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Abstract

In many applications, classification systems often require human intervention in
the loop. In such cases the decision process must be transparent and comprehen-
sible, simultaneously requiring minimal assumptions on the underlying data dis-
tributions. To tackle this problem, we formulate an axis-aligned subspace-finding
task under the assumption that query specific information dictates the comple-
mentary use of the subspaces. We develop a regression-based approach called
RECIP that efficiently solves this problem by finding projections that minimize a
nonparametric conditional entropy estimator. Experiments show that the method
is accurate in identifying the informative projections of the dataset, picking the
correct views to classify query points, and facilitates visual evaluation by users.

1 Introduction and problem statement
In the domain of predictive analytics, many applications which keep human users in the loop require
the use of simple classification models. Often, it is required that a test-point be ‘explained’ (classi-
fied) using a simple low-dimensional projection of the original feature space. This is a Projection
Retrieval for Classification problem (PRC). The interaction with the user proceeds as follows: the
user provides the system a query point; the system searches for a projection in which the point can
be accurately classified; the system displays the classification result as well as an illustration of how
the classification decision was reached in the selected projection.

Solving the PRC problem is relevant in many practical applications. For instance, consider a nuclear
threat detection system installed at a border check point. Vehicles crossing the border are scanned
with sensors so that a large array of measurements of radioactivity and secondary contextual infor-
mation is being collected. These observations are fed into a classification system that determines
whether the scanned vehicle may carry a threat. Given the potentially devastating consequences of
a false negative, a border control agent is requested to validate the prediction and decide whether
to submit the vehicle for a costly further inspection. With the positive classification rate of the sys-
tem under strict bounds because of limitations in the control process, the risk of false negatives is
increased. Despite its crucial role, human intervention should only be withheld for cases in which
there are reasons to doubt the validity of classification. In order for a user to attest the validity of a
decision, the user must have a good understanding of the classification process, which happens more
readily when the classifier only uses the original dataset features rather than combinations of them,
and when the discrimination models are low-dimensional.

In this context, we aim to learn a set of classifiers in low-dimensional subspaces and a decision
function which selects the subspace under which a test point is to be classified. Assume we are
given a dataset {(x1, y1) . . . (xn, yn)} ∈ Xn × {0, 1}n and a class of discriminators H. The model
will contain a set Π of subspaces of X ; Π ⊆ Π, where Π is the set of all axis-aligned subspaces
of the original feature space, the power set of the features. To each projection πi ∈ Π corresponds
one discriminator from a given hypothesis space hi ∈ H. It will also contain a selection function
g : X → Π×H, which yields, for a query point x, the projection/discriminator pair with which this
point will be classified. The notation π(x) refers to the projection of the point x onto the subspace
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π while h(π(x)) represents the predicted label for x. Formally, we describe the model class as

Md = {Π = {π : π ∈ Π, dim(π) ≤ d},
H = {hi : hi ∈ H, h : πi → Y, ∀i = 1 . . . |Π|},
g ∈ {f : X → {1 . . . |Π|}} .

where dim(π) presents the dimensionality of the subspace determined by the projection π. Note that
only projections up to size d will be considered, where d is a parameter specific to the application.
The set H contains one discriminator from the hypothesis classH for each projection.

Intuitively, the aim is to minimize the expected classification error over Md, however, a notable
modification is that the projection and, implicitly, the discriminator, are chosen according to the
data point that needs to be classified. Given a query x in the space X , g(x) will yield the subspace
πg(x) onto which the query is projected and the discriminator hg(x) for it. Distinct test points can
be handled using different combinations of subspaces and discriminators. We consider models that
minimize 0/1 loss. Hence, the PRC problem can be stated as follows:

M∗ = arg min
M∈Md

EX ,Y

[
y 6= hg(x)(πg(x)(x))

]
There are limitations to the type of selection function g that can be learned. A simple example for

which g can be recovered is a set of signal readings x for which, if one of the readings xi exceeds a
threshold ti, the label can be predicted just based on xi. A more complex one is a dataset containing
regulatory variables, that is, for xi in the interval [ak, bk] the label only depends on (x1

k . . . x
nk

k ) -
datasets that fall into the latter category fulfill what we call the Subspace-Separability Assumption.

