
Software Reliability via Run-Time Result-Checking

Hal Wasserman

University of California, Berkeley

and

Manuel Blum

City University of Hong Kong and

University of California, Berkeley

We review the �eld of result-checking, discussing simple checkers and self-correctors. We
argue that such checkers could pro�tably be incorporated in software as an aid to e�cient debug-
ging and enhanced reliability. We consider how to modify traditional checking methodologies to
make them more appropriate for use in real-time, real-number computer systems. In particular,
we suggest that checkers should be allowed to use stored randomness: i.e., that they should
be allowed to generate, preprocess, and store random bits prior to run-time, and then to use
this information repeatedly in a series of run-time checks. In a case study of checking a gen-
eral real-number linear transformation (for example, a Fourier Transform), we present a simple
checker which uses stored randomness, and a self-corrector which is particularly e�cient if stored
randomness is employed.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging;
F.2.1 [Analysis of Algorithms]: Numerical Algorithms|Computation of transforms; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Reliability, Algorithms, Veri�cation

Additional Key Words and Phrases: Built-in testing, concurrent error detection, debugging, fault
tolerance, Fourier Transform, result-checking, self-correcting

This work was supported in part by a MICRO grant from Hughes Aircraft Company and the
State of California, by NSF Grant ccr92-01092, and by NDSEG Fellowship daah04-93-g-0267.
A preliminary version of this paper appears as: \Program result-checking: a theory of testing
meets a test of theory," Proc. 35th IEEE Symp. Foundations of Computer Science (1994), pp.
382{392.
Name: Hal Wasserman
A�liation: Computer Science Division, University of California at Berkeley
Address: Berkeley, CA 94720, halw@cs.berkeley.edu, http.cs.berkeley.edu/�halw
Name: Manuel Blum
A�liation: Computer Science Department, City University of Hong Kong
Address: 83 Tat Chee Ave., Kowloon Tong, Kowloon, Hong Kong, csblum@cityu.edu.hk
A�liation: Computer Science Division, University of California at Berkeley
Address: Berkeley, CA 94720, blum@cs.berkeley.edu, http.cs.berkeley.edu/�blum

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � H. Wasserman and M. Blum

1. RESULT-CHECKING AND ITS APPLICATIONS

1.1 Assuring Software Reliability

Methodologies for assuring software reliability form an important part of the tech-
nology of programming. Yet the problem of e�ciently identifying software bugs
remains a di�cult one, and one to which no perfect solution is likely to be found.
Software is generally debugged via testing suites: one runs a program on a

variety of carefully selected inputs, identifying a bug whenever the program fails
to perform correctly. This approach leaves two important questions incompletely
answered.
First, how do we know whether or not the program's performance is correct?

Generally, some sort of an oracle is used here: our program's output may be
compared to the output of an older, slower program believed to be more reliable,
or the programmers may subject the output to a painstaking (and likely subjective
and incomplete) examination by eye.
Second, given that a test suite feeds a program only selected inputs out of the

often enormous space of all possibilities, how do we assure that every bug in the
code will be evidenced? Indeed, particular combinations of circumstances leading to
a failure may well go untested. Furthermore, if the testing suite fails to accurately
simulate the input distribution which the program will encounter in its lifetime, a
supposedly debugged program may in fact fail quite frequently.
One alternative to testing is formal veri�cation, a methodology in which math-

ematical claims about the behavior of a program are stated and proved. Thus it is
possible to demonstrate once and for all that the program must behave correctly
on all possible inputs. Unfortunately, constructing such proofs for even simple
programs has proved unexpectedly di�cult. Moreover, many programmers would
likely �nd it unpleasant to have to formalize their expectations of program behavior
into mathematical theorems.
Another alternative is fault tolerance. According to this methodology, the re-

liability of critical software may be enhanced by having several groups of program-
mers create separate versions. At run-time, all of the versions are executed, and
their outputs are compared. The gross ine�ciency of this approach is evident, in
terms of programming manpower as well as either increased run-time or additional
parallel-hardware requirements. Moreover, the method fails if common misconcep-
tions among the several development groups result in corresponding errors [Butler
and Finelli 1993].
We �nd more convincing inspiration in the �eld of communications, where error-

detecting and error-correcting codes allow for the identi�cation of arbitrary
run-time transmission errors. Such codes are pragmatic and are backed by mathe-
matical guarantees of reliability.
We wish to provide such run-time error-identi�cation in a more general compu-

tational context. This motivates us to review the �eld of result-checking.

1.2 Simple Checkers

It is a matter of theoretical curiosity that, for certain computations, the time re-
quired to carry out the computation is asymptotically greater than the time re-
quired, given a tentative answer, to determine whether or not the answer is correct.

Software Reliability via Run-Time Result-Checking � 3

As an easy example, consider the following task: given as input a composite integer
c, output any non-trivial factor d of c. Carrying out this computation is currently
believed to be di�cult, and yet, given I/O pair hc; di, it takes just one division to
determine whether or not d is a correct output on input c.
These ideas have been formalized into the concept of a simple checker [Blum

1988]. Let f be a function with smallest possible computation time T (n), where n
is input length (or, if a strong lower bound cannot be determined, we informally
set T (n) equal to the smallest known computation time for f). Then a simple
checker for f is an algorithm (generally randomized) with I/O speci�cations as
follows:

|Input: I/O pair hx; yi.
|Correct output: If y=f(x), accept; otherwise, reject.

|Reliability: For all hx; yi: on input hx; yi the checker must return correct output
with probability (over internal randomization) � pc, for pc a constant close to 1.

|\Little-o rule": The checker is limited to time o(T (n)).

The \little-o rule" is important in that it requires a simple checker to be e�cient,
and also in that it forces the checker to determine whether or not y=f(x) by means
other than simply recomputing f(x); hence the checker must be in some manner
di�erent from the program which it checks. We will see in Section 1.5 that this
gives rise to certain hopes that checkers are indeed \independent" of the programs
they check, and so may more reliably identify program errors.1

For an example of simple checking, consider a sorting task: input ~x = (x1; : : : ; xn)
is an array of integers; output ~y = (y1; : : : ; yn) should be ~x sorted in increasing or-
der. Completing this task|at least via a general comparison-based sort|is known
to require time
(n logn). Thus, if we limit our checker to time O(n), this will
su�ce to satisfy the little-o rule.
Given h~x; ~y i, to check correctness we must �rst verify that the elements of ~y

are in increasing order. This may easily be done in time O(n). But we must also
check that ~y is a permutation of ~x. It might be convenient here to modify our
sorter's I/O speci�cations, requiring that each element of ~y have attached a pointer
to its original position in ~x. Any natural sorting program could easily be altered
to maintain such pointers, and once they are available we can readily complete our
check in time O(n).
But what if ~y cannot be augmented with such pointers? Similarly, what if ~x

and ~y are only available on-line from sequential storage, so that O(1)-time pointer-
dereferencing is not possible? Then we may still employ a randomized method due
to [Wegman and Carter 1981; Blum 1988], which requires only one pass through
each of ~x and ~y.

1Variants of the little-o rule have also been considered: for example, requiring checkers to use
less space than the programs they check, or to be implementable with smaller-depth circuits. For
example, a rather trivial result is that, if the successive con�gurations of an arbitrary Turing
Machine computation are available, then the computation may be checked by a very shallow
circuit. Unfortunately, it is only the mechanical operation of the Turing Machine which is being
checked here, not the correctness of the Turing Machine's program. Hence we return to the
traditional little-o rule, which has generally proved to be the best route to creative, non-trivial
checkers.

4 � H. Wasserman and M. Blum

We randomly select a deterministic hash-function h from a suitably de�ned set
of possibilities,2 and we compare h(x1) + � � �+ h(xn) with h(y1) + � � �+ h(yn). If ~y
is indeed a permutation of ~x, the two values must be equal; conversely, it is readily
proven that, if ~y is not a permutation of ~x, the two values will di�er with probability
� 1

2 . Thus, if we accept only h~x; ~y i pairs which pass t such trials, then our checker
has probability of error � � 12�t, which may be made arbitrarily small.
A �nal note: our de�nition of simple checking is not new, but has perhaps not

been clearly expressed in the checking literature. In particular, simple checking
has been de�ned only implicitly, as the most e�cient case of complex checking
(Section 1.3). Here our particular interest in very fast checking has led us to bring
out this distinction.

