina Fiterau and Artur Dubrawski. Informative projection recovery for classification, clustering and
regression. In International Conference on Machine Learning and Applications, volume 12, 2013.
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Assigning a projection to a query

* Problem: how to select the appropriate projection for
a specific query x?

= Solution: select the projection in P for which the

estimated loss is jche lowest
(kx,yx) = argmingeqr.. 1 p|y.yey)l(Te (e (), v)

= For classification, the selection function and label are

gk (33') = argmin(w,T)E(Hk,Tk)il<7-<ﬂ-(aj>) |7T<:E))

() = T ()

» For clustering, the loss estimator is computed
considering the cluster assignments determined
during learning
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Active Sampling Approach!*

= Atiteration k, samples Xf are labeled as Yek
= Samples X, are unlabeled
= The RIPR model built so far is M* = {II*, T*, g*}

= The expected error of the model is
E"“"“(Mk) = ExeX[I(Tkk(x) (7T k(q;)( z)) # y)

= Key issue: find the appropriate scoring function s: M x X — R

= Next sample to be labeled z T = aTgma%eXfLS(Mka z)

= We use the notation Msk to refer to a model obtained after k
iterations using scoring function s

» Given maximum acceptable error € and a set S of scoring functions,
the optimal selection strategy can be expressed as

s* = argmingecs mkm{k s.t. Err(MF) < e}

» The algorithm starts with 7o randomly selected samples
» The stopping criterion is based on error on a hold-out set

[4]Fiterau M, Dubrawski A, Chen L, Hravnak M, Clermont G, Bose E, Guillame-Bert M, Pinsky MR. Artifact adjudication for vital sign
step-down unit data can be improved using Active Learning with low-dimensional models. Intensive Care Medicine. 2014.




T Active Sampling Strategies

Let h be the conditional entropy estimator for a label given a subset of

the features and ¥(x) the prediction made for a sample x.

. k41 _ k
Sample selection: * = nga%ex,’fgs(M , )

Sampling Type Formula for RIPR model

Uncertainty Suncrt(T) = p— mi?e:r’k h(r(m(x))|m(x))

uncrt

max I (7;(m(x)) # 7(m(x)))

Ti T ETqbc
Sig( ) — HXg,Yg (XS 'Lg)
Information Gain —ply = O)ngu{x} YgU{O}(lef zg)
—p(y = DAY, iy voupy (X ig), Vo€ XF .

Query by Committee Sgbe(T) =

Low Conditional .
Smcle— min hiT(m(x)|m(x
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RIPR Results

Classification




39 Classification
- UCI data -

Comparison of Classification Accuracy

Dataset RIPPED # RIPR | #features in
Features Instances K-NN | projections | projection

Breast Tissue 1.000 1.000
Cell 6 200 0.707  0.7640 4 {1,2,2,2}
Mini BOONE 50 130065 0.790 0.740 1 1
Nuclear Threat 50 200 0.7788  0.7807 3 2
SPAM 57 4601 0.7680 0.7680 5 {1,2,3,3,3}

Vowel 10 528 0.984 0.984 1 10




40 Classification
- Informative Projections -

The main advantage is the low-dimensional representation that RIPR provides.

Informative Projection for the Spam dataset

12
% 10 ® spam
> ® ham
g . query
=
Y
o
>
O 6k
C 6-
o I
: .
O
D
| -
L

2000 4000 6000 8000 10000 1200014000 16000
Capital Run Length Total




41 Classification
- Informative Projections -

The main advantage is the low-dimensional representation that RIPR provides.

Informative Projection for Cell Data
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Nuclear Threat Detection

Non-Threat Threat Class 1 Threat Class 2

NORM RADNORM SNMNORM

IND RADMIND SNMIND

MED RADMED SNMMED

BKG RAD SNM
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Nuclear Threat Detection

Projection 3
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Nuclear Threat Detection

Projection 6
or = mrermmememeeme === = Informative
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Nuclear Threat Detection

Projection 15

-6 Informative
=5 Projection 3
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Nuclear Threat Detection

Projection of two most informative features
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RIPR Results

Clustering




49 Clustering

- evaluation metrics -
DISTORTION - mean distance to cluster centers L.OG CLUSTER VOLUME

K-means Model

Ripped K-means Model

i O @




50 Clustering
- artificial data -

PERCENTAGE REDUCTION IN SUM OF CLUSTER LOG VOLUMES

Q = NUMBER OF INFORMATIVE PROJECTIONS
K =NUMBER OF CLUSTERS ON EACH PROJECTION

COMPRESSION IS REDUCED AS MORE CLUSTERS/PROJECTIONS ARE ADDED
NOTE: THE K-MEANS AND RIPR MODELS HAVE THE NUMBER OF CLUSTERS.




