
Plays as Effective Multiagent Plans
Enabling Opponent-Adaptive Play Selection

Michael Bowling
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

bowling@cs.ualberta.ca

Brett Browning and Manuela Veloso
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213-3891 USA
{brettb,mmv}@cs.cmu.edu

Abstract

Coordinated action for a team of robots is a challenging
problem, especially in dynamic, unpredictable environ-
ments. Robot soccer is an instance of a domain where
well defined goals need to be achieved by multiple ex-
ecutors in an adversarial setting. Such domains offer
challenging multiagent planning problems that need to
coordinate multiagent execution in response to other
agents that are not part of our team plans. In this work,
we introduce the concept of aplay as a multiagent plan
that combines both reactive principles, which are the fo-
cus of traditional approaches for coordinating robot ac-
tions, and deliberative principles. We further introduce
the concept of aplaybookas a method for seamlessly
combining multiple team plans. The playbook provides
a set of alternative team behaviors which form the basis
for our third contribution ofplay adaptation. We de-
scribe how these concepts were concretely implemented
in the CMDragons robot soccer team. We also show
empirical results indicating the importance of adapta-
tion in adversarial or other unpredictable environments.

Introduction
Coordination and adaptation are two of the most critical
challenges for deploying teams of robots to perform use-
ful tasks, in domains where there are clear goals to be
achieved. There are many instances of single robot sys-
tems that can successfully achieve goals using reactive ac-
tion selection methods. When controllingteamsof robots,
it is far more difficult to design reactive action selection ap-
proaches that coordinate the execution of multiple robots.
It is even more challenging when the team actions need to
be selected to respond to great uncertainty in the domain.
One possible source of this uncertainty is if the domain in-
volves other agents, particularly adversarial ones, that are
not under the team’s control. In this paper, we examine the
challenge of controlling a team of robots within the context
of robot soccer, a multi-robot, goal-driven, adversarial do-
main. The presence of adversarial robots creates significant
uncertainty for predicting the outcome of actions. This is
particularly true if the opponents’ behavior and capabilities
are unknown, as is the case in a robot soccer competition.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This lack of knowledge about the opponent makes it impos-
sible to predefine a model of the domain that can be used
for planning as in classical planning. As such, robot soccer
contains many of the challenges described above, as well as
issues found in other realistic multi-robot settings.

Despite the inherent unpredictability of the adversarial
domain, most robot soccer approaches involve single, static,
monolithic team strategies (e.g., see robot team descriptions
in (Birk, Coradeschi, & Tadokoro 2002).) Although these
strategies entail complex combinations of reactive and de-
liberative approaches, they can still perform poorly against
unknown opponents or in unexpected situations. With the
uncertainty present in robot soccer, such situations are com-
mon, and there have been examples of seemingly superior
teams being defeated by unexpected opponent play.

An alternative approach uses models of opponent behav-
ior, constructed either before or during the competition (In-
tille & Bobick 1999), which are used then to determine the
best team response. A model may be used in a reactive fash-
ion to trigger a pre-coded static strategy, or in a deliberative
fashion through the use of a planner (Riley & Veloso 2002).
Although these techniques have had success, they have lim-
itations such as the requirement for an adequate representa-
tion of opponent behavior. For a completely unknown oppo-
nent team, constructing an accurate model of their strategy
is not likely to be practical.

In this work we take a novel approach to adapting to the
opponent that is based on observing our own team’s effec-
tiveness rather than observing the opponent’s behavior. We
replace a single monolithic team strategy, with multiple team
plans that are appropriate for different opponents and situa-
tions, which we callplays. Each play represents a predefined
deliberative multiagent plan as a coordinated sequence of
team actions, and is explicit enough to facilitate evaluation
of that play’s execution. Aplaybookencapsulates the plays
that are available to the team, and provides multiple strate-
gic options. Each execution of a play from the playbook
can then be evaluated and this information collected for aid
in future play selection. Successful plays, whose successes
may be attributed to weaknesses in the opponent or partic-
ular strengths of our team, are selected more often, while
unsuccessful plays are ignored.

We begin by providing an overview of our CMDrag-
ons’03 robot soccer team and the role of plays in the team’s

Figure 1: The picture on the left shows our small-size robots,
and the picture on the right shows the team in action.

decision making. We then present plays and the play execu-
tion system in detail, followed by a description of how the
team adaptively selects plays. We then evaluate the effec-
tiveness of the play-based strategy and adaptive play selec-
tion by examining its effectiveness in recent competitions.
Finally, we conclude.