1.3 Self-Correctors

Again let f be a function with smallest (known) computation time T (n). Let D
be a well-de�ned probability distribution on inputs to f , and let P be a program
such that, if x is chosen D-randomly, P(x) equals f(x) with probability of error
limited to a small value p. In the current paper, D will always be the uniform-
random distribution; so we are requiring simply that P computes f correctly on
most inputs.
That P indeed has this property may be determined (with high probability) by

testing P on � 1
p D-random inputs and using some sort of an oracle|or a simple

checker|to determine the correctness of each output. We envision this testing
stage as being completed prior to run-time. Another possibility is the use of a self-
tester [Blum et al. 1993], which can give such assurances e�ciently, at run-time,
and with little reliance on any outside oracle.
A self-corrector for f [Blum et al. 1993; Lipton 1991] is then an algorithm

(generally randomized) with I/O speci�cations as follows:

|Input: x (an input to f), along with P, a program known to compute f with
probability of error on D-random inputs limited to a small value p. The corrector
is allowed to call P repeatedly, using it as a subroutine.

|Correct output: f(x).

|Reliability: For all hx;Pi: on input hx;Pi the corrector must return correct
output with probability (over internal randomization) � pc, for pc a constant
close to 1.

|Time-bound: The corrector's time-bound, including subroutine calls toP, must
be limited to a constant multiple of P's time-bound; the corrector's time-bound,
counting each subroutine call to P as just one step, must be o(T (n)).

As an example [Blum et al. 1993], consider a task of multiplication over a �nite
�eld: input is w; x 2 F ; output is product wx 2 F . We assume addition over F to
be quicker and more reliable than multiplication.
Assume we know from testing that program P computes multiplication correctly

for all but a � 1
100 fraction of possible hw; xi inputs. (Note that this knowledge is

2A rather unusual set of hash functions is required; moreover, the time required to calculate h,
and hence to complete a check, is debatable. Refer to [Blum 1988] for details.

Software Reliability via Run-Time Result-Checking � 5

in itself only a very weak assurance of the reliability of P, as that � 1
100 fraction

of \di�cult inputs" might well appear far more than 1
100 of the time in the life of

the program.) Then a self-corrector may be speci�ed as follows:

Algorithm 1. On input hw; xi,
|Generate uniform-random r1; r2 2 F .

|Call P four times to calculate P(w � r1; x � r2), P(w � r1; r2), P(r1; x � r2),
and P(r1; r2).

|Return, as our corrected value for wx,

yc := P(w � r1; x� r2)+P(w � r1; r2)+P(r1; x� r2)+P(r1; r2):

Why does this work? Note that each of the four calls to P is on a pair of inputs
uniform-randomly distributed over F 2, and so will return the correct answer with
probability of error at most 1

100 . Thus, all four return values are likely to be correct:
the probability of error is at most 4

100 . And if all the return values are correct, then

yc = P(w � r1; x� r2)+P(w � r1; r2)+P(r1; x� r2)+P(r1; r2)

= (w � r1)(x� r2) + (w � r1)r2 + r1(x� r2) + r1r2

= [(w � r1) + r1][(x � r2) + r2]

= wx:

Note that corrected output yc is superior to unmodi�ed output P(w; x) in that
there are no \di�cult inputs": for any hw; xi, each time we compute a corrected
value yc for wx, the chance of error (over the choice of r1; r2) is � 4

100 . Moreover

observe that, if we compute several corrected outputs y
(1)
c ; : : : ; y

(t)
c (using new ran-

dom values of r1; r2 for each y
(i)
c) and pick the majority answer as our �nal output,

we thereby make the chance of error arbitrarily small. The price we pay for this
enhanced reliability is a multiplication of P's usual run-time by a factor of 4t. This
performance loss will be further considered below.
A �nal note on self-correcting. Above we speak of needing an assurance that P is

correct on all but a small fraction of inputs. Such language implies an assumption
that P's behavior is �xed (except for possible randomization) prior to the self-
correcting process: i.e., that P is not an adversary which can adapt in response to
the corrector. This assumption is necessary, as an adaptable adversary could easily
fool a corrector such as the above.3 A checker, in contrast, is required to be secure
against even an adaptable adversary.
One may also de�ne a complex checker [Blum 1988], which outputs an ac-

cept/reject correctness-check similar to that of a simple checker, but which, like
a self-corrector, is allowed to poll P at several locations (and so, like a self-corrector,
tends to be less e�cient than a simple checker). In general, a complex checker seeks
to determine the correctness of P(x) by comparing P(x) to several of P's other
outputs. More formally, a complex checker for f is de�ned as follows:

3[Gemmell et al. 1991] however demonstrates that self-testing/correcting may be possible even
when a program has limited adversarial power.

6 � H. Wasserman and M. Blum

|Input: x (an input to f), along with P, a program which may compute f on
all, some, or no inputs. The checker is allowed to call P repeatedly, using it as a
subroutine.

|Correct output: If P is correct both on x and on all the other outputs sampled
by the checker, must accept. If P(x) is incorrect, must reject.

|Reliability: For all hx;Pi: on input hx;Pi the checker must return correct
output with probability (over internal randomization) � pc, for pc a constant
close to 1.

|Time-bound: The checker's time-bound, including subroutine calls to P, must
be limited to a constant multiple of P's time-bound; the checker's time-bound,
counting each subroutine call to P as just one step, must be o(T (n)) (where T (n)
is again the smallest possible time to compute f).

Observe a necessary weakness of this de�nition: in the case that P(x) is correct
but at least one of P's other outputs sampled by the checker is incorrect, the
checker may either accept or reject. This weakness is necessary (if we are to
allow algorithms which go beyond simple checking) because, in the case that P
returns only junk answers, we cannot expect the checker to �gure out whether or
not P(x) is correct. In spite of this weakness, the complex checker tells us what we
need to know: if the checker accepts, we know that P(x) is correct; if the checker
rejects, we know that P failed on at least one of a small, known set of inputs.
An example complex checker (for graph isomorphism) is described in Section 1.7.

For more information on result-checking, refer to the annotated bibliography.

1.4 Debugging via Checkers

We will argue here that embedding checkers in software products may be a sub-
stantial aid in debugging those products and assuring their reliability. It is our
hope that result-checking may form the basis for a debugging methodology more
rigorous than the testing suite and more pragmatic than veri�cation.
Throughout the process of software testing, embedded checkers may be used to

identify incorrect output. They will thereby serve as an e�cient alternative to
a conventional testing oracle. Furthermore, even after software is put into use,
leaving the checkers in the code will allow for the e�ective detection of lingering
bugs. We envision that, each time a checker �nds a bug, an informative output
will be written to a �le; this �le will then be periodically reviewed by software-
maintenance engineers. Another possibility is an immediate warning message, so
that the user of a critical system will not be duped into accepting erroneous output.
While it could be argued that buggy output would be noticed by the user in any

case, an automatic system for identifying errors should in fact reduce the probability
that bugs will be ignored or forgotten. Moreover, a checker can catch an error in a
program component whose e�ects may not be readily apparent to the user. Thus
a checker might well identify a bug in a critical system before it goes on to cause
a catastrophic failure. Moreover, checkers may trigger automatic self-correction:
potentially a method for the creation of extremely reliable systems.
By writing a checker, one group of programmers may assure themselves that an-

other group's code is not undermining theirs by passing along erroneous output.
Similarly, the software engineer who creates the speci�cations for a program compo-

Software Reliability via Run-Time Result-Checking � 7

nent can write a checker to verify that the programmers have truly understood and
provided the functionality he required. Since checkers depend only on the I/O spec-
i�cations of a computational task, one may check even a program component whose
internals are not available for examination, such as a library of utilities running on a
remote machine. Thus checkers facilitate the discovery of those misunderstandings
at the \seams" of programs which so often underlie a software failure. Evidently,
all of this applies well to object-oriented paradigms.
Unlike veri�cation, checking reveals incorrect output originating in any cause|

whether due to software bugs, hardware bugs, or transient run-time errors. More-
over, since a checker concerns itself only with the I/O speci�cations of a computa-
tional task, the introduction of a potentially unreliable new algorithm for solving
an old task may not require substantial change to the associated checker. And so,
as a program is modi�ed throughout its lifetime|often without an adequate repeat
of the testing process|its checkers will continue to guard against errors.

1.5 Checker-Based Debugging Concerns

� Performance loss: Simple checkers are inherently e�cient: due to the little-o
rule, a simple checker should not signi�cantly slow the program P that it checks.
Self-correctors, on the other hand, require multiple calls to P, and so multiply
execution-time by a small constant (or, alternatively, require additional parallel
hardware). In a real-time computer system, such a slowdownmay not be acceptable.
Hence it is desirable to check a given program by implementing both a simple

checker and a self-corrector. The simple checker may then be run on each output,
while only in the (hopefully rare) case that the output is incorrect need the self-
corrector be run as well; hence the self-corrector is kept o� the common-case path.
Alternatively, in Section 1.6 we will consider a change to our de�nitions which will
allow for certain self-correcting algorithms to run at real-time speeds.
� Real-number issues (see [Gemmell et al. 1991; Ar et al. 1993]): Traditional

result-checking algorithms, such as the example self-corrector from Section 1.3,
often rely on the orderly properties of �nite �elds. In many programming tasks, we
are more likely to encounter real numbers|i.e., approximate reals represented by
a �xed number of bits.
Such numbers will be limited to a legal subdomain of <. In Section 2.4, we will

see how to modify a traditional self-correcting methodology to account for this.
Moreover, limited precision will likely result in round-o� errors within P. We must
then determine how much arithmetic error may allowably occur within P, and must
check correctness only up to the limit of this error-delta. In Section 2, we will see
that limited precision calculations, while a substantial challenge, are by no means
fatal to our checking project.
� Testing checkers: A checker, like any software component, must be carefully

debugged. Otherwise, a degenerate checkerC may indiscriminately report program
P to be correct, thereby giving a false sense of assurance.
The problem of constructing a suitable testing suite for a checker is non-trivial.

