Taking DCOP to the Real World:
Efficient Complete Solutions for Distributed Multi-Event Scheduling

Rajiv T. Maheswaran, Milind Tambe, Emma Bowring,
Jonathan P. Pearce, and Pradeep Varakantham
University of Southern California
{maheswar, tambe, bowring, jppearce, varak@usc.edu

Abstract scale distributed sensor networks where there may not
Distributed Constraint Optimization (DCOP) is an be a node with sficient computing capability to cen-
elegant formalism relevant to many areas in multia- tralize the task of finding optimal viewing decisions.
gent systems, yet complete algorithms have not been

pursued for real world applications due to perceived pespite its promise, two challenges must be addressed
complexity. To capably capture a rich class of com- for DCOP to advance as a viable approach for real-world
plex problem domains, we introduce the Distributed problems. First, while researchers have mapped specific
Multi-Event SChedUling (DlMES) framework and deSign prob|ems to DCOP [7], a Systematic reusable frame-
Congruent DCOP formulations with binary constraints work with Congruent mappings to DCOP formulations
which are proven to yield the optimal solution. To ap- has not been developed. Without automated mappings,
proach real-world giciency requirements, we obtainim-  the tedious process of modeling an environment, choos-
mense speedups by improving communication structureing variable sets, and designing constraint utility func-
and precomputing best case bounds. Heuristics for gen-tions that yield the appropriate optimal solution would
erating better communication structures and calculat- have to be repeated for each problem domain. Second,
ing bound in a distributed manner are provided and it js unclear if DCOPs obtained from concrete problems
tested on systematically developed domains for meetingyjill fall within a space where complete algorithms for

scheduling and sensor networks, exemplifying the via- problems withN P complexity are fast enough to be uti-
bility of complete algorithms. lized.

1. Introduction This paper takes some key steps in addressing the
] o ) . two challenges to DCOP raised above. We present the
In many large-scale multiagent applications, including pives (Distributed Multi-Event Scheduling) frame-
sensor nets, distributed spacecraft, disaster rescue simg,qrk which captures a rich class of real-world prob-
ulations, and software personal assistants, agents mustms where multiple agents must generate a coor-
attempt to optimize their joint performance. For exam- ginated schedule for execution of joint activities or
ple, sensor agents must optimally schedule sensor reyggqrce usage in service ofmultiple events. We then de-
sources to maximize targets tracked, and personal aSsign three formulations that map DIMES into DCOP
sistant agents must optimize their users’ time while 54 prove the congruency and optimality of our formu-
scheduling multiple meetings. Distributed constraint op- |5tions. When all constraints involve only two agents,

timization (DCOP) [8] has emerged as a key formal- \ye can model DCOP as a graph where the nodes rep-
ism for such settings where distributed agents, each with agent variables and constraint utility functions are

control of some variables, try to optimize a global ob- yisiributed as weights on edges between appropri-
jective function, which is an aggregation of utility func-  5ta variables. To address théfigiency of complete
tions, each constrained by the values of a subset Ofalgorithms we present two key heuristics to im-

varl_ables. DCOP pre_sents |tself_as a useful tool in d_o- prove convergence: (i) While organizing distributed
mains such as meeting scheduling, where an organizaonstraint graphs as a tree is useful to eliminate the re-
tion wants to maximize the value of their employees’ gictive requirement of forcing a linear ordering over
time while maintaining the privacy of information such g, agents [13, 12], the precise impact of tree struc-

as the relative importance of meetings or users’ sched-;re in DCOP remained uninvestigated. We present
ules. Itis also appropriate in environments such as large-