Overview
In this section, we briefly describe our CMDragons’03 robot
soccer team, the basis for the work explored in this paper.
This overview focuses on how the strategy system, described
in the next section, interacts with the system as a whole.

The CMDragons are a team of Small-Size League (SSL)
soccer robots that participated at RoboCup 2003. Figure 1
shows pictures of robots that comprise the team. SSL robot
soccer, part of the RoboCup initiative (Kitanoet al. 1997),
consists of two teams of five robots that play soccer with
an orange golf-ball on a 2.8m by 2.3m field surrounded by
short, sloped walls. Rules are based on human soccer and
are enforced by a human referee. Robots must conform
to size and shape specifications, but no standard platforms
exist. SSL is characterized by the allowance of cameras
mounted above the field for shared global perception and
additional off-field computation resources making a team
as a whole autonomous, rather than individual robots. SSL
robots are typically fast, cruising at speeds of 1–2m/s while
the ball moves at over 4m/s, and occasionally much faster.
This makes SSL an environment that requires fast response,
good long-term strategy, strong individual robot skills and
capable multi-robot coordination, in order for a team to be
successful.

Figure 2 shows the major components of the CMDrag-
ons’ system. Stacked boxes define a component of the sys-
tem where the boxes define a flow of control from top to
bottom. The arrows show the flow of information. The con-
trol loop, synchronized with image frames at 30Hz, consists
of taking an image from the camera via the framegrabber
and processing it, determining the control for each robot on
the team, and sending these velocity commands using ra-
dio communication to the robots. Each robot operates local
servo loops to carry out the commands. Due to space lim-
itations, we refer the reader to our earlier works (Bruceet
al. 2002) and (Bruce & Veloso 2002), for a more thorough
description of the entire system. Here we focus on the tac-
tics and strategy layers of the control software, the shaded
regions in Figure 2.

CMVision

Tracking

High-Level Vision C
am

er
a

Play Execution

Play Selection

Play

Library

Motion Control

Navigation

Robot Control

Tactics

Servo Loop

Radio Server
Radio

soccer

rserver

rserver

soccer

robotPlay Evaluation

Figure 2: Overview of the CMDragons’02 team architec-
ture.

The tactics and strategy layers make up the bulk of
decision-making in the system. The tactics layer, the stack
of boxes on the right, encompasses individual robot skills.
For each frame, each robot executes a single tactic indepen-
dently of the others. The strategy layer, the stack of boxes on
the left, provides the coordination mechanism and executes
one instance for the entire team. Thus, the strategy layer
must meld individual robot skills into powerful and adapt-
able team behavior.

Tactics are defined to be any behavior executable by a sin-
gle robot. Table 1 shows the list of implemented tactics.
Each tactic is highly parameterized and performs a complex,
single robot task that itself may consist of many sub-policies
run in succession. Each tactic makes use of a robot con-
trol layer that maintains robot-specific information persis-
tent even after a robot’s tactic changes. The layer transforms
tactic commands into target points for navigation. The nav-
igation layer then produces short term, obstacle-free way-
points for the motion control system using a fast randomized
planner. These waypoints are used by the motion control
module to generate the actual velocity commands sent to the
robot.

A tactic, therefore, is a complex interaction between
low-level navigation and motion control, and higher-
level skill-based code. For example, consider the
position for deflection tactic. The tactic itself de-
termines the best location within a region for deflecting
passes into the goal. This requires sampling of points over
the specified region and evaluation of the deflection angles
using a deflection heuristic. The best evaluated point is then
fed into the navigation layer, and in turn to the motion con-
trol layer, to generate the actual commands necessary to
drive the robot to the calculated position.

Play-Based Strategy
The main question addressed in this work is: “Given a set of
effective and parameterized individual robot behaviors, how
do we select each robot’s behavior (possibly using past exe-
cution experience) to achieve the team’s goals?” This is the
problem addressed by our strategy component, which is di-