Evidently testing a checker on correct program output is insu�cient: we must also
test the checker's ability to recognize bugs|and not just
agrant, random bugs,
but various and subtle ones. One possibility would be to employ a mutation model
of software error: i.e., to test C on the output from mutated variants of P.

8 � H. Wasserman and M. Blum

� Buggy checkers: What if we nevertheless fail to debug our checker? Indeed,
it may be objected that result-checking begs the question of software reliability: for
checking may fail due to the checker's code being as buggy as the program's. To
this objection we respond with three arguments: arguments which are, however,
heuristic rather than rigorous.
First, checkers can often be simpler than the programs they check, and so, pre-

sumably, less likely to have bugs. For example, modern computers may use intricate,
arithmetically unstable algorithms to compute matrix multiplication in time, say,
O(n2:38), rather than the standard O(n3). And yet Freivalds's O(n2)-time checker
for matrix multiplication [Freivalds 1979] uses only the simplest of multiplication
algorithms, and so is seemingly likely to be bug-free.
Second, observe that one of the following four conditions must hold each time a

(possibly buggy) simple checker C checks the output of a program P:

(I). P(x) is correct; C correctly accepts it.
(II). P(x) is incorrect; C correctly rejects it.
(III). \False alarm": P(x) is correct; C incorrectly rejects it.
(IV). \Missed bug": P(x) is incorrect; C incorrectly accepts it.

Only a \missed bug" is a truly bad outcome: for a \false alarm," while annoying,
at least draws our attention to a bug in C.
To reduce the likelihood of missed bugs, it su�ces to rule out a strong correlation

between x values at which P fails and x values at which C(x;P(x)) fails. It is our
heuristic contention that such a correlation is unlikely. Indeed, recall that one e�ect
of the \little-o rule" is that C doesn't have su�cient time to merely reduplicate the
computation performed by P. Thus we claim (heuristically) that C must be doing
something essentially di�erent from what P does, and so, if buggy, may reasonably
be expected to make di�erent errors. But then we would expect few correlated
errors; moreover, we would expect more uncorrelated than correlated errors, so
that a given bug could well be identi�ed and �xed before it goes on to generate any
correlated errors.4

Finally, say that correlated errors nonetheless occur. This might in particular
be expected due to faults in hardware or software components on which both P
and C depend. We argue that, even in this case, a \missed bug" may not result.
Indeed, consider our checker for a sorting program (Section 1.2), which determines
whether or not ~y is a permutation of ~x by comparing h(x1) + � � � + h(xn) with
h(y1)+� � �+h(yn): assuming that the sorting program has failed, h(x1)+� � �+h(xn)
and h(y1) + � � � + h(yn) will not match (with probability � 1

2). If the checker

4It could be argued that the little-o rule only prohibits C from duplicating the most time-
consuming of P's components; P's simpler components may be trivially duplicated in C, and
so, if buggy, might produce correlated errors. To this argument we respond that C's primary
function is to check the central algorithm of P; smaller components needed as subroutines by
both P and C should, if necessary, be checked separately.
As an illustration of a related issue, consider a standard max-flow program, which proceeds

by successively adjusting
ows until it �nds a con�guration which achieves optimal
ow across a
particular cut. A checker for this program need do little more than verify that optimal
ow is
indeed achieved across the cut|which is what the program itself does in its �nal stage. Hence
checking this sort of program seems trivial and ine�ective. Our response is simply that such a
program indeed requires no separate checker, because it is naturally self-checking.

Software Reliability via Run-Time Result-Checking � 9

simultaneously fails, it may miscalculate h(x1) + � � �+ h(xn) and/or h(y1) + � � �+
h(yn); but, we argue, it seemingly is not likely to fail in exactly such a manner as
to get values for the two sums which happen to match each other.
Many checkers proceed in this way, calculating two quantities and declaring an

error if they do not match. Degenerate checker behavior seems unlikely to yield
matching quantities; and so we argue that checkers, even when buggy themselves,
have a natural resistance to the bad case of missing a program bug.

1.6 Stored Randomness

We here introduce an extension to traditional checker de�nitions: we suggest that
randomized checkers, rather than having to generate fresh random bits for each
check, should be allowed to use preprocessed stored randomness. That is, prior
to run-time|while the program is idle, or during boot-up, or even during software
development|we generate random bits and do some (perhaps lengthy) preprocess-
ing; these random bits, together with preprocessed values dependent on them, form
one or more random packages. These packages are stored; then, at run-time,
each check requires such a package as an additional input.5

Stored randomness has several potential advantages. First, it allows for much
or all of a checker's randomness to be generated before run-time. This could be
useful particularly in doing very quick checks of low-level functionalities such as
microprocessor arithmetic (as in [Blum and Wasserman 1996]): in this context,
having to generate random bits at run-time could be an inconvenience. Second, we
shall see that stored randomness allows for the use of checking algorithms which
would otherwise require too much computation at run-time: by paying a time-cost
of
(T (N)) in preprocessing, we \cheat" some work out of the way, so that each
run-time check can then be completed in time o(T (N)).
For a trivial example of stored randomness, we can reconsider the multiplica-

tion self-corrector of Section 1.3. If in a preprocessing stage r1; r2 are generated,
P(r1; r2) is calculated, and package R = hr1; r2;P(r1; r2)i is stored, this leaves
only three calls to P at run-time, rather than four. However, this improvement is
not particularly impressive. Stored randomness will be further explicated through
more substantial examples: in Sections 2.1 and 2.5, we will present a simple checker
which is possible only if one allows stored randomness, and a self-corrector which,
if one allows stored randomness, can run at real-time speeds.
How much randomness must be stored? Let N be our �xed input length, and

let ` be the number of checks we expect to carry out at run-time. One approach
would be to preprocess ` packages. Then each check would have its own \fresh"
randomness, which would certainly be good from the point of view of reliability.
However, we might expect ` to be �N or even unknown during preprocessing; so
this trivial approach could have too high a cost in preprocessing time and storage
space.
An opposite approach would be to generate a single random package and use it

for every check. But would the repeated use of a \stale" random package reduce

5This method requires input length N to be �xed prior to run-time; equivalently, new preprocess-
ing stages will be required as input length increases. This use of stored information is analogous
to that in the P/poly model of computation.

10 � H. Wasserman and M. Blum

the reliability of our checker? Sections 2.1 and 2.5 initially choose this approach;
and Lemmas 4 and 10 argue that the consequent reduction in reliability is not fatal.
Moreover, in Sections 2.1 and 2.5 we go on to suggest an intermediate approach,

which requires a number of stored packages that is O(N) and independent of `.
Lemmas 5 and 11 argue that the resulting stored-random checkers are then highly
reliable.

1.7 Variations on the Checking Paradigm

It may still be objected that most programming tasks are less amenable to checking
than are the clean mathematical problems with which theoreticians usually deal.
Nevertheless, it is our experience that many such tasks may be subjected to inter-
esting checks. The following is a list of checking ideas which may suggest to the
reader how de�nitions can be generalized to make checking more suitable as a tool
for software debugging.
� Partial checks: One may �nd it su�cient to check only certain aspects of

a computational output. Programmers may focus on properties they think partic-
ularly likely to reveal bugs|or particularly critical to the success of the system.
Certain checkers might only be capable of identifying outputs incorrect by a very
large error-delta. Even just checking inputs and outputs separately to verify that
they fall in a legal domain may prove useful.
� Timing checks: One might wish to monitor the execution-time of a software

component; an unexpectedly large (or small) time could then reveal a bug. For
instance, a programmer's expectation that a particular subroutine should take time
�10n2 on input of variable length n could be checked against actual performance.
� Checking via interactive proofs: There exist interactive proofs of cor-

rectness for certain mathematical computations; and many such interactive proofs
may equivalently be regarded as complex checkers. For example, it follows from
the IP method of [Shamir 1992] that, if program P claims to solve a PSPACE-
complete problem, then there is a checker for P which requires polynomial time
plus a polynomial number of calls to P.
Similarly, the following interactive-proof method, due to [Goldreich et al. 1991],

may equivalently be regarded as a complex checker. Say that P claims to decide
graph isomorphism. If P says that A �= B, we can check this by running P on
successively reduced versions of A and B, thereby forcing P to reveal a particular
isomorphism. Less trivially, if P claims that A 6�= B, we repeat several times the
following check: generate C, a random isomorphism either of A (with probability
1
2) or of B (with probability 1