This paper proposes an algorithm called RECIP that solves the PRC problem for a class of nonpara-
metric classifiers. We evaluate the method on artificial data to show that indeed it correctly identifies
the underlying structure for data satisfying the Subspace-Separability Assumption. We show some
case studies to illustrate how RECIP offers insight into applications requiring human intervention.

The use of dimensionality reduction techniques is a common preprocessing step in applications
where the use of simplified classification models is preferable. Methods that learn linear combina-
tions of features, such as Linear Discriminant Analysis, are not quite appropriate for the task consid-
ered here, since we prefer to natively rely on the dimensions available in the original feature space.
Feature selection methods, such as e.g. lasso, are suitable for identifying sets of relevant features,
but do not consider interactions between them. Our work better fits the areas of class dependent
feature selection and context specific classification, highly connected to the concept of Transductive
Learning [6]. Other context-sensitive methods are Lazy and Data-Dependent Decision Trees, [5] and
[10] respectively. In Ting et al [14], the Feating submodel selection relies on simple attribute splits
followed by fitting local predictors, though the algorithm itself is substantially different. Obozinski
et al present a subspace selection method in the context of multitask learning [11]. Go et al propose
a joint method for feature selection and subspace learning [7], however, their classification model
is not particularly query specific. Alternatively, algorithms that transform complex or unintelligi-
ble models with user-friendly equivalents have been proposed [3, 2, 1, 8]. Algorithms specifically
designed to yield understandable models are a precious few. Here we note a rule learning method
described in [12], even though the resulting rules can make visualization difficult, while itemset
mining [9] is not specifically designed for classification. Unlike those approaches, our method is
designed to retrieve subsets of the feature space designed for use in a way that is complementary to
the basic task at hand (classification) while providing query-specific information.

2 Recovering informative projections with RECIP
To solve PRC, we need means by which to ascertain which projections are useful in terms of discrim-
inating data from the two classes. Since our model allows the use of distinct projections depending
on the query point, it is expected that each projection would potentially benefit different areas of the
feature space. A(π) refers to the area of the feature space where the projection π is selected.

A(π) = {x ∈ X : πg(x) = π}

The objective becomes

min
M∈Md

E(X×Y)

[
y 6= hg(x)(πg(x)(x))

]
= min

M∈Md

∑
π∈Π

p(A(π))E
(
y 6= hg(x)(πg(x)(x))|x ∈ A(π)

)
.
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The expected classification error over A(π) is linked to the conditional entropy of Y |X . Fano’s
inequality provides a lower bound on the error while Feder and Merhav [4] derive a tight upper
bound on the minimal error probability in terms of the entropy. This means that conditional entropy
characterizes the potential of a subset of the feature space to separate data, which is more generic
than simply quantifying classification accuracy for a specific discriminator.

In view of this connection between classification accuracy and entropy, we adapt the objective to:

min
M∈Md

∑
π∈Π

p(A(π))H(Y |π(X);X ∈ A(π)) (1)

The method we propose optimizes an empirical analog of (1) which we develop below and for which
we will need the following result.
Proposition 2.1. Given a continuous variableX ∈ X and a binary variable Y , whereX is sampled
from the mixture model f(x) = p(y = 0)f0(x) + p(y = 1)f1(x) = p0f0(x) + p1f1(x) ,

then H(Y |X) = −p0 log p0 − p1 log p1 −DKL(f0||f)−DKL(f1||f) .

Next, we will use the nonparametric estimator presented in [13] for Tsallis α-divergence. Given
samples Ui ∼ U , with i = 1, n and Vj ∼ V with j = 1,m, the divergence is estimated as follows:

T̂α(U ||V ) =
1

1− α

[ 1

n

n∑
i=1

( (n− 1)νk(Ui, U \ ui)d

mνk(Ui, V )d

)1−α
B(k, α)− 1

]
, (2)

where d is the dimensionality of the variables U and V and νk(z, Z) represents the distance from z

to its kth nearest neighbor of the set of points Z. For α ≈ 1 and n→∞, T̂α(u||v) ≈ DKL(u||v).

2.1 Local estimators of entropy
We will now plug (2) in the formula obtained by Proposition 2.1 to estimate the quantity (1). We
use the notation X0 to represent the n0 samples from X which have the labels Y equal to 0, and X1

to represent the n1 samples from X which have the labels set to 1. Also, Xy(x) represents the set of
samples that have labels equal to the label of x and X¬y(x) the data that have labels opposite to the
label of x.

