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Problem Formulation and Approach. We consider an incident classification task in a radiation threat detection
and adjudication system. As vehicles travel across international borders, they may be scanned for sources of harmful
radiation, such as improperly contained medical or industrial isotopes, or nuclear devices. A substantial number of
potential threats flagged by radiation measurement devices that may be used in such applications are actually non-
threatening artifacts due to naturally occurring radioactive materials (e.g. ceramics, marble, cat litter, or potash). We
have been using machine learning methodology to dismiss alerts that are confidently explainable by non-threatening
natural causes, without increasing the risk of neglecting actual threat [[1]].

A robust alert adjudication system must be trained and validated on data that includes the actual threats. How-
ever, such data is (luckily) hard to come by. Therefore, it is practical and common to place the bulk of the available
empirically gathered positive incident examples into a testing data set, and create training data using benign mea-
surements mixed with a carefully chosen selection of simulated threat. Nonetheless, the volumes and complexities
of the feature space in data typically encountered in radiation measurement applications makes synthesising a robust,
sufficiently large, and (most importantly) comprehensive set of training data difficult and prone to omissions.

We present an engineering framework that facilitates data quality audits by automatically detecting gaps in train-
ing data coverage. It highlights areas of discrepancy between training and testing samples. It also pinpoints the areas
of feature space where the observed performance of the threat adjudication system appears suboptimal. The findings
are presented in the form of human-readable, low-dimensional projections of data, in order to ensure interpretability
of results and to simplify planning of corrective actions. The resulting iterative data improvement procedure boosts
threat adjudication accuracy while reducing the required workload of data engineers and application domain experts,
when compared to using uninformed data gathering process.

The proposed process involves: (1) Building a threat classifier (any plausible type of a classification model can
be used, we employ the random forest method primarily due to its scalability to highly-dimensional feature spaces,
but also because of the computable on-the-fly metrics that diagnose reliability of predictions being made, which it
provides), (2) Gap Retrieval Module (GRM), and (3) Human-driven procedure of addressing the identified gaps.
Of particular relevance are two metrics that attempt to characterize reliability of predictions made by our random
forest classifier: Dot-Product-Sum (DPS) and In-Bounds Score (IBS). DPS measures consistency of predictions
made independently by the individual trees in the forest. IBS is perfect if for each node of a classification tree, the
query fits within the range of the bounding box of the training data. Otherwise, it returns the value proportional
to the fraction of nodes where the query was in-bounds. GRM identifies where the original threat classification
model performs well and where it performs poorly. It does this in one of two ways: (a) By finding low-dimensional
projections where the testing and training data distributions differ significantly, and (b) By finding low-dimensional
regions of data space where the original classifier experiences considerably low accuracy. The GRM leverages a
previously published algorithm called Regression for Informative Projection Retrieval (RIPR) [2]]. This algorithm
discovers a small set of low-dimensional projections of possibly highly multivariate data which reveal specific low-
dimensional structures in data, if such structures exist. RIPR’s primary application is to improve understandability
of classification, regression, or clustering tasks by explaining their results in a human-readable form. Here, we
primarily leverage its ability to detect low-dimensional patterns of unexpected discrepancy between training and
testing data, as well as low-dimensional structures of low performance areas, in order to facilitate improvements in
training data generation. As a result of executing GRM, the resulting low-dimensional subspaces are visualized and
the domain experts and data engineers gain intuition as to what data may be missing from the training set and decide
which parts of the feature space would most benefit from additional samples. The expanded training data will reflect
these changes in the next machine learning iteration, and the process can continue until the training set is shaped
into a faithful reflection of the test set, and the performance of the threat adjudication system is optimized.

Experimental Results. To find data gaps directly, our algorithm simply looks for mismatches between the training
and testing data distributions in all 2 or 3 dimensional projections of data, to enable visually interpretable output. In
this scenario, the algorithm returns the most prominent gap, even if it is located in a projection that yields relatively
little information to support model predictions. Our results show that GRM is able to identify potentially irregularly
shaped areas of mismatch between the training and test sets. The set up of our experiments involves the selection
of two random samples: one of an arbitrary number of data points in the training set composed of semi-synthetic
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Figure 1: Example projections retrieved using direct (left), and diagnostic nonparametric (middle) and parametric approaches.

data and another similarly sized sample of data from the testing set. By taking these uniformly random samples,
any mismatch we find is representative of the entire dataset with high probability, as the process does not change
the training and testing data distributions. The leftmost graph in Figure|l{shows an overlay mismatch where the test
set seems to simply be a shifted version of the training set. After conferring with the data engineers who built the
data, we determined that the cause of the overlap is actually a single scalar parameter that was changed between
two successive artificial data builds. Visualization provided by our framework allows data engineers to easily gather
succinct information about the variations of the underlying structure of data.

Next, we tied in a cost function that determines which gaps are more meaningful in terms of the impact they may
have on the threat classification performance. We can achieve this by incorporating diagnostic measures resulting
from the original classifier performance evaluation, as observed on the test samples. The middle graph in Figure
shows a projection retrieved using a nonparametric loss estimator. We see that our random forest makes the most
confident predictions (high DPS) for blue points which occupy a densely packed T-shaped space in the projection.
Red points, which correspond to predictions which were not fully consistent among the trees in the forest (low DPS),
indicate test data which may benefit from additional nearby training samples. They are far more spread out within
the projection, and often reside near the edges of the gray point cloud which represents all of the training data.

Humans are good at understanding how to fill in gaps in low dimensional projections that retain some sort of a
regular structure (i.e. a box or triangle), which is why we also devised a parametric loss estimator. It enables ex-
traction of projections that contain regularly-shaped gaps which may cause considerable loss of threat classification
performance. In the rightmost graph in Figure[I] we use linear Support Vector Machine model to separate high- and
low-performance areas. Our goal here is to find projections of data where misclassified queries occupy one side of
the classification boundary, while correctly classified queries occupy the other side. This is a useful type of a gap to
look at because it identifies sets of features that jointly emphasize a controversy on how test data should be classified.

To prove our framework inceases model accuracy, we train random forest models using different subsets of
training data. We start by taking our original data set and removing samples which fall within a certain region of
a 2D projection, thus creating an artifical hole in the data. The random forest trained from this data set achieves
75.0% classification accuracy. We then run RIPR which identifies this gap and we add excluded samples back to the
training set, which fills the gap that RIPR identified. Now training a new random forest, we achieve 75.7% accuracy.
This shows we are able to improve model performance by filling in gaps that the GRM identifies.

Conclusion. We presented a framework by which data engineers and application domain experts can identify short-
comings in their semi-synthetic data, so that they could make effective changes when collecting and generating
additional data in an iterative build process, as well as glean insights regarding the underlying structure of high-
dimensional feature spaces. The approach has been successfully used to boost performance of a radiation threat
adjudication system.
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