2); then ask P to tell us which one of A or B is
isomorphic to C. If A �= B, P can only guess which of the two we permuted.
For more on interactive proof, refer to the bibliography.
� Changing I/O speci�cations: In Section 1.2, we saw how an easy augmen-

tation to the output of a sorting program could make the program easier to check.
Similarly, consider the problem of checking a �(logn)-time binary-search task. As
traditionally stated (see [Bentley 1986, p. 35], where it features in a relevant dis-
cussion of the di�culty of writing correct programs), binary search has as input a
key k and a numerical array a[1]; : : : ; a[n], where a[1] � � � � � a[n], and as output i
such that a[i] = k, or 0 if k is not in the array.
Note that the problem as stated is uncheckable: for, if the output is 0, it will

Software Reliability via Run-Time Result-Checking � 11

take �(logn) steps to con�rm that k is indeed not in the array. But say that we
modify the output speci�cation for our binary-search task to read: output i such
that a[i] = k, or, if k is not in the array, hj; j + 1i such that a[j] < k < a[j + 1].
Any natural binary-search program can easily be modi�ed to give such output, and
completing an O(1)-time check is then straightforward.
� Weak or occasional checks [Blum, A. 1994]: Certain pseudo-checkers have

only a small probability of noticing a bug. For example, if a search program, given
key k and array a[1]; : : : ; a[n], claims that k does not occur in a, we could check
this by selecting an element of a at random and verifying that it is not equal to k.
This weak checker has probability 1

n of identifying an incorrect claim.
Alternatively, to save time a lengthy check might be employed only on occa-

sional I/O pairs. Given that many bugs cause frequent errors over the lifetime of a
program, such weak or occasional checks may well be useful.
� Batch checks [Rubinfeld 1992]: For certain computational tasks, if one stores

up a number of I/O pairs, one may check them all at once more quickly than one
could have checked them separately. While it may be too late to correct output
after completing such a retroactive check, this method can when applicable provide
a very time-e�cient identi�cation of bugs.
� Ine�cient auto-correcting: When a checker identi�es a program error, it

could correct by, for example, loading and running an older, slower, but hopefully
more reliable version of the program. This should be necessary only on rare oc-
casions, so the overall loss of speed should not be unreasonable. For example, a
trivial O(n3)-time matrix-multiplication program can be kept in reserve in case a
more sophisticated O(n2:38)-time program fails.

2. CASE STUDY: CHECKING REAL-NUMBER LINEAR TRANSFORMATIONS

We will now consider the problem of checking and correcting a general linear trans-
formation, de�ned as follows: input to program P is n-length vector ~x of real
numbers; correct output is n-length vector ~y = ~xA, where A is a �xed n�n matrix
of real coe�cients. Extensions of our results to more general cases|e.g., ~y of di�er-
ent length than ~x, or components complex rather than real|are straightforward.
However, we do require n and A to be �xed prior to run-time.
Evidently, any such transformation may be computed in O(n2) arithmetic opera-

tions. We assume that, for non-trivial transformations A, the smallest possible time
to compute the transformation may range from �(n) to �(n2). Our simple checker
will take time O(n) (as will our self-corrector, not counting one or more calls to P),
so the little-o rule is satis�ed for all but the �(n)-time transformations.6 For exam-
ple, the Fourier Transform is linear and may be computed in time �(n logn) via the
Fast Fourier Transform; if one makes the reasonable assumption that an O(n)-time
Fourier Transform is not possible, then our algorithms qualify as checkers for this
transform.
Assume now that program P is intended to carry out the ~x 7! ~xA transformation

6In the more general case that ~y has length m, any non-trivial linear transformation will have
smallest possible computation-time on range �(maxfm;ng) to �(mn). It is easily veri�ed that
our simple checker and our self-corrector each take time O(maxfm;ng); and so, once again, the
little-o rule is satis�ed for all but the fastest of transformations.

12 � H. Wasserman and M. Blum

on a computer with a limited-accuracy, �xed-point representation of real numbers.
P's I/O speci�cations might then be formulated as follows:

|Input: ~x = (x1; : : : ; xn), where each xi is a �xed-point real number and so is
limited to a legal subdomain of <: say, to domain [�1; 1].

|Output: P(~x) = ~y = (y1; : : : ; yn), where each yi is a �xed-point real.

|Let � 2 <+ be a constant; let ~� = (�1; : : : ;�n) be the \error vector" ~y � ~xA.
Then:
|I/O pair h~x; ~y i is de�nitely correct i�, for all i, j�ij � �.
|I/O pair h~x; ~y i is de�nitely incorrect i� there exists i such that j�ij � 6

p
n �.

Note that, due to arithmetic round-o� errors within P, a small error-delta is
to be regarded as acceptable: speci�cally, we model P's expected error as a
at
error of at most �� in each component of ~y. Also note that we will only require
the simple checker of Section 2.1 to accept I/O which is de�nitely correct and to
reject I/O which is de�nitely incorrect. It is seemingly unavoidable that there is an
intermediate region of I/O pairs h~x; ~y i which could allowably be either accepted or
rejected. However, this intermediate region currently appears to be altogether too
large (i.e., condition \exists i such that j�ij � 6

p
n �" is too strong). It seems that

we should be able to do better; and, in Section 2.2, we shall suggest an improvement.

2.1 A Simple Checker

Motivation: To develop a simple checker for P, we will take the approach of
generating a randomized vector ~r and trying to determine whether or not ~y � ~xA

by calculating whether or not ~y � ~r � (~xA) � ~r. This method is a variant of that in
[Ar et al. 1993, Section 4.1.1].
To facilitate the calculation of (~xA) � ~r, we will employ the method of stored

randomness (Section 1.6): by generating ~r and preprocessing it together with A

prior to run-time, we will then be able to complete the calculation of (~xA) � ~r with
just O(n) run-time arithmetic operations. Thus we will achieve the strong result
of checking a �(n2)-time computation in time O(n).

Algorithm 2. Our checker's preprocessing stage, to be completed prior to run-
time, is speci�ed as follows:

|For k := 1 to 10:
|Generate and store ~r (k), an n-length vector of form (�1;�1; : : : ;�1), where
each � is chosen positive or negative with independent 50/50 probability.

|Calculate and store ~v (k) := ~r (k)AT (where AT denotes the transpose of A).7

Then, to check an I/O pair h~x; ~y i at run-time, we employ this O(n)-time check:

|For k := 1 to 10:
|Calculate D(k) := ~y � ~r (k) � ~x � ~v (k).
|If jD(k)j � 6

p
n �, reject.

|If all 10 tests are passed, accept.

7Since this calculation need be done only a few times, and when time is not at a premium, its
correctness can be assured, e.g., by employing simple brute-force methods, or by checking the
result by hand.

Software Reliability via Run-Time Result-Checking � 13

Why does this work? First note that

D(k) = ~y � ~r (k) � ~x � ~v (k)
= ~y � ~r (k) � ~x � (~r (k)AT)

= ~y � ~r (k) � (~xA) � ~r (k)
= (~y � ~xA) � ~r (k)
= ~� � ~r (k)
= ��1 � � � � ��n;

where each � is positive or negative with independent 50/50 probability.8

Lemma 1. For any de�nitely correct h~x; ~y i,

Pr~r (k)

h
jD(k)j � 6

p
n �
i
� 1

10; 000; 000
:

Proof. Each j�ij � �. Thus, by a Cherno� Bound [Alon et al. 1992, Theorem
A.16],

Pr
�j ��1 � � � � ��nj � 6

p
n �
� � 2e�(6

p
n)2=2n

<
1

10; 000; 000
:

Lemma 2. For any de�nitely incorrect h~x; ~y i,

Pr~r (k)

h
jD(k)j < 6

p
n �
i
� 1

2
:

Proof. We know there exists i such that j�ij � 6
p
n �. Fix all components of

~r (k) except for r
(k)
i . Then observe that, for at least one of the two possible values

f�1g of r
(k)
i , jD(k)j = j�1r

(k)
1 + � � � + �nr

(k)
n j must be � j�ij � 6

p
n �. Thus

jD(k)j < 6
p
n � for at most 1

2 of the equally likely choices of random vector ~r (k).

Lemma 3. (I). For any de�nitely correct h~x; ~y i,

Pr~r (1);:::;~r (10) [checker mistakenly rejects] � 1

1; 000; 000
:

(II). For any de�nitely incorrect h~x; ~y i,

Pr~r (1);:::;~r (10) [checker mistakenly accepts] � 2�10 <
1

1; 000
:

Proof. (I). By Lemma 1, the probability of a mistaken reject for each ~r (k) is
� 1

10;000;000 . Thus, the probability of a mistaken reject on any of the 10 tries is

� 10 � 1
10;000;000 .

(II). By Lemma 2, the probability of failing to reject at each ~r (k) is � 1
2 . Thus,

the probability of rejecting on none of the 10 independent tries is � 2�10.

