

WiML Workshop

Dec 5th 2016

Barcelona, Spain

Learning time series representations through contextualized LSTMs

Madalina Fiterau, Stanford University mfiterau@cs.stanford.edu

Advisors: Christopher Ré, Scott Delp

We acknowledge support from the NIH (U54 EB020405).

Prevalence of time series data

Vital Signs

Gait Kinematics

Accelerometer data

Longitudinal health indicators

Prevalence of time series data

Learning time series representations

Learning setup

Classification or regression of health outcome

Learning better representations

Robust models via stacked encoders

Robust models via stacked encoders

Robust models via stacked encoders

Keep higher-level logic.

Incorporating structured covariates

Example: how medical history can improve features.

Duty cycle of signal is informative

Peak to peak distance is informative

Incorporating structured covariates

- 2 binary covariates: fibrillation and flutter
- 2 features being learned: $f_{dc \text{ and }} f_{pk}$.

Incorporating structured covariates

S = structured covariates

1. Introduce S before the last set of convolutions

LSTM-C

2. Use S in the LSTM structure
Add terms to nonlinearities of LSTM
W_{fs}•s, W_{is}•s, W_{Cs}•s, W_{os}•s

LSTM-S

3. Use S as input for time window convolutions

LSTM-TC

Predicting osteoarthritis progression

- Osteoarthritis Initiative Dataset (OAI) accelerometer data obtained from 2000 subjects, for a monitoring period of 7 days, expressed as activity counts; 50 structured covariates.
- Predict whether subjects are at risk for OA-related pain.

Accuracy	Histograms + Rand Forests		LSTM-C	LSTM-S	LSTM-TC
Pain / No pain	0.67	0.68	0.70	0.74	0.73

Sinus rhythm. Are these subjects similar?

Sinus rhythm. Are these subjects similar?

Typical activity traces. Are these people equally healthy?

Similarity LSTM results

Predicting OA-related pain and cartilage

Method Accuracy	Pain / No pain	Joint space narrowing increase
PCA+SVM	0.67	0.70
LSTM-S	0.74	0.73
LSTM+SIM	0.76	0.73
DTW	0.71	0.71
6-layer CNN	0.68	0.72

Introducing attention

- Attention allows interpretability of what the network learns
- Can be used to reduce the parameter space
- Sequence is encoded through a bidirectional LSTM
- Last layers: weighted sum of all hidden vectors (attention w)
- Implementation [based on Vinyals 2015]: $u_i = v^T tanh(Wh_i)$

128 Bi-LSTM with sequences Decoder = FC hidden vectors Attention Softmax and layer with 2 of size 100 Encoder Maximum (128×1028) output classes $(128 \times 1028 \times$ (128×200) (128×1) x 6) (128×2) 200)

20

Introducing attention

- OU-ISIR Gait Database, 1280 sequences
- 6 times series per patient: triaxial accelerometer/gyroscope
- Classify whether subject as male/female
- Prediction accuracy: 83%

Future work:

- Improve the model architecture (replace RNNs with CNNs)
- Compute separate attention weights for each dimension of the input

Thanks!

We acknowledge support from the NIH (U54 EB020405). We thank Dr. Eni Halilaj for her contributions to the Osteoarthritis Progression experiment.

Chris Ré

Scott Delp

David Sontag

Masters Students:
Suvrat Booshan
Nopphon Siranart
Charles Bornhonesque