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Vital	Signs	 Gait	Kinematics	

Longitudinal	health	indicators	Accelerometer	data	
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Learning	time	series	representations	
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Learning	setup	
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Learning	better	representations	

Design	to	
the	task	

Contextualized LSTMs for Time Series Representations   6 

Leverage	
information	in	
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Robust	models	via	stacked	encoders	
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LSTM	Encoder	1	

LSTM	Encoder	2	

LSTM	Decoder	2	

LSTM	Decoder	1	



Robust	models	via	stacked	encoders	
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LSTM	Encoder	1	

LSTM	Encoder	2	

(Multi-resolution)	CNN	

Pre-trained	
encoders	
improve	
performance	



LSTM	Encoder	1	

LSTM	Encoder	2	

(Multi-resolution)	CNN	

Robust	models	via	stacked	encoders	
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Re-train	encoders.	

Keep	higher-level	logic.	



Incorporating	structured	covariates	

§  Example:	how	medical	history	can	improve	features.	
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Source:	cardiachealth.org	

Duty	cycle	of	
signal	is	
informative	

Peak	to	peak	
distance	is	
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Incorporating	structured	covariates	
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§  2	binary	covariates:	6ibrillation	and	6lutter	
§  2	features	being	learned:	fdc	and	fpk.	

6ib	 6lu	

Encoder	+	CNN2	Encoder	+	CNN1	

fde	 fpk	

Crash	



Incorporating	structured	covariates	

S	=	structured	covariates	

1.  Introduce	S	before	the	last	
set	of	convolutions	

	
	
2.  Use	S	in	the	LSTM	structure	

3.  Use	S	as	input	for	time	
window	convolutions	
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LSTM	Encoder	

Conv.	with	dropout		

Softmax	

Y	

Time	window	convolutions	

Input	

S	

LSTM-C	

LSTM-TC	

LSTM-S	

Add	terms	to	nonlinearities	of	LSTM	
Wfs�s,	Wis�s,	WCs�s,	Wos�s	



Predicting	osteoarthritis	progression	
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Accuracy	 Histograms	+	
Rand	Forests	

6	–layer	
CNN	

LSTM-C	 LSTM-S	 LSTM-TC	

Pain	/	No	pain	 0.67	 0.68	 0.70	 0.74	 0.73	

§ Osteoarthritis	Initiative	Dataset	(OAI)	accelerometer	data	-	
obtained	from	2000	subjects,	for	a	monitoring	period	of	7	
days,	expressed	as	activity	counts;	50	structured	covariates.	

§  Predict	whether	subjects	are	at	risk	for	OA-related	pain.	

Accuracy	 Activity	
histograms	+	
RF	

CONTEXT	
LSTM	1	

CONTEXT	
LSTM	2	

CONTEXT	
LSTM	3	

Pain	/	No	pain	 0.67	 0.73	 0.74	 0.70	



Sample	comparisons	

§  Sinus	rhythm.	Are	these	subjects	similar?	
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§  Sinus	rhythm.	Are	these	subjects	similar?	

Sample	comparisons	
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Sample	comparisons	

§ Typical	activity	traces.	Are	these	people	equally	healthy?	
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NO.	
UNKNOWN.	

AGE:	25	 AGE:52	



Sample	comparisons	
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S1	 S2	

Similarity	
CNN	

Y1≠	Y2	

X1	 X2	

LSTM	Encoder	 LSTM	Encoder	

Convolutional	layers	

….	

Rep.	1	 Rep.	2	 Similarity	

Convolutions	

Y2	

Y1	

Y1≠	Y2	



Similarity	LSTM	results	

§  Predicting	OA-related	pain	and	cartilage		
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Method	
Accuracy	

Pain	/	No	pain	 Joint	space	
narrowing	
increase	

PCA+SVM	 0.67	 0.70	

LSTM-S	 0.74	 0.73	

LSTM+SIM	 0.76	 0.73	

DTW	 0.71	 0.71	

6-layer	CNN	 0.68	 0.72	



Introducing	attention		

§ Attention	allows	interpretability	of	what	the	network	learns	
§  Can	be	used	to	reduce	the	parameter	space	
§  Sequence	is	encoded	through	a	bidirectional	LSTM	
§  Last	layers:	weighted	sum	of	all	hidden	vectors	(attention	w)	
§  Implementation	[based	on	Vinyals	2015]:	ui = vTtanh(Whi)
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128	
sequences	

	
(128	x	1028	

x	6)	
	

Bi-LSTM	with	
hidden	vectors	
of	size	100	
(128	x	1028	x	

200)	

Decoder	=	FC	
layer	with	2	
output	classes	
(128	x	2)	

Softmax	and	
Maximum	
(128	x	1)	

Attention	
Encoder	

(128	x	200)	



Introducing	attention		
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§ OU-ISIR	Gait	Database,	1280	sequences	
§  6	times	series	per	patient:	triaxial	
accelerometer/gyroscope	

§  Classify	whether	subject	as	male/female	
§  Prediction	accuracy:	83%	

Future	work:	
§  	Improve	the	model	architecture	
(replace	RNNs	with	CNNs)	

§  Compute	separate	attention	weights	for	
each	dimension	of	the	input	



Review	

Contextualized LSTMs for Time Series Representations   22 

Leverage	
information	in	
the	dataset	

Include	sample	
comparisons	

Make	
representations		

robust	

Remove	
non-

essentials.	



Thanks!	
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Osteoarthritis	Progression	experiment.	
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