8We have employed a linear-algebra identity: the dot-product of two vectors is equivalently their
matrix-product once the second vector (i.e., row-matrix) has been transposed; thus ~x�

�
~r (k)AT

�
=

~x
�
~r (k)AT

�T
= ~xA

�
~r (k)
�T

= (~xA) � ~r (k).

14 � H. Wasserman and M. Blum

While Lemma 3 embodies our intuition of the checker's correctness, it does
not deal with the implications of using the same stored \random package" R =
h~r (1); : : : ; ~r (10); ~v (1); : : : ; ~v (10)i in each run-time check. The following claims sug-
gest that this use of stored randomness does not seriously undermine the reliability
of the checker:

Lemma 4. Assume that we preprocess random package R and use this package
to check ` runs of P. Then, for probabilities over the choice of R (where all results
except (II) are independent of the value of `):
(I). Assume that a bug causes at least one de�nitely incorrect I/O pair. Then

the probability that our checker will miss this bug is � 1
1;000 .

(II). If ` � 10; 000, then the probability that any de�nitely correct I/O pair will
be mistakenly rejected is � 1

100 .
(III). The probability that � 1

2 of all de�nitely incorrect I/O pairs will be mis-
takenly accepted is � 1

500 .
(IV). The probability that � 1

10;000 of all de�nitely correct I/O pairs will be

mistakenly rejected is � 1
100 .

Proof. (I) and (II) follow readily from Lemma 3. To prove (III), note a conse-
quence of Lemma 3 (II): if we select R randomly and h~x; ~y i uniform-randomly from
the list of all de�nitely incorrect I/O pairs out of our ` runs, then the probabil-
ity that our checker accepts given input h~x; ~y i and randomization R is � 1

1;000 .

But if (III) were false, then this same probability would, on the contrary, be
> 1

500 � 12 = 1
1;000 . (IV) is proved analogously.

While Lemma 4 gives a reasonably strong assurance, it is not entirely satisfactory.
Indeed, when stored randomness is used as described above, there is no run-time
randomization, so that if, for example, the checker fails on an input h~x; ~y i which
occurs repeatedly in the ` runs, then it will fail on each repetition. This has several
potentially bad consequences. First, if P is regarded as an adversary, it can defeat
the checker by learning its \bad inputs." Second, observe that if fresh randomness
could be used for each check, then each check would have independent probability of
error� 1

1;000 ; hence the probability of many checker errors during ` runs of P would
be exponentially small. With stored randomness, the probability of many errors
is small (per Lemma 4 (III,IV)) but not exponentially small. Note that frequent
errors could result in system failure, if checker errors trigger lengthy self-correcting
procedures and if we are dealing with a soft real-time system in which average
run-time must be kept low.
Hence we now introduce a more sophisticated approach to stored randomness,

one which allows stored-random checkers to be as reliable as checkers using fresh
random bits.
Recall that R = h~r (1); : : : ; ~r (10); ~v (1); : : : ; ~v (10)i is the preprocessed \random

package" needed by our checker, and that h~x; ~y i is an I/O pair to be checked.
Also recall that we are assuming input length to be �xed before run-time: specif-
ically, let us assume that the value of h~x; ~y i can be completely represented by N

bits, so that there are at most 2N possible values for h~x; ~y i.
Algorithm 3. At preprocessing time, we create, not just a single random pack-

age R, but 4N random packages R�
1; : : : ; R

�
4N . Then, at run-time, we pick R�

i 2u

Software Reliability via Run-Time Result-Checking � 15

fR�
1; : : : ; R

�
4Ng, and use R�

i to check h~x; ~y i. For a smaller probability of error,
we can repeat this check with several more R�

i 2u fR�
1; : : : ; R

�
4Ng and return the

majority answer.

The following lemma argues that our improved stored-random checker has an
independent probability of error at each run-time check which can be made arbi-
trarily small. Also observe that P cannot fool the checker even if P is an adversary
which knows the values of R�

1; : : : ; R
�
4N .

Lemma 5. With probability of failure � 2�5N , R�
1; : : : ; R

�
4N will be such that, for

all h~x; ~y i, at most 1
4 of R�

1; : : : ; R
�
4N are bad for checking h~x; ~y i. (Hence, checking

with t values of R�
i 2u fR�

1; : : : ; R
�
4Ng and taking the majority answer results in a

run-time error-probability which is exponentially small in t.)

Proof. Analogous to the standard proof that BPP � P/poly:
Recall from Lemma 3 that, for any given h~x; ~y i, the probability (over the random

choice of a package R) that the checker fails given input h~x; ~y i and randomization
R is � 2�10.
Hence, for any given h~x; ~y i, the probability (over the random choice of packages

R1; : : : ; RN) that all of R1; : : : ; RN are bad for checking h~x; ~y i is � 2�10N .
Hence the probability (over the random choice of R�

1; : : : ; R
�
4N) that there ex-

ists any h~x; ~y i and any size-N subset R1; : : : ; RN of R�
1; : : : ; R

�
4N such that all of

R1; : : : ; RN are bad for checking h~x; ~y i is � 2N � �4NN � � 2�10N � 2N � 24N � 2�10N =
2�5N .

This is in fact a general method allowing any simple checker to make use of stored
randomness without compromising its reliability. Only O(logN) bits of run-time
randomness are then needed for each check.

2.2 A Stronger Simple Checker

Recall that ~� = (�1; : : : ;�n) is the \error vector" ~y � ~xA. Also recall that,

while the full value of vector ~� is not calculable in time O(n), we can use stored,

preprocessed ~r (k) and ~v (k) to e�ciently calculate randomized scalar value ~r (k) � ~�.
The assurance that our simple checker will reject instances for which any j�ij �

6
p
n� is not entirely satisfactory: it leaves too large a gap between instances which

are reliably accepted and those which are reliably rejected. A stronger method
would be to approximate

j~�j =
q
�2
1 + � � �+�2

n

and accept or reject by comparing this value to a suitable threshold. This method
is particularly appropriate in that engineers often use this root-mean-square
measure to represent overall error in calculations such as Fourier Transforms.
What we need then is an e�cient method for approximating j~�j. The lemmas

below prove that it is indeed possible to e�ciently approximate j~�j2.
Lemma 6. Let ~r (1); : : : ; ~r (m) be n-length vectors, each component �1 with inde-

pendent 50/50 probability, and consider randomized quantity

X =

�
1

m

� mX
k=1

h
~r (k) � ~�

i2
:

16 � H. Wasserman and M. Blum

For any positive � and p: if m � 2
p�2 , then, with probability greater than 1� p,

(1� �)j~�j2 � X � (1 + �)j~�j2:
Proof. Observe thath

~r (k) � ~�
i2

=

"
nX
i=1

r
(k)
i �i

#2

=

nX
i=1

�2
i +

nX
i=1

X
j 6=i

r
(k)
i r

(k)
j �i�j

= j~�j2 + 2
n�1X
i=1

nX
j=i+1

r
(k)
i r

(k)
j �i�j :

=) X =

�
1

m

� mX
k=1

j~�j2 +
�
2

m

� mX
k=1

n�1X
i=1

nX
j=i+1

r
(k)
i r

(k)
j �i�j

= j~�j2 +
�
2

m

�
R;

where
�
2
m

�
times R :=

mX
k=1

n�1X
i=1

nX
j=i+1

r
(k)
i r

(k)
j �i�j is the randomized \error term"

whose size we wish to bound.
Note that R is a sum of mn(n�1)

2 pairwise independent quantities. Thus:

Var [R] =

mX
k=1

n�1X
i=1

nX
j=i+1

Var
h
r
(k)
i r

(k)
j �i�j

i

=

mX
k=1

n�1X
i=1

nX
j=i+1

�2
i�

2
j

�
mX
k=1

�
1

2

� nX
i=1

nX
j=1

�2
i�

2
j

=

�
1

2

� mX
k=1

2
4 nX

i=1

�2
i

!
�
0
@ nX

j=1

�2
j

1
A
3
5

=

�
1

2

� mX
k=1

h
j~�j2 � j~�j2

i

=
mj~�j4
2

:

Thus the variance of \error term"
�
2
m

�
R is � � 2m�2 � mj~�j4

2 = 2j~�j4
m . Since we are

assuming m � 2
p�2 , this is � p�2j~�j4.

But then the probability that
��� 2

m

�
R
�� > �j~�j2 must be less than p. This follows

by Chebyshev's Inequality: i.e., if the contrary were true, then we would have
Var

��
2
m

�
R
�
> p�2j~�j4, which contradicts what we have proved above.

