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Abstract. We demonstrate the emergence of collective behavior in two evolutionary computation systems, one
an evolutionary extension of a classic (highly constrained) flocking algorithm and the other a relatively un-
constrained system in which the behavior of agents is governed by evolved computer programs. The first system
demonstrates the evolution of a form of multicellular organization, while the second demonstrates the evolution
of a form of altruistic food sharing. In this article we describe both systems in detail, document the emergence
of collective behavior, and argue that these systems present new opportunities for the study of group dynamics
in an evolutionary context. We also provide a brief overview of the BREVE simulation environment in which the
systems were produced, and of BREVE’s facilities for the rapid, exploratory development of visualization strategies
for artificial life.
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1. Evolution of collective behavior22

The evolution of group behavior is a central concern in evolutionary biology and behavioral

Au: Please
provide
dates.

23
ecology. Ethologists have articulated many costs and benefits of group living and have24
attempted to understand the ways in which these factors interact in the context of evolving25
populations. For example, they have considered the thermal advantages that warm-blooded26
animals accrue by being close together, the hydrodynamic advantages for fish swimming27
in schools, the risk of increased incidence of disease in crowds, the risk of cuckoldry28
by neighbors, and many advantages and risks of group foraging [5]. Attempts have been29
made to understand the evolution of group behavior as an optimization process operating30
on these factors, and to understand the circumstances in which the resulting optima are31
stable or unstable [7, 13]. Similar questions arise at a smaller scale and at an earlier phase32
of evolutionary history with respect to the evolution of symbiosis, multicellularity, and33
other forms of aggregation that were required to produce the first large, complex life forms34
[1, 6].35
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Game theoretic simulations, often based on the Prisoner’s Dilemma, have provided ample 36
data and insights concerning the evolution of group behavior, although usually at a level of 37
abstraction far removed from the physical risks and opportunities presented by real envi- 38
ronments (see, e.g., [2], about which we say a bit more below). One line of game-theoretic 39
research that is related to the results presented here explores the minimal requirements for 40
the evolution of altruism. Of particular note, Riolo et al. showed that altruism can sometimes 41
evolve even when agents have no knowledge of the relatedness, reputation, or propensity 42
for reciprocation of other agents; the agents in their system based all decisions to cooper- 43
ate or defect solely upon the differences between the arbitrary numeric “tags” attached to 44
themselves and to other agents [12].1 45

Artificial life technologies provide new tools for the investigation of these issues. One 46
well-known, early example was the use of the Tierra system to study the evolution of a 47
simple form of parasitism [8]. Other investigators have attempted to study the evolution of 48
collective behavior in populations of flying or swimming agents that are similar in some 49
ways to those investigated here, with varying degrees of success [10, 16]. The latest wave 50
of artificial life technology presents yet newer opportunities, however, as it is now possible 51
to conduct much more elaborate simulations on modest hardware and in short time spans, 52
to observe both evolution and behavior in real time in high-resolution 3D displays, and to 53
interactively explore the ecology of evolving ecosystems. 54

In this article we describe two recent experiments in which the emergence of collective 55
behavior was observed in evolving populations of flying agents. The first experiment used 56
a system, called SWARMEVOLVE 1.0, that extends a classic flocking algorithm to allow for 57
multiple species, goal orientation, and evolution of the constants in the hard-coded motion 58
control equation. In this system we observed the emergence of a form of collective behavior 59
in which species act similarly to multicellular organisms. The second experiment used a 60
later and much-altered version of this system, called SWARMEVOLVE 2.0, in which the 61
behavior of agents is controlled by evolved computer programs instead of a hard-coded 62
motion control equation.2 In this system we observed the emergence of altruistic food- 63
sharing behaviors and investigated the link between this behavior and the stability of the 64
environment. 65

Both SWARMEVOLVE 1.0 and SWARMEVOLVE 2.0 were developed within BREVE, a sim- 66
ulation package designed by Klein for realistic simulations of decentralized systems and 67
artificial life in 3D worlds [4]. In the next section we provide a brief overview of BREVE 68
and of the facilities that it provides for development and visualization of artificial life sim- 69
ulations. In the subsequent sections we describe the two SWARMEVOLVE systems and the 70
collective behavior phenomena that we observed within them. This is followed by some 71
brief remarks about the potential for future investigations into the evolution of collective 72
behavior using artificial life technology. 73