a new technique to provide shallower trees and ex- time slot. LetVO(t) : 7 — R* denote the-th resource’s
perimentally illustrate the speedups that result. (ii) valuation for keeping time sldtfree. The relative values
We also developed a new heuristic where a vari- of various time slots for a particular resource reflects an
able cana priori compute best case bounds for the ordering of slots to be used for assignments of events in
subtree for which it is the root. These bounds, ob- &. These valuations allow agents to compare the relative
tained in adistributedmanner for all nodes in the tree, importance of events to other events and also to compare
expedite the evolution of the search by allowing for bet- the importance of the event to the value of the resource’s
ter messaging to children and shifting a threshold time. We implicitly assume that a resource cannot sched-
at the root that determines termination. Our algo- ule two events simultaneously and the value of schedul-
rithmic improvements are demonstrated on ADOPT ing an event is independent of the time the event is as-
[8], experimentally demonstrated to be the most ef- signed. Though extensions to time varying rewards are
ficient completeDCOP algorithm in a range of set- straightforward, our current framework reflects the idea
tings. We show the féectiveness of our formulations that the importance of events tend to be stationary and
in both meeting scheduling and sensor network set-temporal preferences generally emerge due to factors in
tings where our twaonvergence catalyssombine to  the resource’s schedule. Léf := maXe1.. .
provide orders of magnitude improvement in perfor- maximum value to the-th resource for scheduling any
mance. event. A resource can eliminate a time slot from being
considered by setting the value for keeping the time slot
2. Distributed Multi-Event Scheduling unassigned ghiciently high, i.eV3(t) > Vn.
We present a framework called DIMES (Distributed Given the framework discussed above, we now present
Multi-Event Scheduling) for capturing fundamen- the scheduling problem we are considering. Let us de-
tal characteristics of problems occurring in real-world fine a schedul& as a mapping from the event set to the
domains involvingjoint activities We begin with a re-  time domain whereS(EX) c 7~ denotes the time slots
source seR = {Ry,...,Ry} of cardinality N where committed for evenk. We assume that the event is not
R, refers to then-th resource and an event set disjoint, i.e., evenEX must be scheduled i contigu-
& (EL,...,EX} of cardinality K where EX refers ous slots. This implies that all resourcesNfimust agree
to the k-th event. Let us consider the minimal ex- to assign the time sloS(EX) to eventEX in order for the

pression for the time interval TLariest Tiatesd OVeEr
which all events are to be scheduled. LBt € N
be a natural number and be a length such that
T A Tatest — Tearliest VWe can then character-
ize the time domain by the s&t := {1,...,T} of car-
dinality T where the elemertt € 7 refers to the time
interval [Teartiest + (t — LA, Teariiest + tA]. Thus, a busi-
ness day from 8:00 AM to 6:00 PM partitioned into half
hour time slots would be representedby= {1, ..., 20}
where time slot eight would represent the inter-
val [11:30 AM, 12:00 PM]. Here, we implicitly assume

event to be considerestheduledconsequently allow-

ing the resources to obtain the utility for completing it.

A scheduling conflict occurs if two events with at least
one common resource are scheduled in a manner such
that assigned time slots overlap(EX) n S(E*) # 0,

for anyky, ko € {1,...,K}, ki # ky, A n A 2 0

An assignment 08(EX) = 0 implies that evenEX is not
scheduled. This can occur either because the required re-
sources cannot agree on a common time due to schedul-
ing conflicts with higher reward events or that the re-
wards for the event is too low with respect to the value

equal-length time slots, though this can be relaxed eas-of their unassigned time. To completely specify DIMES,

ily.

Let us characterize thieth event with the tuple® :=
(A%, L% V&) where AX ¢ R is the subset of resources

we need a metric to choose among the possible sched-
ules that have no conflicts.

Let us define the utility of a resource as thefel-

that are required by the event. The length of the event,ence between the sum of the values from scheduled
Lk e 7, is the number of contiguous time slots for events and the aggregate values of the time slots if they
which the resources® are needed. The heterogeneous were kept free. This measures the net gain between
importance of an event to the resources it requires is de-the opportunity benefit and opportunity cost of schedul-

scribed in a value vectov® whose length is the cardi- ing various events. The organization wants to maximize
nality of AX. If R, € AX, thenVX will be an element of  the sum of utilities of all its resources as it represents
VK which denotes the value per time slot to th¢h re- the best use of all assets within the team. Incorporat-
source for scheduling evelkt Each resource also has ing this naturally emerging global metric, we charac-

a value for each time slot which characterizes its pref- terize the fundamental problem in this general frame-

erence for keeping that resource unassigned during that



work as: max {2, Snea Teesey (V& — VA®)} such  Let us define a DCOP where a variabigt) represents
that S(EX) N S(E%) = 0 Yk ko € {1,....K}, ki # the n-th resource’d-th time slot. Thus, we havll - T
ko, A N Ake = . The DIMES problem isNP-Hard as ~ Vvariables. Each variable can a take on a value of the in-

can be seen by mapping it from gralghcoloring. dex of an event for which it is a required resource, or the
] _ value “0” to indicate that no event will be assigned for
3. DCOP Formulations for DIMES that particular time slotx,(t) € {0} U {k € {1,...,K} :

