
Escaping Local Minima in Search-Based Planning using
Soft Duplicate Detection

Wei Du, Sung-Kyun Kim, Oren Salzman, and Maxim Likhachev
{wdu2,osalzman}@andrew.cmu.edu, {kimsk,maxim}@cs.cmu.edu

Abstract— Search-based planning for relatively low-
dimensional motion-planning problems such as for autonomous
navigation and autonomous flight has been shown to be very
successful. Such framework relies on laying a grid over a
state-space and constructing a set of actions (motion primitives)
that connect the centers of cells. However, in some cases such
as kinodynamic motion planning, planning for bipedal robots
with high balance requirements, computing these actions
can be highly non-trivial and often impossible depending
on the dynamic constraints. In this paper, we explore a soft
version of discretization, wherein the state-space remains to
be continuous but the search tries to avoid exploring states
that are likely to be duplicates of states that have already
been explored. We refer to this property of the search as soft
duplicate detection and view it as a relaxation of the standard
notion of duplicate detection. Empirically, we show that the
search can efficiently compute paths in highly-constrained
settings and outperforms alternatives on several domains.

I. INTRODUCTION

Robots such as self-driving cars, aerial vehicles or bipedal
robots often come with kinodynamic constraints [1], [2]
or dynamic constraints [3]. One approach to planning with
such constraints is using search-based planners. Here, the
continuous state space is discretized into cells and the search
algorithm traverses the centers of these cells. This is done by
defining motion primitives (see, e.g., [4], [5], [6]) which are
precomputed actions that the robot can take at every state.
The approach relies on the motion primitives to connect
the centers of different cells which correspond to solving
the two-point boundary value problem (BVP) [7]. When
planning with kinodynamic constraints this may be infeasible
and hence actions may not terminate at the center of a
cell (see Fig. 1). One possible solution might be discretizing
the search space using a higher resolution so that actions
could start and stop at the center of grids. The size of the
search space will then grow quickly, making the approach
computationally overly expensive.

In such cases, we could opt to plan in the continuous
state space. However, search-based planning in continuous
space is intractable: Heuristics that do not explicitly account
for the kinodynamic constraints may guide the planner to
regions, known as “local minima” [8], causing the planner to
keep on expanding similar states. Consequently, the planner
progresses slowly towards the goal or cannot progress at all.

Indeed, in order to avoid expanding similar, yet non-
identical states, existing approaches group states into equiv-
alence classes [9], [10]. This is analogous to how standard
search algorithms (over finite discrete graphs) reduce search

A

B

C

D

Fig. 1: Discontinuity in discretized space planning with
non-holonomic constraints on the motion primitives. Motion
primitive A-B does not terminate at the center of a grid
whereas C-D start from the center of the same grid.

effort by identifying previously-visited states, a process
known as duplicate detection [11], [12].

To this end, we suggest to extend the notion of duplicate
detection in discrete spaces to soft duplicate detection in
continuous spaces. The idea is to estimate how much new
states can contribute to the search using what we refer to
as duplicity. Using the weighted A* framework [13] we then
penalize states with high duplicity by inflating their heuristic
value and not, as in standard duplicate detection, prune them
away completely. This allows the search to be complete
while focusing its computational resources. We evaluate our
approach for robots with kinodynamic constraints operating
in 3D, 5D and 8D state spaces and demonstrate its favorable
success rate when compared to existing algorithms.

Before continuing to describe our algorithmic frame-
work (Sec. II) and evaluating our method (Sec. III), we
briefly mention alternative approaches for kinodynamic plan-
ning and some additional related work. Sampling-based plan-
ners [7] have been used in this context by either constructing
planners that only extend a state but do not require to exactly
connect it to a given state (see, e.g., [14], [15]) or by
using motion primitives [16], [17]. We also note that our
problem of soft duplicate detection can be seen as a variant
to the problem of stagnation detection where a search-based
planner is required to identify when the heuristic ceases to
be informative (see, e.g., [18], [19]). Alternatively, methods
such as potential fields [20], [21] are exploited in pushing
planners away from local minima regions. Previous planning
experiences are made use of in assisting planners to discern
and speed up planning process or to avoid local minima
places [22], [23].