2. BREVEBREVE 74

BREVE is an open-source simulation environment3 that simplifies the construction of ad- 75
vanced artificial life and multi-agent simulations. Users define individual agent behaviors 76
in a simple object-oriented language and then explore the behaviors of the agents by means 77
of a rich visualization engine. All aspects of the simulation, including object and memory 78
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management, communication between agents, and integration are automatically handled by79
the BREVE engine. BREVE simplifies the programming of advanced agent behaviors through80
integrated support for matrix and vector arithmetic, collision and “neighbor” detection, re-81
alistic physical simulation, and facilities for customization and expandability via a dynamic82
plugin architecture.83

BREVE promotes rapid programming and prototyping of simulations largely through the84
use of a built-in, high-level, object-oriented programming language called STEVE. Some85
simulation environments, such as SFI Swarm4 and RePast,5 use existing languages such as86
Java and Objective-C to define agent behaviors. By incorporating an integrated programming87
language designed for 3D simulation, BREVE avoids much of the overhead associated with88
implementing simulations in these environments. In addition, the integrated approach allows89
new features to be built directly into the syntax of the language, instead of requiring users90
to learn a new programming API. For example, 3D vectors, 3D matrices and hash tables91
are all included in BREVE as native types and are accessed directly as part of the language.92
BREVE’s strict object-oriented design framework also enables rapid simulation development93
by encouraging code reuse and modularity. The demonstration simulations included with94
the standard BREVE distribution provide simple examples of a wide variety of simulation95
paradigms (including real 3D physical simulation, 2D and 3D cellular automata, particle96
systems, flocking simulations and Braitenberg vehicle simulations). Code from these demos97
can be readily reused and modified, allowing rapid simulation development based on existing98
examples.99

While simulation environments such as Swarm and StarLogo [9] also facilitate multi-100
agent simulation development, BREVE arguably offers more sophisticated options for visu-101
alization and spatial simulations. In terms of spatial simulations, Swarm and StarLogo are102
generally restricted to simulations taking place on discrete 2D grids, which tend to be most103
useful in dealing with 2D cellular automata and simple 2D multi-agent simulations. While104
both environments also offer additional visualization tools such as graphs and charts, these105
features are generally used to display statistics and information about a simulation, and106
not to render a representation of the actual simulation space. BREVE, on the other hand, is107
suitable for continuous and discrete simulations in both 2D and 3D, as well as simulations108
which combine aspects of both. Although BREVE represents all simulations internally using109
a 3D continuous space, discrete simulations can be built by employing grids of “patches,”110
which are rectangular blocks in 3D space. These grids can have any dimensions, can be po-111
sitioned in 3D space like any other BREVE object, and can interact freely with regular objects112
or even other patch grids. In conjunction with agents moving through continuous space, the113
patch grids also allow for partitioning of 3D space into different regions representing, for114
example, different temperatures or concentrations of chemicals.115

BREVE’s OpenGL visualization engine portrays the locations and behaviors of agents in116
real-time. Visualization of spatial simulations allow observers to readily discover patterns117
that might easily be overlooked with simple numerical output. The visualization engine is118
thus critical with respect to exploratory artificial life simulation development.119

In addition to the “literal” spatial visualization features which portray position and mo-120
tion of objects in 3D space, BREVE also provides a variety of “special effects.” These special121
effects are not only cosmetic, but can also be used to convey high-dimensional data about122
the state of agents in a simulation through visual means. Integrated special effects in-123
clude shadows, reflections, fog, textures, displaying objects as semi-transparent bitmaps,124
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displaying objects as light sources (“lightmaps”), and drawing lines connecting arbitrary 125
objects. Manipulation of the color and transparency of objects in the simulation, for ex- 126
ample, may be used to display dynamic information about an agent’s behavior or fitness, 127
and shadows and reflections can be used to add visual distance cues. All of the features 128
of the visualization engine, including lighting, special effects and camera position, can be 129
controlled dynamically. These features can be manipulated manually by the user in order 130
to gain a better perspective on the simulation, or programmatically by the simulation itself 131
(via STEVE code). The SWARMEVOLVE systems described below employ automatic control 132
of several of these features to provide an information-rich visual interface that displays, for 133
example, velocity-based agent orientation, energy-based agent color/size, death rates via 134
piles of “corpses,” and close-up views of the center of activity via automatically adjusted 135
camera zoom and targeting. In additional experiments we explored the system from an 136
“agent’s eye view” by placing the camera in an agent, and “sharing networks” by drawing 137
lines dynamically between agents that share energy (as in Figure 6, below). 138