R, € AX}. Itis natural to distribute the variables in a man-
Given a problem from a real domain captured by the ner such thafx,(1),..., %.(T)} belong to an agent rep-
DIMES framework, we need an approach to obtain the resenting the schedule of theth resource.
optimal solution. As we are optimizing a global objec-

tive with local restrictions (eliminating conflicts in re-  gay (Events as Variables): We note that the graph

source assignment), DCOP [8] presents itself as a useycure of TSAV grows as the time range considered

ful and appropriate approach. A DCOP consists of & jncreases or the size of the time quantization interval de-
variables seX = {xq,...xy} distributed among agents  .aa5es, leading to a denser graph. An alternate approach
where the variables takes a value from the finite dis- s {5 consider the events as the decision variables. Let

crete domairD;. The goal is to choose values for vari- us define a DCOP where the variabferepresents the
ables to optimize a global objective function, which is starting time for evenEX. Each of theK variables can

an aggregation of utility functions, each of which de- (axe on a value from the time slot range that isisu
pend on the values of a particular subset of variables in ienily early to allow for the required length of the event
X. If all the utility functions depend on exactly two vari- 4«9 \which indicates that an event is not scheduled:
ables, it can be modeled with a graph, where nodes rep-yk 0,1,....T-LX+1), k=1,... K. Ifavar-
resent variables and every utility function can be cap- gpjexk takes on a value# 0, then it is assumed that for
tured as an edge whose weight is determined by the val-_, required resources of that everin(e A), the time
ues chosen by the nodes determining the edge. For eacglots{t ..., t+LX— 1) must be assigned to the evait
edge (, J) € E, (whereE denotes a set of edges whose ¢ \yqu1d be logical to assign each varigjgieent to the
endpoints belong to a set homeomorphiejowe have  54ent of one of the required resources for the event.

a function fi;(x;, xj) : D; x Dj — R. Our goal is to
choose an assignmegite A := Dy x---x Dy, such that

. PEAV (Private Events as Variables):We note that in
a" = arg maxea 2 jee fij (Xi =a,Xj= aj)-

EAV, if an agent is to make a decision for an event as a
variable, it must be endowed with both the authority to
Our challenge is to convert a given DIMES problem into  make assignments for multiple resources as well as have
a DCOP with binary constraints. We may then apply yajuation information for all required resources. There
existing (or improved) algorithms developed for DCOP  4re settings where resources, though part of a team, are
to obtain a solution. A DIMES problem is modeled by ynwilling or unable to cede this authority or informa-
events and valuations. A DCOP is composed of a vari- tijon. To address this, we consider a modification of EAV
able set and constraint utility functions. We developed that protects these interests. Let us define a set of vari-
three DCOP formulations based on three unique con-gpjesx := {X<:ne AywherexX € {0,1,..., T—LX+1}
cepts for creating variable sets: time slots as variablesgenotes the starting time for eve#t in the schedule of

(TSAV), events as variables (EAV), and private events as R which is a required resource for the eventxif= 0,
variables (PEAV). For each variable set, we constructedthen R; is choosing not to schedulE*. We then con-

constraint utility functions such that the optimal solution  stryct a DCOP with the variable s¥t:= UK XX Letus
of the resulting DCOP can be proven to be identical to now define a seK, = {ern eX:'m= n}_c X which
the optimal solution to the underlying DIMES problem. s the collection of variables pertaining to theth re-
Thus, given a quantification of events and valuations for gqrce. CIearIyL)?n| > 0 Vn, otherwise the resource is
a problem rooted in the real world, there exist at least ot required in any event. IKq| = 1, letX, := X, U (X9}
three methods to directly obtain an optimal schedule. \yherex? = 0is a dummy variable. Otherwis, := X,
Due to space limitations, we provide only the charac- The pcop partitions the variables¥@ to an agent rep-
terization of variable sets for the TSAV and EAV formu- resenting then-th resource’s interests. Let all the vari-
lations. For PEAV, we provide a description of the vari- aples withinX, (intra-agent links) be fully connected.
able set, the explicit form of the constraint utility func- The addition of the dummy variable to setswith car-
tions, and a proof of congruency. dinality one is to ensure that intra-agent links exist for all
agents. This allows us to design constraint utility func-
TSAV (Time Slots as Variables):This method reflects  tions where all valuation information is on internal links,
a natural first step when considering scheduling issues.



thus maintaining privacy. Inter-agent links exist between
the variables for all participants of a given event, i.e., all
the variables irxX are fully connected.