Active Tactics: Non-active Tactics:
shoot (A im | N oaim | D eflect 〈role 〉)
steal [〈coordinate 〉]
clear
active def [〈coordinate 〉]
pass 〈role 〉
dribble to shoot 〈region 〉
dribble to region 〈region 〉
spin to region 〈region 〉
receive pass
receive deflection
dribble to position 〈coordinate 〉 〈theta 〉
position for kick

position for loose ball 〈region 〉
position for rebound 〈region 〉
position for pass 〈region 〉
position for deflection 〈region 〉
defend line 〈p1〉 〈p2〉 〈min-dist 〉 〈max-dist 〉
defend point 〈p1〉 〈min-dist 〉 〈max-dist 〉
defend lane 〈p1〉 〈p2〉
block 〈min-dist 〉 〈max-dist 〉 〈side-pref 〉
mark 〈orole 〉 (ball | our goal | | shot)
goalie
stop
velocity 〈vx 〉 〈vy 〉 〈vtheta 〉
position 〈coordinate 〉 〈theta 〉

Table 1: List of tactics along with their parameters.

agrammed by the left-most shaded components of Figure 2.
Our team strategy utilizes the concept of aplay as a team
plan with multiple plays collected into aplaybook.

Goals

The main evaluation criterion for team strategy is perfor-
mance, i.e., goal achievement. However, a single, static,
monolithic team strategy that maximizes performance is im-
practical. Indeed, in an adversarial domain with an unknown
opponent, a single static optimal strategy is unlikely to ex-
ist. Therefore we have broken down the performance crite-
rion into easier to achieve subgoals. The goals of a strategy
system are:

1. Coordinate team behavior,

2. Execute temporally extended sequences of action,

3. Allow for special behavior for certain circumstances,

4. Allow ease of human design and augmentation,

5. Enable exploitation of short-lived opportunities, and

6. Allow on-line adaptation to the specific opponent.

The first four goals require plays to be able to express
complex, coordinated, and sequenced behavior among team-
mates. In addition, plays must be human readable to make
strategy design and modification simple. These goals also
require a powerful system capable of executing the complex
behaviors the play describes. The fifth goal requires the ex-
ecution system to also recognize and exploit opportunities
that are not explicitly described by the current play. Finally,
the sixth goal requires the system to alter its behavior over
time. Notice that these goals, although critical to the robot
soccer task, are also of general importance for the coordina-
tion of agent teams in other adversarial or unpredictable en-
vironments. We have developed a play-based team strategy,
using a specialized play language, to meet these goals. In the
following sections, we will describe the three major compo-
nents of the play-based strategy engine: play specification
using the play language, the play execution system, and the
playbook adaptation mechanism used to autonomously alter
team strategy to a specific opponent during a competition.

Table 2: A simple example of a play.

PLAY Naive Offense

APPLICABLE offense
DONE aborted !offense

ROLE 1
shoot A
none

ROLE 2
defend_point {-1400 250} 0 700
none

ROLE 3
defend_lane {B 0 -200} {B 1175 -200}
none

ROLE 4
defend_point {-1400 -250} 0 1400
none

Play Specification

Plays are specified using a play language in an easy-to-read
text format (e.g., Tables 2 and 3). A simple example of
a play is shown in Table 2. Plays use keywords, denoted
by all capital letters, to mark different pieces of informa-
tion. Each play has two components:basic informationand
role information. The basic information describes when a
play can be executed (“APPLICABLE”), when execution of
the play should stop (“DONE”), and some execution details
(e.g., “FIXEDROLES”, “ TIMEOUT”, and “OROLE”). The
role information (“ROLE”) describes how the play is exe-
cuted, making use of the tactics from Table 1. We describe
these keywords below.

Applicability. TheAPPLICABLEkeyword denotes when
a play can be executed. What follows the keyword is a con-
junction of high-level predicates that all must be true for the
play to be considered executable. MultipleAPPLICABLE
keywords can be used to denote different disjunctive condi-
tions for when the play may be executed. This allows plays
to effectively specify when they can be executed as a logical

DNF of high-level predicates. In the example play in Ta-
ble 3, the play can only be executed when theoffense
predicate is true. Theoffense predicate is a complex
function of the present and past history of possession of the
ball and the ball’s field position. New predicates are easily
added to the system, but many useful predicates related to
possession, ball position, and the other team’s robots already
exist.

A play’s applicability condition is very similar to operator
preconditions in classical planning. By constraining the ap-
plicability of a play, we can design special purpose plays for
very specific circumstances. Table 3 shows an example of
a complex play that uses thein their corner predicate
to constrain the play to execute only when the ball is in one
of the opponent team’s corners. The play explicitly involves
dribbling the ball out of the corner to get a better angle for a
shot on the goal.