The descriptions of BREVE and STEVE in this article are necessarily incomplete; please 139
see [4] for further details.6 140

3. SWARMEVOLVESWARMEVOLVE 1.0 141

One of the demonstration programs distributed with BREVE is SWARM, a simulation of 142
flocking behavior modeled on the “boids” work of Craig W. Reynolds [11]. In the BREVE 143
SWARM program the acceleration vector for each agent is determined at each time step via 144
the following formulae: 145

V = c1V1 + c2V2 + c3V3 + c4V4 + c5V5

A = m

(
V
|V|

)

The ci are positive constants and the Vi are vectors determined from the state of the world 146
(or in one case from the random number generator) and then normalized to length 1. V1 is 147
a vector away from neighbors that are within a “crowding” radius, V2 is a vector toward 148
the center of the world, V3 is the average of the agent’s neighbors’ velocity vectors, V4 is a 149
vector toward the center of gravity of all agents, and V5 is a random vector. In the second 150
formula we normalize the resulting velocity vector to length 1 (assuming its length is not 151
zero) and set the agent’s acceleration to the product of this result and m, a constant that 152
determines the agent’s maximum acceleration.7 The system also models a floor and hard- 153
coded “land” and “take off” behaviors, but these are peripheral to the focus of this article. 154
By using different values for the ci and m constants (along with the “crowding” distance, 155
the number of agents, and other parameters) one can obtain a range of different flocking 156
behaviors; many researchers have explored the space of these behaviors since Reynolds’s 157
pioneering work [11]. 158

SWARMEVOLVE 1.0 enhances the basic BREVE SWARM system in several ways. First, we 159
created three distinct species8 of agents, each designated by a different color. As part of this 160
enhancement we added a new term, c6V6, to the motion formula, where V6 is a vector away 161
from neighbors of other species that are within a “crowding” radius. Goal-orientation was 162
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introduced by adding a number of randomly moving “energy” sources to the environment163
and imposing energy dynamics. As part of this enhancement we added one more new term,164
c7V7, to the motion formula, where V7 is a vector toward the nearest energy source. Each165
time an agent collides with an energy source it receives an energy boost (up to a maximum),166
while each of the following bears an energy cost:167

– Survival for a simulation time step (a small “cost of living”).168
– Collision with another agent.169
– Being in a neighborhood (bounded by a pre-set radius) in which representatives of the170

agent’s species are outnumbered by representatives of other species.171
– Giving birth (see below).172

The numerical values for the energy costs and other parameters can be adjusted arbitrarily173
and the effects of these adjustments can be observed visually and/or via statistics printed174
to the log file; values typical of those that we used can be found in the source code for175
SWARMEVOLVE 1.0.9176

As a final enhancement we leveraged the energy dynamics to provide a fitness function177
and used a genetic encoding of the control constants to allow for evolution. Each individual178
has its own set of ci constants; this set of constants controls the agent’s behavior (via the179
enhanced motion formula) and also serves as the agent’s genotype. When an agent’s energy180
falls to zero the agent “dies” and is “reborn” (in the same location) by receiving a new181
genotype and an infusion of energy. The genotype is taken, with possible mutation (small182
perturbation of each constant) from the “best” current individual of the agent’s species183
(which may be at a distant location).10 We define “best” here as the product of energy and184
age (in simulation time steps). The genotype of the “dead” agent is lost, and the agent that185
provided the genotype for the new agent pays a small energy penalty for giving birth. Note186
that reproduction is asexual in this system (although it may be sexual in SWARMEVOLVE187
2.0).188