Given a particular variable set, our challenge is to con-
struct constraint utility functions such that when the re-
sulting DCOP is solved, we obtain a solution which
is congruent to the original DIMES problem. We have

Let us assume that a penalty is incurred on an inter-agent
constraint. This implies that the required resources for
a particular event could not agree on a common time to
start. Since the total utility gain (excluding penalties) for
holding an evenEX cannot exceed .« Zl;kl Viax <
NTVhax < M, there exists a solution for the DCOP
where the event is not scheduled which is at least as
good as that with the event scheduled. Let us now as-

created such functions and proved their equivalence forsume that a penalty is incurred on an intra-agent link.

all formulations. The resulting DCOP constraint graphs
from TSAV, EAV, and PEAV for a scenario with re-
sources{A,B,C,D, E, F} in a four-time-slot window,
where five eventsEL, - - - , E®} of duration one time slot
require the resourcg# B, ACD, ADE, BC, EF}, respec-
tively are shown in Figure 1. Due to space limitations,
we only present the solution for PEAV.

Proposition 1 The DCOP formulation with pri-

vate events as variables, where the constraint be-

t; and

tween the variables fk and ¥2 when %
X2 = t, takes on the utility

f(n1, ke, ta; N2, Ko, t2) = —Mlingengy k=i ity )
+ lny=ny) ko 2ke) Fintra(N1; Ka, t1; Ko, t2).

1)
where fara(n; Ky, tg; ko, 1) =
-M t1¢0,t2¢0,tlﬁt23tl+Lkl—l,

-M 120t #0 b <ty <tp+ L -1,
g(n; ky, ty; ko, t)  otherwise

and
g(m; ka, t1; ko, tp) =

Lk

where Z(t) = > (Vi - V(i +1 - 1)) Iy
=1

with M > NTVpax Where N is the number of par-
ticipants, T is the number of time slots angdY =
max., VK, yields the optimal solution to the Distributed
Multi-Event Scheduling (DIMES) problem.

Proof. The first term in (1) characterizes that a penalty
of —M is assessed on an inter-agent limk & ny) for

a common eventkf = ky) for which the same starting
time is not selected{ # t,) by the connected resources.

The latter term in (1) addresses intra-agent constraints

(n1 = np) between dierent eventsky # kp) where the
link utility finwa(-) ensures that a penalty is incurred on
an intra-agent constraint if a scheduling conflict is cre-
ated. Otherwise, the utility gain for a resource assign-
ing a viable time for an event is uniformly distributed
among the outgoing intra-agent links as denoteglin

This implies that an agent has chosen starting times
for two events that causes the same time slot to be as-
signed to two events. By similar logic, the penaly

is suficiently large such that by choosing not to sched-
ule one of the events and allowing all other agents to
choose not to schedule that event (thereby avoiding in-
curring an inter-agent penalty), we obtain a higher qual-
ity solution. The above analysis implies that the optimal
DCOP solution is void of assignments that would acti-
vate a penalty. Thus¢¢ = xX, vm,n € AX. Given EX

and somen € AX, let us defineS(EX) = 0 if x = 0, and
S(EF) = {xX,..., XK + LK — 1} if XX # 0. Then, we have

S(EM) N S(EX) = 0 Vkg, ko € {1,..., K]},

ki # ko, SN AR 20, (2)
Otherwise, a penalty would have been assessed. The
global utility is then the sum of all intra-agent links de-
void of penalties ¥, g(-)), which can be represented as

n=1 k=1 nl =
N K
= Z Z I[neAk}Zrli(Xlé)
n=1 k=1
K LK
=> (VA = VOO + 1= 1)) ey

The solution to the DCOP maximizes the previous ex-
pression, which when coupled with the no conflict con-
dition in (2) is identical to the DIMES problerm

The constraint utility functions and proofs
of congruency for TSAV and EAV fol-
low similar reasoning and can be found at

http;/pollux.usc.edtmaheswgaamas04proofs.pdf

We note that in practice instead of explicitly calcu-
lating Vimax Which may not be knowable due to pri-
vacy, we would use an upper bound \ghgiven by the
system. Given events and values, we are able to con-
struct graphs and assign constraint link utilities from
which we can apply a DCOP algorithm and directly ob-
tain an optimal solution to the DIMES problem.