Ĥ(Y |X;X ∈ A) = −H(p0)−H(p1)− T̂ (fx0 ||fx)− T̂ (fx1 ||fx) + C α ≈ 1

Ĥ(Y |X;X ∈ A) ∝ 1

n0

n0∑
i=1

I[xi ∈ A]
( (n0 − 1)νk(xi, X0 \ xi)d

nνk(xi, X \ xi)d
)1−α

+
1

n1

n1∑
i=1

I[xi ∈ A]
( (n1 − 1)νk(xi, X1 \ xi)d

nνk(xi, X \ xi)d
)1−α

∝ 1

n0

n0∑
i=1

I[xi ∈ A]
( (n0 − 1)νk(xi, X0 \ xi)d

nνk(xi, X1 \ xi)d
)1−α

+
1

n1

n1∑
i=1

I[xi ∈ A]
( (n1 − 1)νk(xi, X1 \ xi)d

nνk(xi, X0 \ xi)d
)1−α

∝ 1

n

n∑
i=1

I[xi ∈ A]
( (n− 1)νk(xi, Xy(xi) \ xi)d

nνk(xi, X¬y(xi) \ xi)d
)1−α

The estimator for the entropy of the data that is classified with projection π is as follows:

Ĥ(Y |π(X);X ∈ A(π)) ∝ 1

n

n∑
i=1

I[xi ∈ A(π)]
( (n− 1)νk(π(xi), π(Xy(xi)) \ π(xi))

d

nνk(π(xi), π(X¬y(xi) \ xi))d
)1−α

(3)

From 3 and using the fact that I[xi ∈ A(π)] = I[πg(xi) = π] for which we use the notation
I[g(xi)→ π], we estimate the objective as

min
M∈Md

∑
π∈Π

1

n

n∑
i=1

I[g(xi)→ π]
( (n− 1)νk(π(xi), π(Xy(xi)) \ π(xi))

d

nνk(π(xi), π(X¬y(xi) \ xi))d
)1−α

(4)
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Therefore, the contribution of each data point to the objective corresponds to a distance ratio on the
projection π∗ where the class of the point is obtained with the highest confidence (data is separable
in the neighborhood of the point). We start by computing the distance-based metric of each point on
each projection of size up to d - there are d∗ such projections.

This procedure yields an extended set of features Z, which we name local entropy estimates:

Zij =
( νk(πj(xi), πj(Xy(xi)) \ πj(xi))
νk(πj(xi), πj(X¬y(xi)) \ πj(xi))

)d(1−α)

α ≈ 1 j ∈ {1 . . . d∗} (5)

For each training data point, we compute the best distance ratio amid all the projections, which is
simply Ti = minj∈[d∗] Zij .

The objective can be then further rewritten as a function of the entropy estimates:

min
M∈Md

n∑
i=1

∑
πj∈Π

I[g(xi)→ πj ]Zij (6)

From the definition of T, it is also clear that

min
M∈Md

n∑
i=1

∑
πj∈Π

I[g(xi)→ πj ]Zij ≥
n∑
i=1

Ti . (7)

2.2 Projection selection as a combinatorial problem

Considering form (6) of the objective, and given that the estimates Zij are constants, depending only
on the training set, the projection retrieval problem is reduced to finding g for all training points,
which will implicitly select the projection set of the model. Naturally, one might assume the best-
performing classification model is the one containing all the axis-aligned subspaces. This model
achieves the lower bound (7) for the training set. However, the larger the set of projections, the more
values the function g takes, and thus the problem of selecting the correct projection becomes more
difficult. It becomes apparent that the number of projections should be somehow restricted to allow
intepretability. Assuming a hard threshold of at most t projections, the optimization (6) becomes
an entry selection problem over matrix Z where one value must be picked from each row under a
limitation on the number of columns that can be used. This problem cannot be solved exactly in
polynomial time. Instead, it can be formulated as an optimization problem under `1 constraints.