II. ALGORITHMIC FRAMEWORK

We are given a robot with state space S whose motion is
restricted by a set of dynamic constraints. In addition, we
are given a start state sstart and a goal region Sgoal ⊂ S
and wish to compute a dynamically-feasible, collision-free
path connecting sstart to a state in Sgoal. We assume that
there exists a set of motion primitives which are dynamically-
feasible actions available at each state. These motion prim-
itives induce a successor function Succ : S → 2S . Further-
more, we assume the existence of an admissible1 heuristic
function h : S × S → R.

A. WA* with soft duplicate detection—general framework

Given some approximation factor ε0 > 1, our algorithmic
framework runs a weighted A* (WA*) search [13]. Recall
that WA* expands states in order of their f -value,

f(s) = g(s) + ε0h(s). (1)

Here g(s) is the (computed) cost to reach state s from sstart.
We suggest to replace ε0 with a state-dependent inflation ε(s)
which we compute using the notion of duplicity and soft
duplicate detection.

Given the set of states U that WA* considered at a given
point, the duplicity of a new state s measures the (inverse)
likelihood that s will contribute to computing a path to the
goal region. Namely, a state with high duplicity is likely
to be redundant given all the states already explored by the
search, whereas a state with low duplicity may be essential in
computing a path to the goal. Given the notion of duplicity
we perform soft duplicate detection which corresponds to
inflating the heuristic value of states proportional to their
duplicity—states with higher duplicity are highly penalized,
giving them low priority in the priority queue maintained
by WA*, and vice versa.

These notions are general and we foresee them being
applied to a variety of domains where the way duplicity
is measured depends on the domain. However, we assume
that given some measure of duplicity between two given
states dup(s, s′), where dup(s, s′) ≤ 1, the duplicity of
a state is defined as

dup(s) := max
u∈U

dup(s,u). (2)

Furthermore, given an approximation factor εmax > ε0, our
framework replaces ε0 in Eq. 1 with

ε(s) = max (εmax · dup(s), ε0) . (3)

For pseudo-code explaining how these notions are used by
WA*, see Alg. 1. Here OPEN is a priority queue maintaining
states that WA* may expand while CLOSED is a set storing
states that have already been expanded. Furthermore, the
cost from state s to s′ is denoted as c(s, s′). The colored
Lines 10 and 11 correspond to computing the duplicity
of a new state and using it for soft duplicate detection,
respectively. We note that if the underlying heuristic is

1A heuristic function is said to be admissible if it never overestimates
the cost of reaching a state in Sgoal.

Algorithm 1 WA* with Soft Duplicate Detection
Input: duplicity dup(·, ·), approximation factors ε0, εmax

1: g(sstart) = 0; . g-value for other states initialized to ∞
2: CLOSED = ∅;
3: OPEN ← sstart; . key is f -value (Eq. 1)
4: while sgoal is not expanded and OPEN 6= ∅ do
5: U = OPEN ∪ CLOSED;
6: remove s with the smallest f -value from OPEN;
7: insert s into CLOSED;
8: for all s′ ∈ Succ(s) do
9: if s′ /∈ U then

10: dup(s′) = maxu∈U{dup(s′, u)};
11: ε(s′) = max{εmax · (dup(s′)), ε0};
12: if g(s′) > g(s) + c(s, s′) then
13: g(s′) = g(s) + c(s, s′);
14: f(s′) = g(s′) + ε(s′) · h(s′) ;
15: insert s′ into OPEN; . key is f -value (Line. 14)
16: if sgoal is expanded then
17: return solution();
18: return null;

admissible and if indeed dup(s, s′) ≤ 1, then when using
a dynamic heuristic with maximal inflation εmax, WA* is
guaranteed to produce results with a bounded sub-optimality
value of εmax [13], [24].