heuristic is based on a method to find a minimum-depth
spanning tree, where the node that is closest to the mid-
point of the longest shortest path is used as a the root
from any given subgraph, hereby denoted as the MLSP
tree. The MLSP tree algorithm attempts to create the
greatest branching while guaranteeing that there are no
links between subtrees when all the links of the original

EAY PEAY graph are mapped onto the tree. We propose that MLSP
gq is a superior metric for root selection as it attempts to
address tree depth while MCN does not. The key algo-
\ AR rithm in the recursive process to generate the MLSP tree
O is outlined in Algorithm 1. The MLSP tree generation
\ \ heuristic is a polynomial-time algorithm a.SPTree
is called at most once per node and each process within
it takes polynomial time. We note that we utilized cen-
Figure 1. DCOP Constraint Graphs tralized algorithms to generate both trees as we were in-
terested in investigating thefect of the communication
4. Convergence Catalysts structure on performance. Designing an algorithm that

efficiently implements MLSP in a distributed manner is
To test the fficiency of our formulations, we used stillan open problem, but as polynomial-time algorithms
ADOPT [8] as a base as it has been shown to be thefor distributed all-pairs shortest path identification exist
best available complete DCOP algorithm. Initial re- [4], we believe this is achievable.
sults when applying ADOPT “out of the box” to the :
EAV, PEAV, and TSAV encodings illustrated the criti- Algorithm 1 MLSPTree (Parent, Graph, Tree
cal need to address the speed of convergence. To ame-1: MidNode= midpoint of longest shortest path @raph
liorate these complexity issues, we developed two key 2: PossibleChildren= nodes inGraphconnected tdarent

heuristics which produced significant speedups. 3 gﬁiﬁggg‘% node inPossibleChildrerthat is closest

o ) o 4: ClosestNodés set to be child oParentin Tree
Communication Structure: The first heuristic involved 5: RemaningGraphs Collection of connected graphs when

the communication aspect of the DCOP algorithm. The ClosestNodand its links are removed fro@raph
ADOPT algorithm converts the constraint graph into a 6: for all SubGraphe RemainingGraphso

DFS tree which is used as a hierarchy to communicate 7: Tree=MNLSPTree (ClosestNodeS ubGraphTree)

value and cost messages. Though this broke away from 8: end for

the commonly used chain communication structure with _9: ReturnTree

linear ordering [12, 13], the best method to take advan- )

tage of the parallelism introduced by trees remained anBest Case Bound&DOPT and other DCOP algorithms
open problem . The current method used to construct thel8, 13] maintain begtorst-case bounds on solutions at
communication tree is an extension of a heuristic used in €ach node in order to limit their search and determine
linear ordering where the most constrained node (MCN) términation at the root node (e.g., the best-case bound

is used as the metric to choose the root from a subgraphiS @n upper bound when maximizing utilities, or a lower
bound when minimizing costs). The initial tightness of

these bounds greatlytacts convergence when applying
ADOPT to real-world scenarios. This phenomenon does
not reveal itself in domains such as graph coloring where
the initial bounds are serendipitously as tight as possible
pue to the structure of the problem. Our key idea to ex-
pedite the DCOP search was to devise a method to en-
dow each node with priori information regarding best-
case bounds that are automatically pre-computed in a
distributedmanner. This induces speedup due to the fact
that the time spent during the evolution of the search
discovering a pre-computable level for bounds is elimi-
nated. In &ect, a limited amount of preprocessing (one
message per node sent up the DFS tree) can significantly