2.3 Projection retrieval through regularized regression
To transform the projection retrieval to a regression problem we consider T, the minimum obtainable
value of the entropy estimator for each point, as the output which the method needs to predict. Each
row i of the parameter matrix B represents the degrees to which the entropy estimates on each
projection contribute to the entropy estimator of point xi. Thus, the sum over each row of B is 1,
and the regularization penalty applies to the number of non-zero columns in B.

min
B
||T − (Z �B)J|Π|,1||22 + λ

d∗∑
i=1

[Bi 6= 0] (8)

subject to |Bk|`1 = 1 k = 1, n

where (Z �B)ij = ZijBij and J is a matrix of ones.

The problem with this optimization is that it is not convex. A typical walk-around of this issue is
to use the convex relaxation for Bi 6= 0, that is `1 norm. This would transform the penalized term
to
∑d∗

i=1 |Bi|`1 . However,
∑d∗

i=1 |Bi|`1 =
∑n
k=1 |Bk|`1 = n , so this penalty really has no effect.

An alternative mechanism to encourage the non-zero elements in B to populate a small number
of columns is to add a penalty term in the form of Bδ, where δ is a d∗-size column vector with
each element representing the penalty for a column in B. With no prior information about which
subspaces are more informative, δ starts as an all-1 vector. An initial value forB is obtained through
the optimization (8). Since our goal is to handle data using a small number of projections, δ is then
updated such that its value is lower for the denser columns in B. This update resembles the re-
weighing in adaptive lasso. The matrix B itself is updated, and this 2-step process continues until
convergence of δ. Once δ converges, the projections corresponding to the non-zero columns of B
are added to the model. The procedure is shown in Algorithm 1.
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Algorithm 1: RECIP
δ = [1 . . . 1]
repeat
b = arg minB ||T −

∑|PI|
i=1 < Z,B > ||22 + λ|Bδ|`1

subject to |Bk|`1 = 1 k = 1 . . . n
δk = |Bi|`1 i = . . . d∗ (update the differential penalty)
δ = 1− δ

|δ|`1
until δ converges
return Π = {πi; |Bi|`1 > 0 ∀i = 1 . . . d∗}

2.4 Lasso for projection selection

We compared our algorithm to lasso regularization that ranks the projections in terms of their po-
tential for data separability. We write this as an `1-penalized optimization on the extended feature
set Z, with the objective T : minβ |T −Zβ|2 +λ|β|`1 . The lasso penalty to the coefficient vector
encourages sparsity. For a high enough λ, the sparsity pattern in β is indicative of the usefulness of
the projections. The lasso on entropy contributions was not found to perform well as it is not query
specific and will find one projection for all data. We improved it by allowing it to iteratively find pro-
jections - this robust version offers increased performance by reweighting the data thus focusing on
different subsets of it. Although better than running lasso on entropy contributions, the robust lasso
does not match RECIP’s performance as the projections are selected gradually rather than jointly.
Running the standard lasso on the original design matrix yields a set of relevant variables and it is
not immediately clear how the solution would translate to the desired class.

2.5 The selection function

Once the projections are selected, the second stage of the algorithm deals with assigning the pro-
jection with which to classify a particular query point. An immediate way of selecting the correct
projection starts by computing the local entropy estimator for each subspace with each class assign-
ment. Then, we may select the label/subspace combination that minimizes the empirical entropy.

(i∗, θ∗) = arg min
i,θ

( νk(πi(x), πi(Xθ))

νk(πi(x), πi(X¬θ))

)dim(πi)(1−α)

i = 1 . . . d∗ , α ≈ 1 (9)

3 Experimental results
In this section we illustrate the capability of RECIP to retrieve informative projections of data and
their use in support of interpreting results of classification. First, we analyze how well RECIP can
identify subspaces in synthetic data whose distribution obeys the subspace separability assumption
(3.1). As a point of reference, we also present classification accuracy results (3.2) for both the
synthetic data and a few real-world sets. This is to quantify the extent of the trade-off between
fidelity of attainable classifiers and desired informativeness of the projections chosen by RECIP. We
expect RECIP’s classification performance to be slightly, but not substantially worse when compared
to relevant classification algorithms trained to maximize classification accuracy. Finally, we present
a few examples (3.3) of informative projections recovered from real-world data and their utility in
explaining to human users the decision processes applied to query points.