Termination. Unlike classical planning, the level of un-
certainty in this task makes it difficult to predict the outcome
of a particular plan. Therefore a play does not have effects,
but rather has something similar called termination condi-
tions. Termination conditions are specified by the keyword
DONEfollowed by a result (e.g.,aborted) and a conjunc-
tive list of high-level predicates similar to the applicability
conditions. Plays may have multipleDONEconditions, each
with a different result, and a different conjunction of predi-
cates. Whenever one of theseDONEconditions are satisfied,
the play is terminated, and a new play must be selected. In
the example play in Table 3, the only terminating condition
is if the team is no longer on offense. In this case the play’s
result is considered to have beenaborted .

The results for plays are:succeeded , completed ,
aborted , andfailed . These results are used to evalu-
ate the success of the play for the purposes of reselecting
the play later. This is the major input to the play adaptation
system which we describe in the next section.

There are three other ways in which plays can be termi-
nated. The first is due to referee signals that change the game
state. The second is when the sequence of behaviors defined
by the play arecompleted . These two are described in
more detail with the play execution system below. The third
occurs when a play runs for too long without terminating.
A timeout causes the play to terminate with anaborted
result and a new play is selected. Thus, the team commits
to a course of action, but if no progress is made due to un-
foreseen circumstances, another approach will be tried. The
timeout period has a team configurable default value, how-
ever, a play may use theTIMEOUTkeyword to override this
default timeout limit (e.g., Table 3).

Roles. Roles are the action component of a play, and each
play has four roles corresponding to the non-goalie robots on
the field. Each role contains a list of tactics (also called be-
haviors) with associated parameters for the robot to perform
in sequence. As tactics are heavily parameterized, the range
of tactics can be combined into nearly an infinite number
of play possibilities. Table 3 shows an example play where

PLAY Two Attackers, Pass from Corner

APPLICABLE offense in_their_corner
DONE aborted !offense

TIMEOUT 15

OROLE 0 closest_to_ball

ROLE 1
pass 3
mark 0 from_shot
none

ROLE 2
block 320 900 -1
none

ROLE 3
position_for_pass { R { B 1000 0 } ...
receive_pass
shoot A
none

ROLE 4
defend_line { -1400 1150 } ...
none

Table 3: A complex play involving restricted applicability
conditions and sequencing of behaviors.

the first role executes two sequenced tactics. First the robot
dribbles the ball out of the corner and then switches to the
shooting behavior. Meanwhile the other roles execute a sin-
gle behavior for the play’s duration.

Sequencing implies an enforced synchronization, or co-
ordination between roles. Once a tactic completes, all roles
move to their next behavior in their sequence (if one is de-
fined). For example, consider the complex play shown in
Table 3. In this play the player assigned to pass the ball
completes the pass, then it switches to the mark behavior.
The receiver of the pass will simultaneously switch to re-
ceive the pass, after which it will try to execute the shooting
tactic.

Opponent Roles. Some behaviors are dependent on the
positions of specific opponents on the field. Opponent roles
are used to identify a specific opponent based on an evalu-
ation method for the tactic to use. The example in Table 3,
shows an opponent role defined using theOROLEkeyword
and theclosest to ball method. Thus, the first role
will try to mark the opponent closest to the ball away from
the ensuing shot, after executing the pass.

Coordinate Systems. Parameters for tactics are also very
general by allowing for a variety of coordinate systems in
specifying points and regions on the field. Coordinates may
be specified as absolute field positions or ball relative field
positions. In addition, a coordinate system’s positivey-axis
can be oriented to point toward the side of the field that the
ball is on, the side of field the majority of the opponents are
on, or even a careful combination of these two factors. This

allows tremendous flexibility in the specification of the be-
haviors used in plays and prevents unnecessary duplication
of plays for symmetric field situations.

Play Execution
The play execution module is responsible for instantiating
the active play into actual robot behavior. Instantiation con-
sists of many key decisions: role assignment, role switching,
sequencing tactics, opportunistic behavior, and termination.

Role assignment is dynamic, rather than being fixed, and
is determined by tactic-specific methods. To prevent con-
flicts, assignment is prioritized by the order in which roles
appear. Thus, the first role, which usually involves ball
manipulation, is assigned first and considers all four field
robots. The next role is assigned to one of the remaining
robots, and so on. This prioritization provides the execu-
tion system the knowledge to select the best robots to per-
form each role and also provides the basis for role switch-
ing. Role switching is a very effective technique for ex-
ploiting changes in the environment that alter the effective-
ness of robots fulfilling roles. The executor continuously
reexamines the role assignment for possible opportunities
to improve it as the environment changes. Although, it has
a strong bias toward maintaining the current assignment to
avoid oscillation.