Initial experiments have shown that the depth of the tree
has a greatféect on the rate of convergence to the op-
timal solution, and we hypothesize that the depth of the
tree is a key factor to be minimized. The rationale for
this can be seen when analyzing an exhaustive search fo
which an additional level of depth increases the number
of solutions to be tested by a factor of the number of val-
ues available to the added variable. The MCN method
does not yield the minimum depth tree in many cases.
Since finding a minimum depth DFS tree is an NP-
Complete problem [2] and the benefits of tree depth are
unknowna priori, we propose a practical polynomial-
time heuristic to find shallower DFS trees. This new



cut the actual DCOP computation at run time. ORG. CHART A ORG. CHART B

&)Y J&

To this end, we introduce thgassupheuristic to deter- A/v\f\ /\
mine best-case bounds.)fis a node in a tred, let A m m

be the set of all ancestors &f Dy be the set of all de- (AR AR A ?K m \S %( ﬁ \S
scendants ok, andCx C Dy be the set of all children OO EO TLOTLOED
of x (where a child is a descendant who is one level be-
low x). Let f,y denote the constraint utility function be-

tween nodex andy. The descendant node is responsi-

‘LEVEL‘
ONE

LEVEL
™0

LEVEL‘
THREE

Figure 2. Organizational Hierarchies
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S 25 o= Table 1. Meeting Scheduling Scenarios
-t 0. sics v

> = our heuristics yield great speedups, we endeavored to

test our ideas on two complex real-world domains en-
Defining Ty = maxUy, we haveTyx < maxFyea, fxy + coded in DIMES. Our work on the CALO project [1] for
Yzc, Tz by the concavity of the max function. Thus, developing a state-of-the-art personal assistant agent and
best-case boundd{) can be obtained throughout the earlier work on sensor networks [7] gave us a solid foun-
tree if each node calculates a bound on its own contri- dation upon which to create concrete scenarios. To that
bution (max¥.ca, fxy) adds it to bound messages from end, we systematically developed formal models to gen-

its children ¢,.c, T;) and passes it up to its parent. erate test cases in both domains.
In our formulations,fy, = axUR°% + ayUJ°%e where

0 < ax, ay < 1, and the maximum node contribution to

X» In the CALO team setting, we considered a multiple
the utility, U7°% can be bounded as follows:

meeting scheduling problem. CALO’s domain consists
of office settings with organizational hierarchies such as

. | |node k _ /0
TSAV U< me%(v” V”(t)) the ones shown in Figure 2, where three types of meet-

EAV : UQO(’GS maxz (V,'j - V,?(t)) ings need to be schedulegroup (GRP) meetings con-
T = sisting of a node in the org. chart and all its childrear-
PEAV : U°® < max(Vi - VR(1)). ent to child(PTC) meetings, ansibling (SIB) meetings.
teT

We investigated archetypical scenarios described in Ta-
Thus, by performing local maximizations, local aggre- ble 1. With all meetings taking one time slot, we consid-
gations anchassupsbest-case bounds can be obtained €red an eight-time-slot schedule, and randomly gener-
a priori for all nodes in the tree. This helps convergence ated valuations for each scenario. Our metric for perfor-
in two ways: (i) the more obvious advantage is that mance was the number of cycles [8], where one cycle is
with better best-case bounds, wieetively begin with ~ defined as all agents receiving incoming messages, exe-
a smaller search space as we eliminate all assignment§uting local processing, and sending outgoing messages.
with solution quality between the old and new bounds. The cost of preprocessinassupis equal to the depth
(ii) the more subtle advantage is that when ADOPT calls Of the tree in cycles as listed in Table 2. The average
for each parent to partition its best-case bound amongnumber of cycles after preprocessing to termination for
its children during the dynamics of the search, the chil- twenty five EAV tests per scenario and three PEAV tests
dren are able to respond more quickly to bad partitioning Per scenario with various heuristics applied are shown
assignments due to better knowledge of their best-casén Figures 3 and 4, respectively. We note that tests with
bounds which results in more intelligent partitioning. Passuperminated in less than 1000 cycles for EAV cre-
These fects combine to produce dramatic speedups asating miniscule bars in Figure 3.
shown in Section 5.

A second domain that we considered was that of sen-
5. Experimental Results sor networks, for scenarios where we are given cor-