The visualization system presents a 3D view (automatically scaled and targeted) of the189
geometry of the world and all of the agents in real time. Commonly available hardware is190
sufficient for fluid action and animation. Each agent is a cone with a pentagonal base and a191
hue determined by the agent’s species (red, blue, or purple). The color of an agent is dimmed192
in inverse proportion to its energy — agents with nearly maximal energy glow brightly while193
those with nearly zero energy are almost black. “Rebirth” events are visible as agents flash194
from black to bright colors.11 Agent cones are oriented to point in the direction of their195
velocity vectors. This often produces an appearance akin to swimming or to “swooping”196
birds, particularly when agents are moving quickly. Energy sources are flat, bright yellow197
pentagonal disks that hover at a fixed distance above the floor and occasionally glide to198
new, random positions within a fixed distance from the center of the world. An automatic199
camera control algorithm adjusts camera zoom and targeting continuously in an attempt to200
keep most of the action in view.201

Figure 1 shows a snapshot of a typical view of the SWARMEVOLVE world. An animation202
showing a typical action sequence can be found on-line.12203

SWARMEVOLVE 1.0 is simple in many respects but it nonetheless exhibits rich evolution-204
ary behavior. One can often observe the species adopting different strategies; for example,205
one species often evolves to be better at tracking quickly moving energy sources, while206
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Figure 1. A view of SWARMEVOLVE 1.0 (which is in color but will print black and white in the journal). The
agents in control of the pentagonal energy source are of the purple species, those in the distance in the upper center
of the image are blue, and a few strays (including those on the left of the image) are red. All agents are the same
size, so relative size on screen indicates distance from the camera.

another evolves to be better at capturing static energy sources from other species. An ani- 207
mation demonstrating evolved strategies such as these can be found on-line.13 208

4. Emergence of collective behavior in SWARMEVOLVESWARMEVOLVE 1.0 209

Many SWARMEVOLVE runs produce at least some species that tend to form static clouds 210
around energy sources. In such a species, a small number of individuals will typically 211
hover within the energy source, feeding continuously, while all of the other individuals 212
will hover in a spherical area surrounding the energy source, maintaining approximately 213
equal distances between themselves and their neighbors. Figure 2 shows a snapshot of such 214
a situation, as does the animation at http://hampshire.edu/lspector/swarmevolve-ex2.mov; 215
note the behavior of the purple agents. 216

We initially found this behavior puzzling as the individuals that are not actually feeding 217
quickly die. On first glance this does not appear to be adaptive behavior, and yet this behavior 218
emerges frequently and appears to be relatively stable. Upon reflection, however, it was clear 219
that we were actually observing the emergence of a higher level of organization. 220

When an agent dies it is reborn, in place, with a (possibly mutated) version of the genotype 221
of the “best” current individual of the agent’s species, where quality is determined from the 222
product of age and energy. This means that the new children that replace the dying individuals 223
on the periphery of the cloud will be near-clones of the feeding individuals within the energy 224
source. Since the cloud generally serves to repel members of other species, the formation of 225
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Figure 2. A view of SWARMEVOLVE 1.0 in which a cloud of agents (the blue species) is hovering around the
energy source on the right. Only the central agents are feeding; the others are continually dying and being reborn.
As described in the text this can be viewed as a form of emergent collective organization or multicellularity. In this
image the agents controlling the energy source on the left are red and most of those between the energy sources
and on the floor are purple.

a cloud is a good strategy for keeping control of the energy source. In addition, by remaining226
sufficiently spread out, the species limits the possibility of collisions between its members227
(which have energy costs). The high level of genetic redundancy in the cloud is also adaptive228
insofar as it increases the chances that the genotype will survive after a disruption (which229
will occur, for example, when the energy source moves).230

The entire feeding cloud can therefore be thought of as a genetically coupled collective,231
or even as a multicellular organism in which the peripheral agents act as defensive organs232
and the central agents act as digestive and reproductive organs.233

5. SWARMEVOLVESWARMEVOLVE 2.0234

Although SWARMEVOLVE 2.0 was derived from SWARMEVOLVE 1.0 and is superficially235
similar in appearance, it is really a fundamentally different system.236

