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Approach

Noninvasive vital sign (VS) data collected .
in a SDU with alerts issued when a VS exceeds
predefined thresholds

Many alerts are artifacts, causing alarm fatigue .
Need to dismiss these artifacts

Training classifiers for automatic artifact .
adjudication requires expert annotation

We aim to reduce annotation effort

Regression-based Informative
Projection Recovery (RIPR)
facilitates expert annotation

Requires fewer annotations to
obtain an accurate classifier

Results presented in a human-
understandable form, low-
dimensional projections

Outcome: Performing active learning reduces the number of alerts that need to be

annotated by experts to train the artifact adjudication model.
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Data Description

* Prospective longitudinal study recruited admissions over 8 weeks in a 24 bed
trauma stepdown unit all with noninvasive VS monitoring:

* Heart Rate (HR) from 5-lead ECG

 Respiratory Rate (RR) from ECG bioimpedance

* Systolic (SBP) and Diastolic (DBP) Blood Pressure (oscillometric)

* Peripheral arterial oxygen saturation (SpO,) by finger plethysmography

e VS data analyzed beyond local instability threshold values:
*  HR<40 or >140; RR<8 or >36; SBP <80 or >200; DBP>110, Sp0,<85%
 Each alert associated with a category indicating the leading abnormal VS
e 812 alerts of 3 types: RR, SpO,, BP

 Features computed, for each VS signal independently, during span of each
alert, and a short window (4 minutes) preceding alert onset

*  Features include common statistics of each VS: mean, standard deviation,
minimum, maximum, and range of values
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Approach: Finding Informative Projections of Data

 Aim: Find a few simple projections of data in which alerts appear as either
convincingly correct or easily dismissible

* Challenge: Very few existing labels, difficult to tell which projections are useful

e Solution: Machine Learning algorithm called Active RIPR: Active Learning for
Regression-based Informative Projection Recovery [*]

* RIPR selects a small number of Projections
projections which classify jointly
e Each alert requires only one “E

projection to be explained
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 The next samples to be labeled are
selected based on these projections

Data points

 Sampling criteria: uncertainty, query
by committee, information gain,
conditional entropy
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[*] M. Fiterau, A. Dubrawski, A Unified View of Informative Projection Retrieval, ICMLA 2013
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Result: Adjudication of oxygen saturation alerts

Learning curves for oxygen saturation alerts We used ActiveRIPR to
0.89( : :
predict SpO, alerts, treating
0881 the expert-labeled data as
0.87} the pool of samples available
- for active learning.
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We performed 10-fold cross-validation, training the ActiveRIPR model on 90%
of the samples and using the remainder to calculate the learning curve.
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Result: Adjudication of blood pressure alerts

Blood Pressure Alert Prediction (Leave-one-out)

ActiveRIPR(Inf oGain)
—— K-nearestneighbours
Kemel S¥M
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Active RIPR with the

075 - Information Gain
Criterion, appears to be
the most effective
sampling method among
tested alternatives. It
outperforms other full
dimensional classifiers
using uncertainty
sampling.
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We used ActiveRIPR to predict BP alerts, using the expert-labeled pool of alerts.
Leave-one-out cross validation was used due to the small amount of data available.
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Projection shown to experts during annotation (RR)

Projection 2
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The retrieved few low-dimensional projections make it possible for domain
experts to quickly adjudicate alert labels.
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Projection shown to experts during annotation (SPO,)
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The retrieved few low-dimensional projections make it possible for domain
experts to quickly adjudicate alert labels.
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