Sequencing is needed to move the entire team through the
list of tactics in sequence. When the tactic executed by the
active player, the robot whose role specifies a tactic related
to the ball (see Table 1), succeeds then the play transitions
eachrole to the next tactic in their sequence.

Opportunistic behavior accounts for unexpected situa-
tions where a very basic action would have a valuable out-
come. For example, the play executor evaluates the duration
of time and potential success of each robot shooting imme-
diately. If a robot can shoot quickly enough and with a high
likelihood of success, it will immediately switch its behav-
ior to take advantage of the situation. Thus, opportunistic
behavior enables plays to have behavior beyond that spec-
ified explicitly. As a result, a play can encode a long se-
quence of complex behavior without encumbering its ability
to respond to unexpected short-lived opportunities.

Finally, the play executor checks the play’s termination
criteria, the completion status of the tactics, and the incom-
ing information from the referee. If the final active tactic in
the play’s sequence of tactics completes then the play termi-
nates ascompleted . If the game is stopped by the referee
for a goal, penalty, or free kick, the play terminates. The
outcome of the play depends upon the condition. Fouls and
penalty kicks result in a success or failure as appropriate. A
free kick results in a completion or an abort as appropriate.

Play Selection
The final facet of the playbook strategy system is play se-
lection and the related problem of adapting play selection
during the course of a game. Our basic selection scheme
uses the applicability conditions for each play to form a can-
didate list from which one play is selected at random. To
adapt play selection, we modify the probability of selecting

an applicable play based on past experience of play execu-
tion. In the next section, we describe this scheme. This is
followed by experimental results showing the usefulness of
a playbook approach and the effectiveness of the adaptation.

Playbook Adaptation
The problem of selecting which play to execute and adapt-
ing the selection during the game based on experience, is
similar to a traditional on-line learning task, called the “ex-
perts” problem, ork-armed bandits problems. We quickly
review work on experts algorithms and then explain how the
developed techniques can be applied to selecting plays.

In a standard experts task, a decision-maker must select
among a set of experts’ advice to follow. After selecting
an expert, the payoff of all of the experts are revealed and
the decision-maker appropriately rewarded. The decision-
maker performs this selection repeatedly. The usual measure
of performance in this task is that ofregret. Let rt

i=1...n be
the reward at timet for experti, andxt be the expert selected
by some algorithm at timet. Then the regret of the algorithm
at timeT is,

REGRETT = max
i=1...n

T∑
t=0

rt
i −

T∑
t=0

rt
xt .

In words, regret is the amount of additional reward that could
have been received if the algorithm had known which ex-
pert would be the best and chose that expert at each decision
point. With only a minor assumption about the experts’ pay-
offs over time, there exist algorithms where average regret
in the limit goes to zero, i.e.,

lim
T→∞

REGRETT

T
= 0.

One well-known algorithm with this property is Littlestone
and Warmuth’s randomized weighted majority (1994).

The experts task is nearly identical to the play selection
problem. Each play is an “expert” recommending a course
of action. After a play terminates, the team must select
among its available plays, and after that play terminates, its
outcome (e.g., goal, penalty kick, free kick, etc.) is the re-
ward received for executing that play. The team must now
select a new play, and this repeats throughout the game. The
notion of regret also has applicability in the play context. A
selection algorithm with zero-regret in the limit guarantees
that the team over time is doing at least as well as its most
effective play, which is not known in advance. This would
give a very powerful guarantee on the team’s ability to adapt
to an initially unknown opponent.

There are two additional complications preventing the ap-
plication of a standard no-regret experts algorithm. First,
only the reward of the play selected is observed rather than
the rewards of all of the plays that could have been selected.
Second, not all plays are applicable at each decision point.
The first complication has been addressed in an algorithm
by Auer and colleagues (1995) called Exp3. Exp3 is a mod-
ification of their experts algorithm, Hedge, which has a very

simple formulation. At timeT , choose experti with the fol-
lowing probability,

Pr(xT = i) =
eRT−1

i∑n
j=1 eRT−1

j

,

whereRT
i is the cumulative reward received by experti up

to decision pointT ,

RT
i =

T∑
t=0

rt
i .

Auer and colleagues proved that Hedge’s regret goes to zero
in the limit. Exp3 uses the following modification. Hedge is
run with r̂t

i in place of the truert
i , and defined as,

r̂t
i =

{
rt
i/Pr(xt = i) if xt = i

0 otherwise.