The energy sources in SWARMEVOLVE 2.0 are spheres that are depleted (and shrink) when237
eaten; they re-grow their energy over time, and their signals (sensed by agents) depend on238
their energy content and decay over distance according to an inverse square law. Births occur239
near mothers and dead agents leave corpses that fall to the ground and decompose; a view240
of such corpses is shown in Figure 3. A form of energy conservation is maintained, with241
energy entering the system only through the growth of the energy sources. All agent actions242
are either energy neutral or energy consuming, and the initial energy allotment of a child243
is taken from the mother. Agents get “fatter” (the sizes of their bases increase) when they244
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Figure 3. A pile of corpses forming under a dangerous area in SWARMEVOLVE 2.0.

have more energy, although their lengths remain constant so that length still provides the 245
appropriate cues for relative distance judgement in the visual display; Figure 4 shows some 246
of these effects. A graphical user interface has also been added to facilitate the experimental 247
manipulation of system parameters and monitoring of system behavior. 248

The most significant change, however, was the elimination of hard-coded species dis- 249
tinctions and the elimination of the hard-coded motion control formula (within which, 250
in SWARMEVOLVE 1.0, only the constants were subject to variation and evolution). In 251
SWARMEVOLVE 2.0 each agent contains a computer program that is executed at each time 252
step. This program produces two values that control the activity of the agent: 253

1. a vector that determines the agent’s acceleration, 254
2. a floating-point number that determines the agent’s color. 255

Agent programs are expressed in Push, a programming language designed by Spector to 256
support the evolution of programs that manipulate multiple data types, including code; the 257
explicit manipulation of code supports the evolution of modules and control structures, while 258
also simplifying the evolution of agents that produce their own offspring rather than relying 259
on the automatic application of hand-coded crossover and mutation operators [14, 15]. 260

The Push instructions available for use in agent programs are shown in Table 1. In addition 261
to the standard Push instructions, operating on integers, floating point numbers, Boolean 262
values, and code expressions, instructions were added for the manipulation of vectors and for 263
SWARMEVOLVE-specific sensors and actions. Note that two sets of instructions are provided 264
for getting information about other agents in the world, the “friend” instructions and the 265
“other” instructions. Each “friend” instruction operates on the closest agent having a color 266
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Table 1. Push instructions available for use in SWARMEVOLVE 2.0 agent programs.

Instruction(s) Description

DUP, POP, SWAP, REP, =, NOOP, PULL,
PULLDUP, CONVERT, CAR, CDR, QUOTE,
ATOM, NULL, NTH, +, ∗, /, >, <, NOT, AND,
NAND, OR, NOR, DO*, IF

Standard Push instructions (See [14])

VectorX, VectorY, VectorZ, VPlus, VMinus,
VTimes, VDivide, VectorLength, Make-Vector

Vector access, construction, and manipulation

RandI, RandF, RandV, RandC Random number, vector, and code generators

SetServoSetpoint, SetServoGain, Servo Servo-based persistent memory

Mutate, Crossover Stochastic list manipulation (parameters from stacks)

Spawn Produce a child with code from code stack

ToFood Vector to energy source

FoodIntensity Energy of energy source

MyAge, MyEnergy, MyHue, MyVelocity,
MyLocation, MyProgram

Information about self

ToFriend, FriendAge, FriendEnergy, FriendHue,
FriendVelocity, FriendLocation, FriendProgram

Information about closest agent of similar hue

ToOther, OtherAge, OtherEnergy, OtherHue,
OtherVelocity, OtherLocation, OtherProgram