A set of artificial data used in our experiments contains q batches of data points, each of them made
classifiable with high accuracy using one of available 2-dimensional subspaces (x1

k, x
2
k) with k ∈

{1 . . . q}. The data in batch k also have the property that x1
k > tk. This is done such that the group a

point belongs to can be detected from x1
k, thus x1

k is a regulatory variable. We control the amount of
noise added to thusly created synthetic data by varying the proportion of noisy data points in each
batch. The results below are for datasets with 7 features each, with number of batches q ranging
between 1 and 7. We kept the number of features specifically low in order to prevent excessive
variation between any two sets generated this way, and to enable computing meaningful estimates
of the expectation and variance of performance, while enabling creation of complicated data in
which synthetic patterns may substantially overlap (using 7 features and 7 2-dimensional patterns
implies that dimensions of at least 4 of the patterns will overlap). We implemented our method
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to be scalable to the size and dimensionality of data and although for brevity we do not include a
discussion of this topic here, we have successfully run RECIP against data with 100 features.

The parameter α is a value close to 1, because the Tsallis divergence converges to the KL divergence
as alpha approaches 1. For the experiments on real-world data, d was set to n (all projections were
considered). For the artificial data experiments, we reported results for d = 2 as they do not change
significantly for d >= 2 because this data was synthesized to contain bidimensional informative
projections. In general, if d is too low, the correct full set of projections will not be found, but it may
be recovered partially. If d is chosen too high, there is a risk that a given selected projection p will
contain irrelevant features compared to the true projection p0. However, this situation only occurs
if the noise introduced by these features in the estimators makes the entropy contributions on p and
p0 statistically indistinguishable for a large subset of data. The users will choose d according to the
desired/acceptable complexity of the resulting model. If the results are to be visually interpreted by
a human, values of 2 or 3 are reasonable for d.

3.1 Recovering informative projections

Table 1 shows how well RECIP recovers the q subspaces corresponding to the synthesized batches of
data. We measure precision (proportion of the recovered projections that are known to be informa-
tive), and recall (proportion of known informative projections that are recovered by the algorithm).
in Table 1, rows correspond to the number of distinct synthetic batches injected in data, q, and sub-
sequent columns correspond to the increasing amounts of noise in data. We note that the observed
precision is nearly perfect: the algorithm makes only 2 mistakes over the entire set of experiments,
and those occur for highly noisy setups. The recall is nearly perfect as long as there is little overlap
among the dimensions, that is when the injections do not interfere with each other. As the number
of projections increases, the chances for overlap among the affected features also increase, which
makes the data more confusing resulting on a gradual drop of recall until only about 3 or 4 of the
7 known to be informative subspaces can be recovered. We have also used lasso as described in
2.4 in an attempt to recover projections. This setup only manages to recover one of the informative
subspaces, regardless of how the regularization parameter is tuned.

3.2 Classification accuracy

Table 2 shows the classification accuracy of RECIP, obtained using synthetic data. As expected, the
observed performance is initially high when there are few known informative projections in data and
it decreases as noise and ambiguity of the injected patterns increase.

Most types of ensemble learners would use a voting scheme to arrive at the final classification of a
testing sample, rather than use a model selection scheme. For this reason, we have also compared
predictive accuracy revealed by RECIP against a method based on majority voting among multiple
candidate subspaces. Table 4 shows that the accuracy of this technique is lower than the accuracy of
RECIP, regardless of whether the informative projections are recovered by the algorithm or assumed
to be known a priori. This confirms the intuition that a selection-based approach can be more
effective than voting for data which satisfies the subspace separability assumption.

For reference, we have also classified the synthetic data using K-Nearest-Neighbors algorithm using
all available features at once. The results of that experiment are shown in Table 5. Since RECIP uses
neighbor information, K-NN is conceptually the closest among the popular alternatives. Compared
to RECIP, K-NN performs worse when there are fewer synthetic patterns injected in data to form
informative projections. It is because some features used then by K-NN are noisy. As more features
become informative, the K-NN accuracy improves. This example shows the benefit of a selective
approach to feature space and using a subset of the most explanatory projections to support not only
explanatory analyses but also classification tasks in such circumstances.

