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Prevalence of time series data
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Accelerometer data

Longitudinal health indicators
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Prevalence of time series data
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Learning time series representatic
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Learning setup

= Classification or regression of health outcome
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Learning better representations
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Robust models via stacked encode

LSTM Encoder 2

LSTM Encoder 1
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Robust models via stacked encode

(Multi-resolution) CNN
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Robust models via stacked encode

Keep higher-level logic.

(Multi-resolution) CNN
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Incorporating structured covariate

= Example: how medical history can improve features.

Normal Sinus Rhythm

Atrial Flutter
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Source: cardiachealth.org
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Incorporating structured covariate

= 2 binary covariates: fibrillation and flutter
= 2 features being learned: fy; ;4 )
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Incorporating structured covariate

S = structured covariates

1. Introduce S before the last
set of convolutions
LSTM-C

Conv. with dropout

2. Use Sin the LSTM structure

Add terms to nonlinearities of LSTM LL.STM Encoder
Wees, W. s, W s, W .es

LSTM-S

Time window convolutions

3. Use S as input for time
window convolutions

LSTM-TC

Sono

Input
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Predicting osteoarthritis progress

= Osteoarthritis Initiative Dataset (OAI) accelerometer data -
obtained from 2000 subjects, for a monitoring period of 7
days, expressed as activity counts; 50 structured covariates.

* Predict whether subjects are at risk for OA-related pain.
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Accuracy Histograms + | 6 -layer | LSTM-C | LSTM-S | LSTM-TC
Rand Forests | CNN
Pain / No pain | 0.67 0.68 0.70 0.74 0.73
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Sample comparisons

= Sinus rhythm. Are these subjects similar?
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Sample comparisons

= Sinus rhythm. Are these subjects similar?
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Sample comparisons

= Typical activity traces. Are these people equally healthy?
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Sample comparisons
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Similarity LSTM results

» Predicting OA-related pain and cartilage

Method Pain / No pain | Joint space
Accuracy narrowing
increase
PCA+SVM 0.67 0.70
LSTM-S 0.74 0.73
LSTM+SIM 0.76 0.73
DTW 0.71 0.71
6-layer CNN 0.68 0.72




Introducing attention

= Attention allows interpretability of what the network learns
= Can be used to reduce the parameter space

= Sequence is encoded through a bidirectional LSTM

» Last layers: weighted sum of all hidden vectors (attention w)
= Implementation [based on Vinyals 2015]: u, = v'tanh(Wh,)

128
Bi-LSTM with
sequences =
1 hidden vectors Attention Decoder = FC Softmax and

(128 x 1028 of size 100 Encoder e Ith 2 Maximum

< 6) (128x1028x | (128x 200y | Cutputclasses (128x 1)
0 (128 x 2)
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Introducing attention

= QU-ISIR Gait Database, 1280 sequences

* 6 times series per patient: triaxial
accelerometer/gyroscope

» Classify whether subject as male/female

* Prediction accuracy: 83%

Future work:

* Improve the model architecture
(replace RNNs with CNNs)

= Compute separate attention weights for
each dimension of the input
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(Multi-resolution) CNN
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