Software Reliability via Run-Time Result-Checking � 17

Lemma 7. Recall once again that, using preprocessed h~r (k); ~v (k)i, we can cal-

culate ~r (k) � ~� in time O(n). Then: for any positive � and p, we can, in time
O(n(1�)

2 log(1p)), calculate a value Y such that, with probability greater than 1� p,

(1� �)j~�j2 � Y � (1 + �)j~�j2:
Proof. Let t := d6 ln(1p)e and m := d 8

�2 e. We repeat 2t times the calcu-
lation of a randomized X-value as described in Lemma 6, using preprocessed
h~r (1); : : : ; ~r (2tm); ~v (1); : : : ; ~v (2tm)i. We then return the median of X-values X1; : : : ;

X2t as our value for Y .
Why does this work? By Lemma 6, each Xi approximates j~�j2 to within the

desired range with independent probability of error less than 1
4 . And the median

of the X-values can be out of range only if at least t of the 2t X-values are out of
range. By a Cherno� Bound, the probability of this is < e�t=6 � p, as desired.

2.3 Simple Checker|Variants

� A fuller statement of our algorithm would include consideration of arithmetic
round-o� error in the checker itself as well as in P. However, under the reasonable
assumption (for a �xed-point system) that addition and negation do not generate
round-o� errors, our checker could generate error only in the n real-number mul-
tiplications needed to calculate ~x � ~v (k). It is our heuristic expectation that such
error would not be large enough to signi�cantly a�ect the validity of our checker.
� Evidently, di�erent values could be used for the constants in our algorithm of

Section 2.1. Our goal was to particularize a pragmatic checker|one which satis�es
reasonably well each of the following desirable conditions: small gap between the
de�nitions of de�nitely correct and de�nitely incorrect; small chance of a mistaken
accept; very small chance of a mistaken reject; and small run-time.
To generalize: let our de�nition of de�nitely incorrect be that there exists j�ij �

c
p
n �. Let our algorithm calculate t values ofD(k) and reject i� any jD(k)j � c

p
n �.

(We used c = 6, t = 10 above.) Then the error bound in Lemma 1 is 2e�c2=2. The

error bound in Lemma 3 (I) is 2te�c2=2, and that in Lemma 3 (II) is
�
1
2

�t
. Lemma

4 (III) generalizes: for any q 2 (0; 1], the probability that an at least q portion of
all de�nitely incorrect I/O pairs will be mistakenly accepted is � �

q , where � is the

error bound from Lemma 3 (II). Lemma 4 (IV) generalizes analogously. Lemma
5 applies to any simple checker which has probability of error � 2�10 (and any
checker can have its error-bound reduced to this level by repeating the check a
small constant number of times).

2.4 A Self-Corrector

Motivation: To develop a self-corrector for P, we start with the traditional ap-
proach of adding a random displacement to the location at which we must poll P.
However, to prevent the components of our input-vectors from going out of legal
domain [�1; 1], we here �nd it necessary to poll P at a location which is a weighted
average of desired input ~x and a random input ~r. If we weight the average so that
~r dominates, the resulting vector is near-uniform random, allowing us to prove the
reliability of our self-corrector. This method may be compared to those employed
in [Gemmell et al. 1991].

18 � H. Wasserman and M. Blum

Assume that we have tested P on a large number of random input vectors:
i.e., vectors (of �xed length n) generated by choosing each component uniform-
randomly from the set of �xed-point real numbers on legal domain [�1; 1]. Assume
we have veri�ed that P is correct on these random input vectors (� an allowable
error-delta); a version of our simple checker might be employed to facilitate this
veri�cation. Through such a testing stage (or by use of a self-tester [Erg�un 1995]),
we can satisfy ourselves that (with high probability) the fraction of inputs on which
P returns incorrect output is very small: say, � 1

10;000;000 .
Once we have this assurance, we can employ the following self-corrector for P,

whose time-bound is two calls to P plus O(n):

Algorithm 4. On input ~x,

|Generate random input vector ~r.

|Call P to calculate P(~r).

|Call P to calculate P
��

1
n

�
~x+

�
1� 1

n

�
~r
�
. (Note that this is possible because, for

any legal input vectors ~x and ~r,
�
1
n

�
~x +

�
1� 1

n

�
~r will also be legal|i.e., each

component will be in legal domain [�1; 1].)
|Return, as our corrected value for P(~x),

~yc := n �P
��

1

n

�
~x+

�
1� 1

n

�
~r

�
� (n� 1) �P(~r):

Lemma 8. For any ~x:

Pr~r

�
P

��
1

n

�
~x+

�
1� 1

n

�
~r

�
is incorrect

�
� 3

10; 000; 000
:

Proof. Fix ~x. As ~r varies over all legal input vectors, each component of vector�
1
n

�
~x+

�
1� 1

n

�
~r varies over a

�
1� 1

n

�
fraction of legal domain [�1; 1]. Thus, since

~r is a random input vector, the value of
�
1
n

�
~x +

�
1� 1

n

�
~r is distributed uniform-

randomly9 over a \neighborhood" of input vectors whose size, as a fraction of the
space of all legal input vectors, is

�
1� 1

n

�n � 1
e >

1
3 .

So the probability of hitting an incorrect output at P
��

1
n

�
~x+

�
1� 1

n

�
~r
�
is at

most three times the probability of hitting an incorrect output at a truly uniform-
random location, which we know to be � 1

10;000;000 .

Lemma 9. For any ~x: ~yc will (approximately) equal desired output ~xA, with
probability of error (over the choice of ~r) � 4

10;000;000 .

Proof. Based on testing and on Lemma 8, we know that P
��

1
n

�
~x+

�
1� 1

n

�
~r
�

and P(~r) are both likely to be correct: chance of error is � 3
10;000;000 +

1
10;000;000 =

4
10;000;000 . And if they are indeed both correct, then (barring problems of round-o�

error, which will be discussed below),

~yc = n �P
��

1

n

�
~x+

�
1� 1

n

�
~r

�
� (n� 1) �P(~r)

9Arithmetic rounding must be done with care to assure this uniformity.

Software Reliability via Run-Time Result-Checking � 19

= n

��
1

n

�
~x+

�
1� 1

n

�
~r

�
A� (n� 1)~rA

= n

�
1

n

�
~xA+ n

�
1� 1

n

�
~rA� (n� 1)~rA

= ~xA:

Unfortunately, our self-corrector reduces the arithmetic precision of P. For, in
calculating

~yc := n �P
��

1

n

�
~x+

�
1� 1

n

�
~r

�
� (n� 1) �P(~r);

logn bits of information are lost when we divide ~x by n (assuming �xed-point
arithmetic). Moreover, the �nal multiplications by n and (n� 1) will magnify the
�� errors in the values returned by P. It would seem, then, that the self-corrected
P may have poly(n) times the arithmetic error of the original P. A more conclusive
error-analysis would require knowledge of the internals of P.
Thus we will have greater con�dence in this corrector if our system allows for

the use of more bits of arithmetic precision than are seemingly required for the
ordinary operation of P. In particular, O(logn) bits of additional precision might
be expected to compensate for a poly(n)-factor increase in error. However, a more
detailed error-analysis, requiring knowledge of the internals of P, would be needed
to determine whether or not this is in fact true.
Rather than delving further into error-analyses, we merely note that questions of

the round-o� errors which checkers and correctors should expect and will produce
are important to real-number checking, and may be of interest to the numerical
analysis community.

2.5 A Faster Self-Corrector

Another problem with our self-corrector is that it slows execution speed by a factor
of at least 2. We can �x this problem by employing the method of stored randomness
(Section 1.6):

Algorithm 5. Prior to run-time, we generate and store a random input vector
~r. We also calculate and store (n� 1)P(~r). By repeatedly using these stored values,
we then need only one run-time call to P to calculate

~yc := n �P
��

1

n

�
~x+

�
1� 1

n

�
~r

�
� (n� 1) �P(~r):

Observe that our modi�ed self-corrector|like our simple checker|adds only
O(n) arithmetic operations to the execution-time of P. Assuming that P is an
!(n)-time program, the resulting loss of performance should be negligible.
Proceeding as in Lemma 4, we can readily derive the following results|results

which suggest that the use of stored randomness does not seriously undermine the
reliability of our corrector:

Lemma 10. Assume that we generate \random package" R = h~r; (n� 1)P(~r)i
and use this stored package to self-correct ` runs of P. Then, for probabilities over
the choice of R:

20 � H. Wasserman and M. Blum

(I). If ` � 10; 000, then the probability that any corrected output will be erroneous
is � 4

1;000 .

(II). For any `, the probability that � 1
10;000 of the corrected outputs will be

erroneous is � 4
1;000 .

Lemma 10, like Lemma 4, is not entirely satisfactory. As in Section 2.1, we can
derive a stronger result by using a slightly more sophisticated method:
Fix input length: assume that N bits su�ce to represent any legal input ~x. Also

�x the behavior of P: i.e., assume (as is usual for a self-corrector) that P is not
able to adapt in response to the corrector.

Algorithm 6. At preprocessing time, we generate, not one random package
R = h~r; (n� 1)P(~r)i, but 4N packages R�

1; : : : ; R
�
4N . Then, for each run-time

self-correction, we use package R�
i 2u fR�

1; : : : ; R
�
4Ng.