52 Clustering
- UCI data -

SUM OF MEAN DISTANCES TO CLUSTER CENTERS AND LOG CLUSTER VOLUME

%
UCI Dataset| Mean Distortion |Distortion

Log Volume of Clusters
on All Dimensions % Volume

Reduction Reduction
-M-M-
Seeds 90.73 3.33 4.21 86.83
Libras 9 265 98.54 -2.52 3.15 99.00
MiniBOONE 125 1,154,704 99.99 104.23 107.77 99.97
Cell 40,877 8,181,327 99.78 23.75 29.39 99.00
Concrete 1,370 55,594 98.01 21.39 2291 97.01

LOWER IS BETTER. RIPR MODELS ALWAYS HAVE A SMALLER TOTAL VOLUME.




53 Clustering
- UCI data -

The main advantage is the low-dimensional representation that RIPR provides.

Informative Projection from the Seeds dataset
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54 Clustering
- UCI data -

The main advantage is the low-dimensional representation that RIPR provides.

Inf%mative Projection from the Concrete dataset
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RIPR Results

Regression




56 Regression
- artificial data -

ACCURACY OF RIPPED SVM COMPARED TO ACCURACY OF STANDARD SVM
- THE NUMBER OF INFORMATIVE PROJECTIONS : 2-10 (OUT OF 45)
- PERCENTAGE OF NOISY SAMPLES: 0-50% (OUT OF 1600)

Y/ 3 5
MSE RIPPED-SVM MSE SVM
0% 0.05 0.27 0.05/ 0.02 0.23 0.27, 1.16 0.11 0.1] 0.43
o 6:25% 1042 1.26 0.34 1.45 0.52 0.8 1.02] 0.6 2.99 0.94
%g 12.5%| 0.5/ 0.86/ 0.8 0.33 0.99 0.97, 1.27, 0.29 0.68 1.44
0 < 125% | 0.63 1.47 1.34 1.61 0.11 0.4 1.26 1.64 1.71 0.08
50% |0.69 0.38 1.12 0.68 1.1 0.52| 0.06 091 0.9 1.16
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Thesis Outline

\ S—

‘[ Informative Projection Retrieval

» Projection Retrieval as a combinatorial problem

e Optimization procedure for IPR

e Customizing RIPR for classification, clustering, regression
e Projection Discovery in an Active Learning setting

e Building interpretable classification models for clinical alerts
e Annotation Framework using Active RIPR

| Proposed research

 IPR for multi-task learning and time series
e Low-dimensional model learning for feature hierarchies
e Online cost-constrained subset selection policies




59 Case Study - Alert Classification!3!
- importance of artifact adjudication -

= Step-down Unit vital sign
monitoring system

= Alerts are raised when patient
health status deteriorates

* One alert is issued every 90s

= A significant amount of alerts are artifacts

* Frequent alerts cause alarm fatigue in medical staff

= 812 labeled samples, each associated with a vital sign
» Extracted temporal features and derived metrics

= RIPR provides interpretable artifact adjudication models

[3] Fiterau M, Dubrawski A, Chen L, Hravnak M, Clermont G, Pinsky MR. Automatic identification of artifacts in monitoring critically
ill patients. Intensive Care Medicine. 2013; 39 (Suppl 2]: S470.




61 Case Study - Alert Classification
- performance -

Alarm Type RR BP SPO,

2D 2D 3D 2D 3D

Accuracy 0.98 | 0.833 | 0.885 | 0.911 |0.9151

Precision | 0.979 | 0.858 | 0.896 | 0.929 [0.9176
Recall 0.991 | 093 | 0.958 | 0.945 |0.9957
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Case Study - Alert Classification
- RIPR model for blood pressure -

54% of Valldatlon data

2 —
g 4
g,
=
—
= 8-
e
&2 10 -
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A
_____________ J
Alarm Type RR BP SPO,
2D 2D 3D 2D 3D
Accuracy 0.98 | 0.833 | 0.885 | 0.911 [0.9151
Precision 0.979 | 0.858 | 0.896 | 0.929 (0.9176
Recall 0.991 | 0.93 | 0.958 | 0.945 0.9957

20

46% of Vahdatlon data
TR TR U U N
woo I |
R
* A  —
e A "true"alert
VA% 4 | @ artifact

e 40_' 50 "60' 70 g9 0 8}‘&\
value-HR-diff1-max Q;« @Q
HR-diff1-max
RIPR identifies

interpretable projections
which adjudicate alerts.