The basic idea is that observed rewards are scaled inversely
with the probability that the observation was gained, i.e., the
probability of selecting that expert. Essentially, this esti-
mates the total reward the expert would have received had it
been chosen at each decision point, as Hedge expects.

The second complication is that not all experts are avail-
able, since a play’s applicability conditions may not be sat-
isfied in the current state. Therefore, not only will no ob-
servation of the play’s possible outcome be observed, but
the play could not even be selected. This situation is known
as sleeping experts, and is accompanied with a redefinition
of regret. The following analysis comes from Freund and
colleagues (1997). Letat

i be1 if expert i is awake (i.e., ap-
plicable) at timet, and0 otherwise. Also, let∆(n) be the
set of probability distributions over then experts (i.e., the
n-dimensional simplex). Define sleeping experts’ regret as,

SREGRETT =

(
max

x∈∆(n)

T∑
t=1

n∑
i=1

at
i

(
x(i)∑n

j=1 x(j)at
j

)
rt
i

)

−
T∑

t=0

rt
xt .

In words, the new notion of regret is the amount of addi-
tional reward that could have been received if the best (in
hindsight) distribution over experts was chosen at each deci-
sion point, where the probabilities are normalized to choose
among those experts that are awake.

It is possible to have sleeping regret go to zero in the limit,
and involves a second modification to a basic expert algo-
rithm, such as Hedge. The modification requires the follow-
ing invariant: if experti is sleeping at timet, then,

Pr(xt+1 = i) = Pr(xt = i),

that is, sleeping does not affect the expert’s probability of
being chosen in the future. From our perspective of using
such a selection algorithm for plays, this is an ideal invari-
ant since it means that special purpose plays which are only
applicable in a few circumstances, are neither penalized nor
rewarded for their selectivity.

We can modify Exp3 to make this invariant hold, by re-
quiring the sum of the exponentials of theRt

i ’s for the ex-
perts that are awake to remain constant after updating. Since
it will be easier to focus on the exponentials, letwt

i ≡ eRt
i ,

which we will call weights. Notice that addingrt
i to Rt

i is
the same as multiplyingwt

i by ert
i . Let this factor be called

the multiplier, ormt
i. Exp3 modified to handle sleeping ex-

perts can now be defined. The choice at a particular decision
point is defined as,

Pr(xt = i) =
at

iw
t
i∑

j at
jw

t
j

. (1)

The weights are then updated as follows,

ŵt
i = wt−1

i (mt
i)

1/Pr(xt=i) (2)

wt
i = ŵt

i ·N t
i , (3)

where,

N t
i =

{
1 if at

i = 0∑
j at

jwt−1
j∑

j at
jŵt

j
otherwise.

If the expert is sleeping,wt
i remains unchanged. If it is

awake, then it is updated as with Exp3 (Equation 2), but all
the awake experts’wt

i ’s are normalized to have a constant
sum (Equation 3).

It is the sleeping experts version of Exp3 that we used in
our CMDragons’03 team. The main decision left in its ap-
plication is where the multipliersmi come from. They ob-
viously depend on the outcome of the play, but multipliers
still need to be assigned to particular outcomes. We simply
chose these values with the principle that successes and fail-
ures should be symmetric, and that the multipliers should
aggressively change behavior so they can have an impact
over the short time span of a game. In competitions we used
a multiplier of 3/2 for successes and2/3 for failures, and
11/10 for completions and10/11 for aborts.

An example of adaptation is shown in Table 4. In sub-
table (a) we have a list of three plays, each with an initial
weight of 1, so that each play is equally likely to be se-
lected. At a particular decision point, though, only two of
these plays may be applicable as shown in the table. Sub-
table (b) shows the intermediate weight computation after
Offense 2 was selected and scored a goal (multiplier of
1.5), i.e., the result of Equation 2. Subtable (c) shows the
final weights after normalization, i.e., the result of Equa-
tion 3. There are two things to notice: (1) the play’s success
increases its probability of being selected in the future, (2)
the non-applicability ofCorner does not affect its proba-
bility of being selected when applicable (i.e., the probability
remains 0.33 if all plays are applicable both before and after
the observed success).