The following lemma argues that each run-time self-correction will then have a
small independent probability of error. Proof is analogous to that of Lemma 5.

Lemma 11. With probability of failure � 2�5N , R�
1; : : : ; R

�
4N will be such that,

for all ~x, at most 1
4 of R�

1; : : : ; R
�
4N are bad for correcting P(~x). Moreover, by

increasing the number of stored packages we can reduce error-bounds 2�5N and 1
4

as desired.

This is a general method allowing any self-corrector to take advantage of stored
randomness without compromising its reliability. However, a di�erence between
this result and Lemma 5 should be noted: here P is not allowed to be an adversary
which can adapt to the corrector. This seems a necessary requirement, as a program
knowing the values of stored packages R�

1; : : : ; R
�
4N could readily make use of this

knowledge to fool the corrector.

2.6 Self-Corrector|Variants

� To generalize: let p be an upper bound on the portion of input vectors ~x for
which P(~x) is incorrect. (We used p = 1

10;000;000 above.) Then the error bound in

Lemma 8 is ep, and that in Lemma 9 is (e + 1)p. Lemma 10 (II) generalizes: for
any q 2 (0; 1], the probability that an at least q portion of the corrected outputs

will be erroneous is � (e+1)p
q . Lemma 11 applies to any self-corrector which has

probability of error � 2�10.
� Having calculated corrected output ~yc as described above, we could then em-

ploy a version of our simple checker to verify the correctness of ~yc. This modi�ed
form of P then provides both checking and self-correcting, while adding only O(n)
arithmetic operations to P's usual execution-time.
� The checking situation would be somewhat di�erent if our computer used

oating-point, rather than �xed-point, representations. Our model of P's arith-
metic errors as a
at �� in each component of output would need modi�cation,
and the problem of designing expressions such as

�
1
n

�
~x +

�
1� 1

n

�
~r|i.e., random-

ized expressions near-uniformly distributed over the set of legal inputs|would be
more complex. In [Blum and Wasserman 1996], we deal with
oating-point arith-
metic by checking only operations on normalized mantissas (for we regard such

Software Reliability via Run-Time Result-Checking � 21

operations as the most arduous and error-prone portion of microprocessor arith-
metic); we thereby reduce, essentially, to the �xed-point case.

3. CONCLUSION

We have stated our belief that result-checking may prove a valuable tool for software
debugging and for the creation of extremely reliable systems. Continuing work
toward this goal advances on two fronts. First there is theoretical research: work
which adapts checking methodologies to make them more easily applicable. This
can include: making checking algorithms more e�cient; extending checking to work
with limited-accuracy real numbers; and developing philosophical/mathematical
analyses of the potential reliability of checkers.
The current paper speci�es an e�cient linear-function checker (Sections 2.1{

2.3) and corrector (Sections 2.4{2.6), using stored randomness as a \cheat" to save
time. These algorithms also deal with issues of checking real-number computations,
extending the work of [Gemmell et al. 1991; Ar et al. 1993]. Moreover, Section 1.5
gives some preliminary result-checking \philosophy." The reader may also refer to
[Blum and Wasserman 1996], which considers the checking of symbolic mathematics
libraries and of microprocessor arithmetic.
Future theoretical research might be expected to derive checking algorithms with

powers analogous to those of the current paper, but applicable to broader classes
of functions. Also interesting is the topic of stored randomness|and, in general, of
saving time by cheating work into a preprocessing stage. The methods of Sections
2.1 and 2.5 seem to be the only checking algorithms so far to make essential use of
preprocessing. More examples will perhaps be forthcoming.
Result-checking theory must be joined with applied research. With Hughes Air-

craft we are conducting pilot studies of checker-based debugging [Boettcher and
Mellema 1995]. In particular, Dr. David Shreve of Hughes has implemented the
simple checker of Section 2.1 as a means of testing a Fourier Transform used in
radar software. Through such studies, it must be determined how e�ective result-
checkers are at
agging bugs, and whether creating checkers is an e�cient use of
programming man-hours. As mentioned in Section 1.5, the problem of debugging
checkers is also intriguing.
Finally, an extensive topic for further study, bridging theory and application, is

the creation of partial checkers for \messy" functionalities commonly found in real-
world software. Applied result-checking will at last depend on the development of
a rich, general family of heuristics for software checking.

The following bibliography of checking literature is only partial. It is not intended as a

comprehensive survey.

REFERENCES

Alon, N., Spencer, J. H., and Erd}os, P. 1992. The Probabilistic Method. John Wiley
and Sons. Cited for a Cherno� Bound in Section 2.1.

Ar, S., Blum, M., Codenotti, B., and Gemmell, P. 1993. Checking approximate compu-
tations over the reals. In Proc. 25th ACM Symp. Theory of Computing (1993), pp. 786{795.
Extends checking methodologies to computations on limited-accuracy real numbers. Exam-
ples: matrix multiplication, inversion, and determinant; solving systems of linear equations.

Arora, S. and Safra, S. 1992. Probabilistic checking of proofs; a new characterization

22 � H. Wasserman and M. Blum

of NP. In Proc. 33rd IEEE Symp. Foundations of Computer Science (1992), pp. 2{13.

Equates NP languages with those in interactive-proof class PCP(log n;
p

log n).

Babai, L. and Fortnow, L. 1991. Arithmetization: a new method in structural complexity
theory. Computational Complexity 1, 1, 41{46. Preliminary version: \A characterization of
#P by arithmetic straight line programs," Proc. 31st IEEE Symp. Foundations of Com-
puter Science (1990), pp. 26{34. Further develops a technique from [Babai, Fortnow, and
Lund] of translating Boolean formulae into multivariate polynomials; hence allows for poly-
nomial concepts to be applied to the study of certain complexity classes.

Babai, L., Fortnow, L., Levin, L., and Szegedy, M. 1991. Checking computations in
polylogarithmic time. In Proc. 23rd ACM Symp. Theory of Computing (1991), pp. 21{31.
A variant of [Babai, Fortnow, and Lund] with lower time-bounds, this paper introduces an
unusual type of very fast checker for NP computations. Such checkers could be regarded as
\hardware checkers," in that they ensure that the hardware follows instructions correctly,
but don't ensure that the software is correct.

Babai, L., Fortnow, L., and Lund, C. 1991. Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity 1, 1, 3{40. Preliminary version:
Proc. 31st IEEE Symp. Foundations of Computer Science (1990), pp. 16{25. Proves that
NEXP = 2IP, and hence that NEXP-complete problems have complex checkers.

Beaver, D. and Feigenbaum, J. 1990. Hiding instances in multioracle queries. In Proc. 7th
Symp. Theoretical Aspects of Computer Science (1990), pp. 37{48. Considers the question:
can one get one or more servers to compute f(x) without revealing the value of x to any
server? Also proves that polynomials can be self-corrected.

Beigel, R. and Feigenbaum, J. 1992. On being incoherent without being very hard. Com-
putational Complexity 2, 1, 1{17. Response to questions of [Blum and Kannan 1995; Yao
1990], including a proof that all NP-complete languages are coherent.

Bentley, J. 1986. Programming Pearls. Addison-Wesley. A discussion here of the di�culty
of writing a correct binary-search program is cited in Section 1.7.

Blum, A. 1994. Personal communication. Idea of weak checking (Section 1.7).

Blum, M. 1988. Designing programs to check their work. Technical Report TR-88-009, Int'l
Computer Science Institute. Formal introduction of simple and complex checking (though
anticipated by, e.g., [Freivalds 1979]). Considers checking of graph isomorphism, sorting,
and several group-theoretic computations. See also [Blum and Kannan 1995].

Blum, M., Evans, W., Gemmell, P., Kannan, S., and Naor, M. 1994. Checking the
correctness of memories. Algorithmica 12, 2/3 (Aug./Sept.), 225{244. Introduces data-
structure checking. Demonstrates that, given a small, secure database, one may check the
correctness of a large, adversarial database.

Blum, M. and Kannan, S. 1995. Designing programs that check their work. Journal of
the ACM 42, 1 (Jan.), 269{291. Preliminary version: Proc. 21st ACM Symp. Theory of
Computing (1989), pp. 86{97. Closely related to [Blum 1988].

Blum, M., Luby, M., and Rubinfeld, R. 1993. Self-testing/correcting with applications to
numerical problems. Journal of Computer and System Sciences 47, 3, 549{595. Preliminary
version: Proc. 22nd ACM Symp. Theory of Computing (1990), pp. 73{83. Introduces self-
testing and self-correcting, and gives applications to a variety of fundamental mathematical
computations.

Blum, M. and Wasserman, H. 1996. Re
ections on the pentium division bug. IEEE Trans-
actions on Computers 45, 4 (April), 385{393. A companion-piece to the current paper; ar-
gues that checking and correcting may be used to enhance the reliability of microprocessor
arithmetic.