Information about closest agent of non-similar hue

FeedFriend, FeedOther Transfer energy to closest agent of indicated category

Figure 4. A view of SWARMEVOLVE 2.0 in which energy sources shrink as they are consumed and agents are
“fatter” when they have more energy.
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similar to the acting agent (currently defined as having a hue within 0.1 in a circular hue scale 267
that ranges from 0.0 to 1.0). Each “other” instruction operates on the closest agent having 268
a color that is not similar to the acting agent.14 In some cases, in particular when an agent 269
sets its color once and never changes it, the “friend” instructions will be likely to operate on 270
relatives, since presumably these relatives would set their colors similarly. But since agents 271
can change their colors dynamically each time-step, a “friend” is not necessarily a relative 272
and a relative is not necessarily a “friend.” The term “friend” here should be taken with a 273
grain of salt; the friend/other distinction provides a way for agents to distinguish among 274
each other based on color, but they may use this capability in a variety of ways. Color-based 275
discrimination of other agents, as used here, is similar to the “tag”-based discrimination 276
explored by [3] and [12], although here each agent can change its own tag arbitrarily. 277

SwarmEvolve 2.0 is an “autoconstructive evolution” system, in which agents are respon- 278
sible for producing their own offspring and arbitrary reproductive mechanisms may evolve 279
[14]. Whenever an agent attempts to produce a child (by executing the Spawn instruction), 280
the top of its code stack is examined. If the expression is empty (which happens rarely once 281
the system has been running for some time) then a newly generated, random program is 282
used for the child. If the expression is not empty then it is used as the child’s program, after 283
a possible mutation. The probability of mutation is also determined by the parent. A random 284
number is chosen from a uniform distribution from zero to the absolute value of the number 285
on top of the Integer stack; if the chosen number is zero then a mutation is performed. The 286
mutation operation is similar to that used in traditional genetic programming: a random 287
sub-expression is replaced with a newly generated random expression. Note that the pro- 288
gram access instructions provide the means for agents to produce their children asexually 289
or sexually, potentially using code from many “mates.” 290

At the beginning of a SWARMEVOLVE 2.0 run most of the agents, which will have been 291
generated randomly, will not have programs that cause them to seek food and produce 292
offspring; they will therefore die rather quickly and the population will plummet. Whenever 293
the population drops below a user-defined threshold the system injects new random agents 294
into the world. With the parameters used here, however, it usually takes only a few hundred 295
time-steps before “reproductive competence” is achieved—at this point the population is 296
self-sustaining as there are a large number of agents capable of reproducing. 297

SWARMEVOLVE 2.0 is a complex program with many parameters, not all of which can 298
be addressed in the scope of this short article. However, the source code for the system 299
(including the parameters used in the experiments described below) is available on-line.15 300
An animation of a typical action sequence can also be found on-line.16 301

6. Emergence of collective behavior in SWARMEVOLVE 2.0 302

The last two instructions listed in Table 1, FeedFriend and FeedOther, provide a means 303
for agents to transfer energy to one another (to share food). Each of these instructions 304
transfers a small increment of energy (0.01 out of a possible total of 1.0), but only under 305
certain conditions which we varied experimentally (see below). Ordinarily, the use of these 306
instructions would seem to be maladaptive, as they decrease the energy of the acting agents. 307
The use of a Feed instruction thereby makes the feeding agent both more vulnerable and 308
less likely to produce children. 309
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Might there nonetheless be some circumstances in which it is adaptive for agents to feed310
one another? We set out to investigate this question by conducting runs of SWARMEVOLVE311
2.0 and monitoring the proportion of agents that feed or attempt to feed other agents.17312
Because the Feed instructions will occasionally occur in randomly generated code and in313
mutations, we expect every run to produce some number of calls to these instructions. We314
expect, however, that the proportion of food sharing agents, when averaged over a large315
number of runs, will reflect the extent to which food sharing is adaptive.316

We hypothesized, for example, that dynamic, unstable environments might provide a317
breeding ground for altruistic feeding behavior. We reasoned as follows, from the perspective318
of a hypothetical agent in the system: “If the world is stable, and everyone who’s smart319
enough to find food can reliably get it, then I should get it when I can and keep it to myself. If320
the world is unstable, however, so that I’ll sometimes miss the food despite my best efforts,321
then it’d be better for me if everyone shared. Food from others would help to buffer the322
effects of chance events, and I’d be willing to share food when I have it in order to secure323
this kind of insurance.” Of course one shouldn’t put too much faith in such hypothetical324
stories, but they can sometimes be a guide for intuitions. In the present case they led us325
to conduct a simple experiment in which we varied the stability of the energy sources and326
the sharing conditions in SWARMEVOLVE 2.0 and measured the proportion of food-sharing327
agents that resulted.328

