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§ Hybrid	convolutions
§ Each	filter	uses	a	different	set	of	covariates
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GenderAge Height Weight

12 M 154 77

w3,6,2w3,6,1

+	b0+⊗
b1 b2

….	Deep	
Network

Kernel

Covariates	introduced	in	the	representation	learning	process



Binary	classification:	fast/slow
State	of	the	art:	67%	accuracy
ShortFuse:	74%	accuracy
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Classification:	good/bad	outcome
Baseline:	78%	(domain	expertise)
ShortFuse:	78%	no	feature	engineering

Joint	symptoms	,	Medical	history,
Nutrition,	Physical	exams.

Forecasting	the	speed	of	
osteoarthritis	progression

Predicting	surgery	outcome for	
children	with	cerebral	palsy

http://www.gillettechildrens.org/
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