Boettcher, C. and Mellema, D. J. 1995. Program checkers: practical applications to
real-time software. In Test Facility Working Group Conf. (1995). Progress report on a pilot
study with Manuel Blum intended to test the usefulness of result-checking as a software
development tool.

Butler, R. W. and Finelli, G. B. 1993. The infeasibility of quantifying the reliability of
life-critical real-time software. IEEE Transactions on Software Engineering 19, 1 (Jan.),

Software Reliability via Run-Time Result-Checking � 23

3{12. Demonstrates inherent limitations of conventional software testing and of fault tol-

erance.

Cleve, R. and Luby, M. 1990. A note on self-testing/correcting methods for trigonometric
functions. Technical Report 90-032, Int'l Computer Science Institute. Applies the methods

of [Blum et al. 1993] to trigonometric functions.

Erg�un, F. 1995. Testing multivariate linear functions: overcoming the generator bottleneck.
In Proc. 27th ACM Symp. Theory of Computing (1995), pp. 407{416. Extends self-testing

to functions (e.g., the Fourier Transform) for which traditional self-testers prove ine�cient.
See also [Ravikumar and Sivakumar 1995].

Fortnow, L. and Sipser, M. 1988. Are there interactive protocols for co-NP languages?
Information Processing Letters 28, 5 (Aug.), 249{251. Suggests that co-NP may not be
contained in IP. [Lund et al. 1992] later proved the contrary.

Freivalds, R. 1979. Fast probabilistic algorithms. In Mathematical Foundations of Com-
puter Science, Number 74 in Lecture Notes in Computer Science, pp. 57{69. Springer-
Verlag. Includes a simple checker for matrix multiplication.

Gemmell, P., Lipton, R. J., Rubinfeld, R., Sudan, M., and Wigderson, A. 1991. Self-
testing/correcting for polynomials and for approximate functions. In Proc. 23rd ACM
Symp. Theory of Computing (1991), pp. 32{42. Extends self-testing/correcting of poly-
nomials to several di�cult cases: e.g., for domains other than �nite �elds, or for programs
capable of (limited) adversarial adaptation. Also commences the extension of traditional
checking methodologies to computations on limited-accuracy reals.

Gemmell, P. and Sudan, M. 1992. Highly resilient correctors for polynomials. Information
Processing Letters 43, 4 (Sept.), 169{174. Gives near-optimal self-correctors for programs
which claim to compute multivariate polynomials. As long as a program is correct on a
1
2
+� fraction of inputs (for � 2 <+), self-correcting is possible.

Goldreich, O., Micali, S., and Wigderson, A. 1991. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM 38, 3 (July), 691{729. Preliminary version: Proc. 27th IEEE Symp. Foundations of
Computer Science (1986), pp. 174{187. Includes interactive-proof algorithms for problems
including graph isomorphism.

Kannan, S. 1990. Program Result-Checking with Applications. Ph.D. thesis, Computer Sci-
ence Division, University of California, Berkeley. Includes checkers for group-theory and
linear-algebra problems.

Lipton, R. J. 1990. E�cient checking of computations. In Proc. 7th Symp. Theoretical
Aspects of Computer Science, Number 415 in Lecture Notes in Computer Science, pp.
207{215. Springer-Verlag. Proves that logspace su�ces to check many computations.

Lipton, R. J. 1991. New directions in testing. In Distributed Computing and Cryptography ,
Volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pp. 191{202. American Mathematics Society. Independently paralleling [Blum et al. 1993],
introduces what are essentially self-correctors (though under a di�erent name). Proves that
#P-complete problems have self-correctors.

Lund, C., Fortnow, L., Karloff, H., and Nisan, N. 1992. Algebraic methods for in-
teractive proof systems. Journal of the ACM 39, 4 (Oct.), 859{868. Preliminary version:
Proc. 31st IEEE Symp. Foundations of Computer Science (1990), pp. 2{10. Methodol-
ogy for constructing an interactive proof system for any language in the polynomial-time
hierarchy. Applications to [Shamir; Babai, Fortnow, and Lund].

Micali, S. 1992. CS proofs and error-detecting computation. Technical report, MIT Lab for
Computer Science. Also: \CS proofs," Technical Report TM-510, MIT Lab for Computer
Science, 1994. Gives result-checkers for NP-complete problems, subject to the assumptions
that we have available a random oracle which can serve as a cryptographically secure hash-
function, and that the program being checked has insu�cient time to �nd collisions in this
hash-function.

Nisan, N. 1989. Co-SAT has multi-prover interactive proofs. E-mail announcement. Initi-
ated events leading to [Lund, Fortnow, Karlo�, and Nisan; Shamir; Babai, Fortnow, and
Lund].

24 � H. Wasserman and M. Blum

Ravikumar, S. and Sivakumar, D. 1995. On self-testing without the generator bottleneck.

In Proc. 15th Conf. Foundations of Software Technology and Theoretical Computer Sci-
ence, Number 1026 in Lecture Notes in Computer Science, pp. 248{262. Springer-Verlag.
Extends the results of [Erg�un 1995].

Rubinfeld, R. 1990. A Mathematical Theory of Self-Checking, Self-Testing, and Self-
Correcting Programs. Ph.D. thesis, Computer Science Division, University of California,
Berkeley. Closely related to [Blum et al. 1993].

Rubinfeld, R. 1992. Batch checking with applications to linear functions. Information
Processing Letters 42, 2 (May), 77{80. Introduces batch checking: i.e., collecting I/O
pairs and checking them simultaneously. For certain functions it is possible for this combined
check to be more e�cient than separate checks.

Rubinfeld, R. 1994. On the robustness of functional equations. In Proc. 35th IEEE Symp.
Foundations of Computer Science (1994), pp. 288{299. Shows that functions satisfying
any of a broad class of functional equations (e.g., f(x + y) = f(x) + f(y)) may be self-
tested and self-corrected. Hence speci�es testers and correctors for many naturally occurring
functions, such as tan x, 1=(1 + cot x), and cosh x.

Rubinfeld, R. and Sudan, M. 1992. Self-testing polynomial functions e�ciently and over
rational domains. In Proc. 3rd ACM-SIAM Symp. Discrete Algorithms (1992), pp. 23{32.
Extends checking methodologies from �nite �elds to integer and rational domains.

Rubinfeld, R. and Sudan, M. 1996. Robust characterizations of polynomials with appli-
cations to program testing. SIAM Journal on Computing 25, 2 (April), 252{271. Demon-
strates that polynomials have properties which allow them to be self-tested and self-
corrected. See also [Rubinfeld 1994].

Schwartz, J. T. 1980. Fast probabilistic algorithms for veri�cation of polynomial identities.
Journal of the ACM 27, 4 (Oct.), 701{717. A fundamental result (credit for which is also
given to Zippel and DeMillo{Lipton): to determine (with high probability) whether two
polynomials are identical, it generally su�ces to check their equality at a random location.
Applications include: checking multiset equality; proving that two straight-line arithmetic
programs compute the same function.

Shamir, A. 1992. IP = PSPACE. Journal of the ACM 39, 4 (Oct.), 869{877. Preliminary
version: Proc. 31st IEEE Symp. Foundations of Computer Science (1990), pp. 11{15.
It follows from this result that a program P which claims to solve a PSPACE-complete
problem may be checked in polynomial time plus a polynomial number of calls to P.

Vainstein, F. S. 1991. Error detection and correction in numerical computations by al-
gebraic methods. In Proc. 9th Symp. Applied Algebra, Algebraic Algorithms and Error{
Correcting Codes, Number 539 in Lecture Notes in Computer Science, pp. 456{464.
Springer-Verlag. See [Vainstein 1993].

Vainstein, F. S. 1993. Algebraic Methods in Hardware/Software Testing. Ph.D. thesis,
EECS Department, Boston University. Uses the theory of algebraic and transcendental �eld-
extensions to design partial complex checkers for all functions that may be constructed from
x, ex, sin(ax+ b), and cos(ax+ b) using operators + � � � and fractional exponentiation.

Valiant, L. G. 1979. The complexity of computing the permanent. Theoretical Computer
Science 8, 2 (April), 189{201. De�nes #P-completeness and proves that computing the
permanent of a matrix is #P-complete. See also [Lipton 1991].

Wegman, M. N. and Carter, J. L. 1981. New hash functions and their use in authenti-
cation and set equality. Journal of Computer and System Sciences 22, 3 (June), 265{279.
Includes an idea for a simple check of multiset equality (completed in [Blum 1988]).

Yao, A. C. 1990. Coherent functions and program checkers. In Proc. 22nd ACM Symp.
Theory of Computing (1990), pp. 84{94. Function f is coherent i� on input hx; yi one can
determine whether or not f(x)=y via a BPPf algorithm which is not allowed to query f
at x. Author proves the existence of incoherent (and thus uncheckable) functions in EXP.
See also [Beigel and Feigenbaum 1992].