3.3 RECIP case studies using real-world data

Table 3 summarizes the RECIP and K-NN performance on UCI datasets. We also test the meth-
ods using Cell dataset containing a set of measurements such as the area and perimeter biological
cells with separate labels marking cells subjected to treatment and control cells. In Vowel data, the
nearest-neighbor approach works exceptionally well, even outperforming random forests (0.94 ac-
curacy), which is an indication that all features are jointly relevant. For d lower than the number
of features, RECIP picks projections of only one feature, but if there is no such limitation, RECIP
picks the space of all the features as informative.
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Table 1: Projection recovery for artificial datasets with 1 . . . 7 informative features and noise level
0 . . . 0.2 in terms of mean and variance of Precision and Recall. Mean/var obtained for each setting
by repeating the experiment with datasets with different informative projections.

PRECISION
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 1 1 1 0.9286 0.9286 0 0 0 0.0306 0.0306
2 1 1 1 1 1 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 0 0 0 0 0

RECALL
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 1 1 0 0 0 0 0
3 1 1 0.9524 0.9524 1 0 0 0.0136 0.0136 0
4 0.9643 0.9643 0.9643 0.9643 0.9286 0.0077 0.0077 0.0077 0.0077 0.0128
5 0.7714 0.7429 0.8286 0.8571 0.7714 0.0163 0.0196 0.0049 0.0082 0.0278
6 0.6429 0.6905 0.6905 0.6905 0.6905 0.0113 0.0113 0.0272 0.0113 0.0113
7 0.6327 0.5918 0.5918 0.5714 0.551 0.0225 0.02 0.0258 0.0233 0.02

Table 2: RECIP Classification Accuracy on Artificial Data
CLASSIFICATION ACCURACY

Mean Variance
0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2

1 0.9751 0.9731 0.9686 0.9543 0.9420 0.0000 0.0000 0.0000 0.0008 0.0007
2 0.9333 0.9297 0.9227 0.9067 0.8946 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.9053 0.8967 0.8764 0.8640 0.8618 0.0004 0.0005 0.0016 0.0028 0.0007
4 0.8725 0.8685 0.8589 0.8454 0.8187 0.0020 0.0020 0.0019 0.0025 0.0032
5 0.8113 0.8009 0.8105 0.8105 0.7782 0.0042 0.0044 0.0033 0.0036 0.0044
6 0.7655 0.7739 0.7669 0.7632 0.7511 0.0025 0.0021 0.0026 0.0025 0.0027
7 0.7534 0.7399 0.7347 0.7278 0.7205 0.0034 0.0040 0.0042 0.0042 0.0045

CLASSIFICATION ACCURACY - KNOWN PROJECTIONS
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 0.9751 0.9731 0.9686 0.9637 0.9514 0.0000 0.0000 0.0000 0.0001 0.0000
2 0.9333 0.9297 0.9227 0.9067 0.8946 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.9053 0.8967 0.8914 0.8777 0.8618 0.0004 0.0005 0.0005 0.0007 0.0007
4 0.8820 0.8781 0.8657 0.8541 0.8331 0.0011 0.0011 0.0014 0.0014 0.0020
5 0.8714 0.8641 0.8523 0.8429 0.8209 0.0015 0.0015 0.0018 0.0019 0.0023
6 0.8566 0.8497 0.8377 0.8285 0.8074 0.0014 0.0015 0.0016 0.0023 0.0021
7 0.8429 0.8371 0.8256 0.8122 0.7988 0.0015 0.0018 0.0018 0.0021 0.0020

Table 3: Accuracy of K-NN and RECIP
Dataset KNN RECIP

Breast Cancer Wis 0.8415 0.8275
Breast Tissue 1.0000 1.0000

Cell 0.7072 0.7640
MiniBOONE* 0.7896 0.7396

Spam 0.7680 0.7680
Vowel 0.9839 0.9839

In Spam data, the two most informative projections are
’Capital Length Total’ (CLT)/’Capital Length Longest’
(CLL) and CLT/’Frequency of word your’ (FWY). Fig-
ure 1 shows these two projections, with the dots repre-
senting training points. The red dots represent points la-
beled as spam while the blue ones are non-spam. The
circles are query points that have been assigned to be clas-
sified with the projection in which they are plotted. The
green circles are correctly classified points, while the magenta circles - far fewer - are the incorrectly
classified ones. Not only does the importance of text in capital letters make sense for a spam filter-
ing dataset, but the points that select those projections are almost flawlessly classified. Additionally,
assuming the user would need to attest the validity of classification for the first plot, he/she would
have no trouble seeing that the circled data points are located in a region predominantly populated
with examples of spam, so any non-spam entry appears suspicious. Both of the magenta-colored
cases fall into this category, and they can be therefore flagged for further investigation.
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Figure 1: Spam Dataset Selected Subspaces
Table 4: Classification accuracy using RECIP-learned projections - or known projections, in the
lower section - within a voting model instead of a selection model