Evaluation
The play strategy architecture described here has been
used for team control for the CMDragons team at(i)
RoboCup 2002 held in Fukuoka, Japan (reached quarterfi-
nals,),(ii) RoboCup American Open’03 held in Pittsburgh,
USA (champions),(iii) and RoboCup 2003 held in Padua,

(a) Play w0
i App? Pr(x0 = i)

Offense 1 1 X 0.5
Offense 2 1 X 0.5
Corner 1 0

(b) Play ŵ1
i App? Pr(x1 = i)

Offense 1 1 X 0.22
Offense 2 2.25 X 0.56
Corner 1 X 0.22

(c) Play w1
i App? Pr(x1 = i)

Offense 1 0.62 X 0.21
Offense 2 1.38 X 0.46
Corner 1 X 0.33

Table 4: An example of adaptation execution. Lists the cur-
rent, intermediate, and resulting weights associated with dif-
ferent plays. Also lists the probabilities associated with each
play given whether the play is applicable (“App?”).

Italy (reached semi-finals). This provides a body of concrete
experience in real competitions to evaluate our approach.

We have previously evaluated plays as a means to co-
ordinate a robot team in controlled simulation experi-
ments (Bowlinget al. 2003). This work demonstrated that
plays indeed captured critical strategic choices. We executed
four different offensive plays against three simple defensive
behaviors and showed that the optimal play to select de-
pended critically on the defensive behavior. We also demon-
strated that a simple multiplicative weight update, used at
RoboCup 2002, could be used to adapt play selection and
improve team performance even in the short confines of
a single game. We noticed in these experiments, though,
that the multiplicative scheme could fall into certain traps,
which motivated formulating adaptation as an experts prob-
lem. The more recent competitions, which used the sleeping
experts based update, is the focus of evaluation here.

To complete our analysis of the performance of the play-
book architecture, we focus on answering four questions:

1. Do plays allow for rapid generation of team behavior by
a human “coach”?

2. Do plays allow for synchronized team actions in a realistic
robot setting?

3. Does play adaptation work against real teams and within
the time-limits of a real game?

To answer the first question, we rely on anecdotal ac-
counts of our use of plays at RoboCup competitions. Look-
ing back over the playbooks used at each RoboCup event, it
is rare to find that the playbook remains static from game to
game. In some rare cases, theentire playbook was rewrit-
ten prior to the game. Thus, the entire team strategy which
typically consists of around 15 plays, was redesigned and
tested within a few hours. In practice, most time goes into
devising and testing new plays as opposed to the mechanics
of writing the team strategy in the play language.

Plays explicitly allow for complex synchronized team
plans. The question naturally arises whether in a stochas-

tic team environment it is possible to execute such complex
sequences with any reliability. Figure 3 shows the success-
ful execution of a “one-shot” deflection play from the game
against Toin Albatross at RoboCup 2003. The sequence re-
quires one robot to move to the ball while its teammate po-
sitions itself so that it has a shot on goal and can receive a
pass. The teammate with the ball must then kick the ball
toward its teammate, hitting a 6cm target from a distance of
about 1.5m. The receiving teammate must then time its kick
on the ball to direct it toward the goal. Due to the high kick-
ing speeds (4m/s), the entire sequence will take at most 2s
to execute. Thus, we conclude that complex sequences can
be executed even in such a stochastic environment.

We lastly focus on play adaptation. Let us analyze the
four attacking plays used against the same team as before,
Toin Albatross. The final score was 10-0 to our team CM-
Dragons (games stop when the goal differential reaches 10
goals). Although there were 16 plays used in total, we only
discuss the offensive plays to maintain the clarity of the dis-
cussion. The four plays are:
• Play 1: 1 Attacker, 2 Point Defenders, 1 Deep Defender

• Play 2: 1 Attacker (Deflections), 2 Point Defenders, 1
Deep Defender

• Play 3: 1 Attacker, 3 Deep Staggered Defenders

• Play 4: 2 Attackers (Deflections), 2 Deep Defenders
Plays 1 and 2 are identical except the second allows for

“one-shot” deflections, while play 1 does not. Otherwise,
these two plays have one attacker aggressively going for
the ball. Two rear defenders stay far back near the goalie.
The fourth player stays near the halfway line in an aggres-
sive but defensive position. Thus, the plays are conservative
and shield the goal from powerful long range kicks but still
maintain the ability to counterattack. Play 3 uses an even
more conservative defensive pattern where the fourth player
moves deep closer to the goal keeper. The last play uses
an aggressive attack where one player goes to the ball and
the other comes forward into an offensive position ready for
passes to shoot at the goal. The two defenders assume a de-
fensive pattern like that for plays 1 and 2. Plays 2 and 4 both
allow for deflections while plays 1 and 3 do not.