*duty cycle = number of readings over time units: a low value indicates high sparseness
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Case Study - Alert Classification
- deriving rules -

1.4 14, 40 N
12f[A truealert} N 4 ) 12' 35 X
2 | @ artifact o » L
& 17 . ;i 1 8 z:‘ .: f
o . .. - . a
Gt ° "? o8 E 201 ’ “é‘
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I I i
) . T )t . e | g ) g S g ) i I
i
]
Alarm Type RR BP SPO,
2D 2D 3D 2D 3D
Accuracy 0.98 | 0.833 | 0.885 | 0.911 [0.9151
Precision 0.979 | 0.858 | 0.896 | 0.929 [0.9176
Recall 0.991 | 0.93 | 0.958 | 0.945 |0.9957

*duty cycle = number of readings over time units: a low value indicates high sparseness




64 Case Study - Alert Classification
- deriving rules -

14 p 40, .
| [ : true alert} o ' 25| ,
artifact ) ' L -
i g g 4 H
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06 = & 1l :
. :.‘ A N ! .
ook =05 1 15 " s o T s T 15
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RR-duty-cycle* <= 0.6
and ®
HR-duty-cycle <=0.25

HR-duty-cycle - ® HR-duty-cycle/0.3 | g
SPO,-duty-cycle <= 0.2 + RR-min/5 <=1




¥ Decreasing expert annotation effortlel

* Only ~10% of the data is currently labeled
= [nitial set could be different from the rest

= Clinicians will need to annotate some of the
remaining samples
* Annotation objectives:
* Provide informative projections
« Minimize expert effort
« Maintain high classification accuracy
= We use ActiveRIPR:
* Projections available during annotations
« Samples selected based on current RIPR models

[6] Wang D, Fiterau M, Dubrawski A, Hravnak M, Clermont G, Pinsky MR. Interpretable active learning in
support of clinical data annotation. SSCM 2015




i Adjudication of oxygen saturation alerts

Learning curves for oxygen saturation alerts
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We performed 10-fold cross-validation, training the ActiveRIPR model on
90% of the samples and using the remainder to calculate the learning curve.




iy Projections assisting annotation (RR)

Projection 2
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The retrieved few low-dimensional projections make it possible
for domain experts to quickly adjudicate alert labels.




i Projections assisting annotation (SPO,)

Projection 219
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The retrieved few low-dimensional projections make it possible
for domain experts to quickly adjudicate alert labels.
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Contribution Summary

* [nformative Projection Retrieval is relevant to many
applications requiring interaction with human users

= We generalized RIPR, our solution to the IPR problem, to a
wide range of learning tasks (classification, regression, clustering)

= RIPR expresses loss though divergence estimators

« Semi-supervised models: penalize unlabeled data that
cannot be confidently assigned to a class

 Clustering models: favor high data density

= RIPR models are compact and well-performing in practice

= Overall, RIPR provides an intuitive solution problem of
classifying alerts issues by clinical monitoring systems




" Alert data issues worth considering

» Feature cost (invasiveness, computational cost)

= Means of deriving the features
(feature hierarchies)

= Determining alert subcategories

= Timestamp information

= Online execution
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Thesis Outline

\ S—

‘[ Informative Projection Retrieval

» Projection Retrieval as a combinatorial problem

e Optimization procedure for IPR

e Customizing RIPR for classification, clustering, regression
e Projection Discovery in an Active Learning setting

4[ Applying RIPR to Clinical Alert Classification ]

e Building interpretable classification models for clinical alerts
e Annotation Framework using Active RIPR

| Proposed research

 IPR for multi-task learning and time series
e Low-dimensional model learning for feature hierarchies
e Online cost-constrained subset selection policies
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[PR for Multitask Learning

* Generalize of RIPR to multitask learning
« Multiple types of nuclear threats
 Sub-categories of clinical alerts

= Not only are we grouping features/samples, but also
features/samples/tasks

= The loss matrix becomes a loss tensor

» Assignment procedure is an optimization, with the
appropriate constraints, over the loss tensor.