CLASSIFICATION ACCURACY - VOTING ENSEMBLE
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 0.9751 0.9731 0.9686 0.9317 0.9226 0.0000 0.0000 0.0000 0.0070 0.0053
2 0.7360 0.7354 0.7331 0.7303 0.7257 0.0002 0.0002 0.0001 0.0002 0.0001
3 0.7290 0.7266 0.7163 0.7166 0.7212 0.0002 0.0002 0.0008 0.0006 0.0002
4 0.6934 0.6931 0.6932 0.6904 0.6867 0.0008 0.0008 0.0008 0.0008 0.0009
5 0.6715 0.6602 0.6745 0.6688 0.6581 0.0013 0.0014 0.0013 0.0014 0.0013
6 0.6410 0.6541 0.6460 0.6529 0.6512 0.0008 0.0007 0.0010 0.0006 0.0005
7 0.6392 0.6342 0.6268 0.6251 0.6294 0.0009 0.0011 0.0012 0.0012 0.0012

CLASSIFICATION ACCURACY - VOTING ENSEMBLE, KNOWN PROJECTIONS
Mean Variance

0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2
1 0.9751 0.9731 0.9686 0.9637 0.9514 0.0000 0.0000 0.0000 0.0001 0.0000
2 0.7360 0.7354 0.7331 0.7303 0.7257 0.0002 0.0002 0.0001 0.0002 0.0001
3 0.7409 0.7385 0.7390 0.7353 0.7325 0.0010 0.0012 0.0010 0.0011 0.0010
4 0.7110 0.7109 0.7083 0.7067 0.7035 0.0041 0.0041 0.0042 0.0042 0.0043
5 0.7077 0.7070 0.7050 0.7034 0.7008 0.0015 0.0015 0.0015 0.0016 0.0016
6 0.6816 0.6807 0.6801 0.6790 0.6747 0.0008 0.0008 0.0008 0.0008 0.0009
7 0.6787 0.6783 0.6772 0.6767 0.6722 0.0008 0.0009 0.0009 0.0008 0.0008

Table 5: Classification accuracy for artificial data with the K-Nearest Neighbors method
CLASSIFICATION ACCURACY - KNN

Mean Variance
0 0.02 0.05 0.1 0.2 0 0.02 0.05 0.1 0.2

1 0.7909 0.7843 0.7747 0.7652 0.7412 0.0002 0.0002 0.0002 0.0002 0.0002
2 0.7940 0.7911 0.7861 0.7790 0.7655 0.0001 0.0001 0.0001 0.0001 0.0001
3 0.7964 0.7939 0.7901 0.7854 0.7756 0.0000 0.0001 0.0001 0.0000 0.0000
4 0.7990 0.7972 0.7942 0.7904 0.7828 0.0001 0.0001 0.0001 0.0001 0.0001
5 0.8038 0.8024 0.8002 0.7970 0.7905 0.0001 0.0001 0.0001 0.0001 0.0001
6 0.8043 0.8032 0.8015 0.7987 0.7930 0.0001 0.0001 0.0001 0.0001 0.0001
7 0.8054 0.8044 0.8028 0.8004 0.7955 0.0001 0.0001 0.0001 0.0001 0.0001

4 Conclusion
This paper considers the problem of Projection Recovery for Classification. It is relevant in applica-
tions where the decision process must be easy to understand in order to enable human interpretation
of the results. We have developed a principled, regression-based algorithm designed to recover small
sets of low-dimensional subspaces that support interpretability. It optimizes the selection using in-
dividual data-point-specific entropy estimators. In this context, the proposed algorithm follows the
idea of transductive learning, and the role of the resulting projections bears resemblance to high con-
fidence regions known in conformal prediction models. Empirical results obtained using simulated
and real-world data show the effectiveness of our method in finding informative projections that
enable accurate classification while maintaining transparency of the underlying decision process.
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