ridors composed of squares which indicate areas that
Initial experiments were conducted on random graphs need to be observed. Sensors are located at each ver-
with a handful of variables. Though they verified that tex of a square. Sensors at all vertices of a particular
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We encountered two surprises by taking DCOP to real-
scenarto world settings: (i) Our expectation that ADOPT “out of
the box” would solve EAV problems within one hun-
dred cycles as it had done for graph coloring problems
Figure 4. PEAV for Meeting Scheduling with similar numbers of variables and constraints was
shattered when convergence times were on the order
square must be focused on that square for it to be Con_Of tens of thousands. This illustrated the existence of
sidered observed. Given a set of events (squares to be obfindamental dferences between abstract (graph color-
served) over some time horizon, the sensors (which caning) and concrete (meeting scheduling, sensor network)
observe at most one square) must choose which squar®roblems. (i) Our heuristics induced dramatic speedups
they are to observe in order to coordinate observationbringing intractable problems (MSP) into a tractable
of events with the highest rewards. The layouts consid- SPace and tractable problems (MSE, SNE) into an ex-
ered are shown in Figure 5. In each scenario, the eventPeditious space of hundreds of cycles. This enabled us
set was an observation of every square in the layout for to solve the largest known experiment (47 variables, 123
one time slot. Given an eight-time-slot calendar and ran- constraints) for complete DCOP.
domly generated valuations for twenty five runs of each
scenario, the convergence data under EAV is shown inIn comparing formulations, we note that EAV outper-
Figure 6. Table 2 shows the graph complexity and tree- formed PEAV by approximately one order of magnitude
depth diterences for scenarios with meeting schedul- when usingpassupin meeting scheduling scenarios.
ing under EAV (MSE), meeting scheduling under PEAV When choosing formulations, a system designer would
(MSP) and sensor networks under EAV (SNE). We note weigh the qualitative benefits of PEAV (greater distri-
that under EAV and PEAV, each variable can choose bution in variable control, less sharing of valuation in-

among eight values (time slots). formation) against its convergence cost w.r.t. EAV. The
inefficiency of the TSAV formulation, which never ter-
MSE-1 | MSE-2 | MSE-3 | MSE-4 | MSP-1 | MSP-2 | MSP-3 | MSP-4 | SNE-1 | SNE-2 | SNE-3 | SNE-4 . R B . .
TR IR I N i N I B I minated for the simplest scenario under both heuristics,
CONSTRAINTS 16 17 17 17 43 47 122 123 16 17 " 19 H H
— s is illustrated by an exgmplg Where. two agents attempt
wortweeoerm| 5 | 6 | 4 | 5 | | | v | w s |8 |5 |5 to schedule two meetings in an eight-time-slot calen-

dar. For three runs with randomized valuations, EAV (14
cycles) outperformed PEAV (97 cycles) which outper-
formed TSAV (8450 cycles). This dramatic scale-up in

Table 2. Graph Complexity and Tree Depths




cycles for TSAV serves to illustrate that choosing a for- References

mulation has a great impact on convergence and further-
more, creating anfgcient congruent encoding is not a
trivial problem.

In verifying our heuristics, we note depthfidirences
between MCN and MLSP trees in all but two scenar-
ios where depths were equal. This verifies tffeative-
ness of our heuristic for that purpose. Furthermore, we
see that shallower depths generally lead to faster con-
vergence. However, the fact that this is not a dominant
characteristic justifies a polynomial-time preprocessing
cost for likely speedup as opposed to investing in a non-
polynomial-time algorithm to find the absolute shallow-
est tree. Applying th@assupheuristic led to dramatic
improvements with both trees. No PEAV test terminated
within 72000 cycles withoupassup In combination,
our heuristics led to speedups of one to two orders of
magnitude. Full details of the experimental results can
be found ahttp;teamcore.usc.egicop

6. Summary and Related Work

This paper addresses DCOP for real-world prob-
lems, specifically two concrete settings: schedul-
ing for teams of personal software assistant agents
[1, 10] and scheduling teams of sensor agents [7, 5].
Our key contributions were (i) designing three formu-
lations that automatically map the DIMES framework
into DCOP that are proven to be optimal, (ii) introduc-
ing two novel heuristics to speedup DCOP algorithms,
based on a new tree ordering technique and a dis-
tributed precomputation of best-case bounds, and (iii)
experimental investigation of the impact of our tech-
nigues on systematically developed real-world domains
illustrating speedups of one to two orders of magni-
tude. The main conclusion is that complete algorithms
can indeed be viable options for real-world prob-
lems.

Complete algorithms outside ADOPT include SynchBB

[13] and SynchID [8]. Several incomplete algorithms

have been developed which sacrifice optimality for ef-
ficiency [14]. These algorithms could also be applied
to the formulations presented in this paper. Frameworks
have been developed for job shop scheduling [6, 9]
which incorporate the idea of precedence constraints.
Frameworks for meeting scheduling have been devel-
oped and studied where negotiation [11] and satisfac-
tion [3] were the primary metrics.
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