Figure 4 shows the weight values. Clearly, plays 2 and
3 never prove successful against the opponent. In contrast,
play 4 initially proves successful leading to 3 goals and it
quickly dominates the selection. However, toward the end
of the half, play 1 suddenly scores a goal. Due to its low rate
of selection prior to this point its weight is boosted by a large
amount. It then proceeds to become the dominant play for
the remainder of the game (not shown here). Whether play
1 suddenly proved successful due to a change in the oppo-
nent’s game play (a timeout occurred in the neighborhood of
the change) or simply unlucky results earlier is not clear. It
is clear that this play is preferred to play 4, due to the risk-
iness of attempted deflections, which can miss and go out-
of-bounds. Since play 1 scores without the additional risk
it is the optimally performing play. This example demon-
strates the ability of the play selection to identify successful
plays and alter the team’s behavior to exploit these discov-
eries even within the short confines of a single game.

Figure 3: Example of a deflection goal against Toin Albatross. The dark lines show debugging output from the tactics and the
light line shows the tracked ball velocity. The first image shows the shooting robot unable to take a shot, robot 5 begins moving
to a good deflection point. The second image shows the kicker lined up and its target zone on robot 5. Image final two images
show the kick and resulting deflection to score a goal. The entire sequence takes less than one second.

Figure 4: Weight changes for attacking plays during the
match against Toin Albatross.

Conclusion
In conclusion, we have introduced a novel team strategy en-
gine based on the concept of a play as a team plan, which
can be easily defined by a play language. Multiple, distinct
plays can be collected into a playbook where mechanisms
for adapting play selection can enable the system to improve
the team response to an opponent without prior knowledge
of the opponent’s strategy. We adapted an experts algorithm
to the problem of sequential play selection and demonstrate
its capability of repeatedly selecting effective plays during
the course of a single game. The system was fully imple-
mented for our CMDragons robot soccer system and tested
at RoboCup 2002, 2003, and the American Open. Possi-
ble future directions of research include extending the pre-
sented play language, enhancing the play adaptation algo-
rithm, and in general investigating further applications of
reinforcement learning to the team coordination problem.

Acknowledgments
This research was supported by U.S. Air Force Grants
Nos. F30602-98-2-0135 and F30602-00-2-0549 and by U.S.
Army Grant No. DABT63-99-1-0013. The views and con-
clusions contained in this document are those of the author

and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, by the U.S. Air Force, the U.S. Army, or the U.S.
Government.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
1995. Gambling in a rigged casino: The adversarial multi-
arm bandit problem. In36th Annual Symposium on Foun-
dations of Computer Science, 322–331. Milwaukee, WI:
IEEE Computer Society Press.
Birk, A.; Coradeschi, S.; and Tadokoro, S., eds. 2002.
RoboCup 2001: Robot Soccer World Cup V.
Bowling, M.; Browning, B.; Chang, A.; and Veloso, M.
2003. Plays as team plans for cooperation and adaptation.
In the IJCAI Workshop on Issues in Designing Physical
Agents for Dynamic Real-Time Environments: World Mod-
elling, Planning, Learning, and Communicating.
Bruce, J., and Veloso, M. 2002. Real-time randomized path
planning for robot navigation. InProceedings of IROS-
2002, 2383–2388.
Bruce, J.; Bowling, M.; Browning, B.; and Veloso, M.
2002. Multi-robot team response to a multi-robot opponent
team. InICRA Workshop on Multi-Robot Systems.
Freund, Y.; Schapire, R. E.; Singer, Y.; and Warmuth,
M. K. 1997. Using and combining predictors that spe-
cialize. InProceedipngs of the Twenty-Ninth Annual ACM
Symposium on the Theory of Computing, 334–343.
Intille, S., and Bobick, A. 1999. A framework for recogniz-
ing multi-agent action from visual evidence. InAAAI-99,
518–525. AAAI Press.
Kitano, H.; Kuniyoshi, Y.; Noda, I.; Asada, M.; Matsubara,
H.; and Osawa, E. 1997. RoboCup: A challenge problem
for AI. AI Magazine18(1):73–85.
Littlestone, N., and Warmuth, M. 1994. The weighted ma-
jority algorithm. Information and Computation108:212–
261.
Riley, P., and Veloso, M. 2002. Planning for distributed
execution through use of probabilistic opponent models. In
ICAPS-02.