We conducted a total of 1,625 runs under a variety of stability and sharing conditions. We329
used values of the “stability” parameter ranging from 20 (unstable) to 2,000 (highly stable).330
The stability parameter governs the frequency with which energy sources begin to drift to331
new, random locations; the probability that a particular energy source will begin to drift to a332
new location in any particular time step is 1

stability . We collected data on four different sharing333
conditions. In all of the conditions the potential recipient is the closest agent of similar or334
dissimilar color, depending on whether the agent is executing the FeedFriend or FeedOther335
instruction respectively. In all cases the feeding is conditional on the recipient having less336
energy than the provider. In “waste” sharing the energy is all lost in the transfer, and the337
recipient receives nothing; we included this sharing condition as a control. In “charity”338
sharing the recipient receives all of the energy, regardless of whether or not the recipient339
itself shares energy. In “mutual” sharing the recipient receives all of the energy if it is340
transferred, but it is transferred only if the recipient has itself executed a sharing instruction341
at least once in its life. Note that “charity” and “mutual” sharing, unlike the altruistic sharing342
explored in some other lines of research (e.g., [12]), are zero sum transactions: the cost to343
the donor is equal to the benefit to the recipient. Finally, in “noop” sharing no energy is344
transferred or lost; this is another control.345

We collected data only from runs with at least 5,300 consecutive time-steps of repro-346
ductive competence—there were 936 runs meeting this condition. For qualifying runs we347
then collected data over the last 5,000 of time-steps, divided into 100-time-step “epochs.”348
At each epoch boundary we took a census, recording the prevalence of sharing agents349
normalized by population size. We computed the sum of the number of living agents that350
had executed FeedFriend at least once and the number of living agents that had executed351
FeedOther at least once, and then divided this sum by the total number of living agents.352
Because it is possible for some agents to be counted twice (if they execute both FeedFriend353
and FeedOther) this is not quite equivalent to the proportion of the population that shares,354
but it is nonetheless a population-normalized measure of the prevalence of sharing agents.355
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Figure 5. Prevalence of agents that share food (on the y axis) graphed vs. environmental (energy source) stability
(on the x axis) for four sharing conditions (see text).

Our results are graphed in Figure 5. There is substantial variance in the data, and the 356
statistical significance of some of the differences visible in the graph is questionable. The 357
distributions are far from Gaussian, so we used the unpaired Wilcoxon two sample test to 358
assess significance. With respect to the vertical differences in the graph, this indicates that 359
all differences at stability 20 are significant (p ≤ 0.015) except that between “noop” and 360
“mutual” sharing. At stability 200 all differences are significant (p ≤ 0.025) except for the 361
differences between “noop” and “mutual” and between “noop” and “charity.” At stability 362
1100 only “waste” is significantly different from the others (p ≤ 0.00047). At stability 363
2000 the only clearly significant difference is between “waste” and “mutual” (p ≤ 0.0079), 364
although the differences between “waste” and the other conditions approach significance 365
(p ≤ 0.09926 and p ≤ 0.06726). 366

The “waste” sharing control produced less food sharing than all of the other sharing 367
conditions; this is what one would expect, as “waste” sharing has costs but no possible 368
benefits. The “noop” sharing control, on the other hand, which has no costs and no benefits, 369
produced more sharing than all other conditions at low stability (although the difference 370
from “mutual” sharing was not significant). The amount of sharing in the “charity” and 371
“mutual” conditions (in which sharing incurs certain costs while providing only potential 372
benefits) was greater than, or at least not significantly less than, the amount of sharing in 373
the “noop” control under several stability settings. This is evidence that altruistic feeding 374
behavior is adaptive in the environment under study. At low stability settings (20 and 375
200) significantly more sharing occurred in the “mutual” condition than in the “charity” 376
condition, demonstrating that the ability to test for mutuality does indeed have value. 377