» Modify RIPR to perform multi-model low-d CCA

= Qutcome: set of canonical parameter pairs.




P [PR for Time Series

= Extend the concept of projections to time series data
= Learn time-varying models

» [mpose smoothness constraints over parameters at
consecutive timestamps (fused lasso)

= Ensemble coherence constraints needed across samples, to
ensure use of a small number of projections

* Transition constraints which will prevent the model
switching to become too sample-specific

= Trends in the data, as well as the actual feature values, will
have to be considered.

= A usage example is instability prediction due to blood loss
under the assumption that the mode of response to a
health crisis is patient-dependent
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¥ Feature hierarchy example

NONINVASIVE

) ClassicVitals | I

BMEye
=
BMEye + CO-derived ‘

malllne+ Arterial line +
Fotrac Flotrac+arterial
wave

| PreSep +Arterial line + Flotrac PreSep + Arterial line + Flotrac PreSep + Arterial line + Flotrac+ CVP wave
: +arterial wave

e e

—}“—} PAC+ PAC + CVP wave PAC + Arterial line +
Arterial line arterial wave

PAC + Arterial line + Flotrac

PAC + Arterial line + Flotrac+ CVP wave +
arterial wave

Image and corresponding data courtesy of Andre Holder and Mathieu Guillaume-Bert
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¥ Penalty for feature dependency

= Feature set A={a;...a,}

= Costfunction ..94 L p

» Feature dependencies: directed graph (A, D)
" (a;,a;) € D <> feature j depends on feature i

= Weight learning 1nvolves the mlnlmlzatlon

penalty function

w* = argmin, Z flw, i, yi) + 9 ( ) € according to cost

1=1

= Weighted lasso typically used

961 ZC a; )wz|

* Does not account for cost already expended for parent
features in the hierarchy




T Penalty for feature dependency

= Feature set A={a;...a,}

= Costfunction ..94 L p

» Feature dependencies: directed graph (A, D)
" (a;,a;) € D <> feature j depends on feature i

= Weight learning 1nvolves the mlnlmlzatlon

penalty function

w* = argmin, Z flw, i, yi) + 9 ( ) € according to cost

1=1
= We link each feature to its children through f2 norms
= Index set of children of a, is ¢(a;) = {1 < j < m|(a;,a;) € D}

m

ge.p(w) =Y elas)||ws o)l

" i=1 encourages parent
weight to be 0 only when all weights of children are 0

= Penalty

= Equal to ¢, norm for features without children




i Penalty for feature redundancy

= Feature redundancy is present in some cases

» Examples: vital signal readings obtained through procedures
with different levels of invasiveness

* Only one feature in such a group is needed at a time

* ‘OR’ constraint distributes weight across the features

= Assume a, can be obtained from either of a af
gOR(wz) 1= C(a@ sz cb(z)H2 in Z Z a Hw fHQ
J=1k#j

= where w, decomposes as Zw Y
2 |7 (]

and j=1
: 1
w; = max (— —0.5,0)

w] + 0.5




¥ Preliminary Results

We applied the procedure to the vital sign monitoring
data. There are a total of 150 interdependent features.

MSE (CFS) | MSE (lasso)

0 0.777 0.777
1 0.344 0.435
2 0.246 0.250
4 0.244 0.250
6 0.244 0.250
12 0.244 0.244

Here, the cost of all base features is a unit, and one
cost unit is added for each additional operation which
needs to be performed to obtained derived features.




¥ Adding submodular cost constraints

cost of deriving
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i Adding submodular cost constraints

= We express this as an optimization with an
approximately submodular objective with
submodular cost constraints

» [dea: linearize, solve, re-linearize, improve solution ...

Submodular constraint

N

/ Solution

Convex relaxation of objective




i Adding submodular cost constraints

= We express this as an optimization with an
approximately submodular objective with
submodular cost constraints

» [dea: linearize, solve, re-linearize, improve solution ...

Submodular constraint

N

/ Solution

Convex relaxation of objective
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Timeline

Contribution Status Estlmate.d References
completion

Informative Projection Recovery completed Spring 2013 [11,[2],[3],[5]

Active IPR Framework completed Spring 2014 [4]

Low-dimensional Model Learning for

Feature Hierarchies in progress  Winter 2015

Online Cost Constrained Subset

Selection Policies future work Spring 2015

Efficient IPR and extensions in progress Summer 2015
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