Our hypothesis that dynamic, unstable environments might provide a breeding ground for 378
altruistic feeding behavior was only partially confirmed; while the most food sharing does 379
indeed occur in the least stable environments, the most stable environments also support 380
significant food sharing. To the extent that the hypothesis is confirmed it is interesting to note 381



P1: ***

Genetic Programming and Evolvable Machines KL3127-07/Spectror August 5, 2004 12:57

UNCORRECTED
PROOF

EMERGENCE OF COLLECTIVE BEHAVIOR IN EVOLVING POPULATIONS 123

Figure 6. A snapshot from a version of SWARMEVOLVE 2.0 in which pairs of agents that have shared energy are
connected by black lines, making networks of altruistic energy sharing visible.

that a similar effect, involving the preference for cooperation in unpredictable environments,382
has been observed in a radically different, game-theoretic context [2].383

These simulations provide a rich framework for investigating the relations between col-384
lective behavior and evolution, which we have only begun to explore. Some of our more385
recent explorations have been aided by BREVE’s dynamic line-drawing facilities to visualize386
sharing networks, as shown in Figure 6.387

7. Conclusions and future work388

The emergence of collective behavior is an intriguing and at times counter-intuitive phe-389
nomenon, an understanding of which will have significant impacts on the study of living390
systems at all levels, from symbiotic microbes to human societies. The work presented391
in this article demonstrates that new artificial life technologies provide new tools for the392
synthetic investigation of these phenomena, complementing the well-established analytic393
methods of evolutionary biology and behavioral ecology.394

In particular we demonstrated the emergence of a simple form of multicellular organi-395
zation in evolving populations of agents based on a traditional flocking algorithm. We also396
demonstrated the emergence of altruistic feeding behavior in a system that is considerably397
less constrained, as the agents are controlled by evolved computer programs. We believe that398
this latter system provides significant new avenues of study by allowing agents of arbitrary399
complexity to evolve within complex, dynamic worlds.400

Our own plans for this work in the near future include a systematic exploration of the401
effects of various parameter changes on the emergence of collective behavior. We are making402
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the source code for SWARMEVOLVE 1.0 and 2.0 freely available in the hopes that others will 403
also contribute to this process; see http://hampshire.edu/lspector/swarmevolve-1.0.tz and 404
http://hampshire.edu/lspector/swarmevolve-2.0.tz. 405
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Notes 413

1. The use of the term “tag” in this context derives from [3]. 414
2. A system that appears to be similar in some ways, though it is based on 2D cellular automata and the Santa 415

Fe Institute SWARM system, is described at http://omicrongroup.org/evo/. 416
3. Available from http://www.spiderland.org/breve 417
4. http://www.swarm.org/index.html 418
5. http://repast.sourceforge.net/ 419
6. The version of [4] in the printed proceedings is actually an early draft, included as a result of a clerical error; 420

please see http://www.spiderland.org/breve/breve.pdf for the correct final version. 421
7. If the resulting velocity would exceed a pre-specified maximum then its magnitude is reduced to the maximum. 422
8. “Species” here are simply imposed, hard-coded distinctions between groups of agents, implemented by filling 423

“species” slots in the agent data structures with integers ranging from 0 to 2. This bears only superficial 424
resemblance to biological notions of “species.” 425

9. http://hampshire.edu/lspector/swarmevolve-1.0.tz 426
10. The choice to have death and rebirth happen in the same location facilitated, as an unanticipated side effect, 427

the evolution of the form of collective behavior described below. In SWARMEVOLVE 2.0, among many other 428
changes, births occur near parents. 429

11. Birth energies are typically chosen to be random numbers in the vicinity of half of the maximum. 430
12. http://hampshire.edu/lspector/swarmevolve-ex1.mov 431
13. http://hampshire.edu/lspector/swarmevolve-ex2.mov 432
14. If there are no other agents meeting the relevant criterion then each of these instructions operates on the acting 433

agent itself. 434
15. http://hampshire.edu/lspector/swarmevolve-2.0.tz 435
16. http://hampshire.edu/lspector/swarmevolve2-ex1.mov 436
17. For the analyses presented below we did not distinguish between FeedFriend and FeedOther executions; we 437

explored the distinction briefly but there were no obvious patterns in the data. 438
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