B. Soft duplicate detection scheme

In planning, we want to account both for the similarity
between states as well as for the environment. Specifically,
we want the duplicity of two states to be proportional
to their similarity (more similar states should have higher
duplicity) and inversely proportional to their proximity to
obstacles (states lying in the vicinity of obstacles should have
lower duplicity). Thus, for states s and s’ we define,

dup(s, s′) = 1− dist(s, s′)/(R · γ(sparent)), (4)

where dist : S × S → R is some distance metric, R is
a constant used to normalize the distance value. The γ(s)
value is the valid successor rate which captures the proximity
to obstacles, as is illustrated in Fig. 2. Specifically, γ(s) is
defined as

γ(s) =
number of valid successors of s
number of all successors of s

. (5)

For efficient computation, we do not need to iterate over
all states in OPEN and CLOSE (Alg. 1, Line 10) but we
can use nearest-neighbor computation. Given a state s and
the set of states U = OPEN ∪ CLOSED, let dNN(s, U) =
minu∈U dist(s, u) denote the minimal distance to any state
in U . Specifically, we store all states in U in a kd-tree [25]
and compute the duplicity of a state as,

dup(s) = 1− dNN(s,U)/(R · γ(sparent)). (6)

C. Comparison with equivalence-class algorithms

In this section, we compare our approach with the
most closely-related planning algorithms—search-based al-
gorithms that use equivalence classes. Specifically, we com-
pare our algorithm (denoted as Penalty-WA*) with Bar-
raquand’s algorithm [9] and ε-optimal A* with equivalence

Sparent

S

S1 n1

S2

n2

R�

Fig. 2: Illustration of the how we compute the duplicity
of a state s (blue). Gray area is the obstacle; The valid
successor rate (γ(sparent)) is computed for the parent (red)
of s. After filtering out siblings s1 and s2 (generally, relatives
within checking radius and generated by each necessary step
to produce s should be filtered out, otherwise s will be
penalized as long as it is produced), nearest-neighbor n1 is
picked for the value of dNN.

classes [10], referred to as Barraquand and Gonzalez,
respectively.

The Barraquand algorithm conducts planning with kino-
dynamic constraints in a discretized space based on the A*
algorithm. In each cell, states are compared according to their
cost from the start state. States with higher cost are said to be
dominated and are pruned away. Consequently, within each
cell, only one state with the lowest cost from the start state
is stored. This method exploits a fixed-cell decomposition
that defines equivalence classes. Unfortunately, this greedy
approach causes the algorithm to be incomplete as pruned
states may be necessary to find a solution to the goal.

In the Gonzalez algorithm, a list referred to as NOTDOM
is created to store non-dominated states. Each state in NOT-
DOM defines an equivalence class, which has the lowest
cost from the start state within that equivalence class. Once
a state s is expanded, its nearest neighbor is checked against
NOTDOM. If s has better cost from start state or the nearest
state does not exist within some radius, s will be added
to NOTDOM and the nearest neighbor will be removed,
if it exists. If s is dominated, instead of being pruned, it
will be penalized by having its heuristic value inflated. This
algorithm is more flexible and provides completeness and
sub-optimal bounds for the solution.

The Penalty-WA* algorithm, however, does not imple-
ment equivalence class. The heuristic of states in Penalty-
WA* are inflated proportionally to the duplicity value. These
penalties take continuous values in contrast to Gonzalez’s
approach of either penalizing or not. Moreover, the penalty
value added to states in Gonzalez’s algorithm is constant for
all states, which does not take the domain into account at all.
In contrast, our algorithm takes the environment into con-
sideration, i.e., we consider the order of states generated in
one local area and the existence of nearby obstacles, making
this algorithm adaptive. That is, the algorithm dynamically

toggles between a sparse search in obstacle-free regions and
a dense search near obstacles.

III. EXPERIMENTS AND RESULTS

In this section we present experiments evaluating the per-
formance of our algorithm and comparing it to existing work
on 3D, 5D and 8D spaces. Specifically, the 3D space models
a car-like robot with constraints on the turning radius. Here,
a configuration (x, y, θ) corresponds to the (planar) location
and orientation of the robot, respectively. The 5D space
models a UAV (unmanned aerial vehicle) with constraints
on the linear acceleration and angular speed. Here, a config-
uration (x, y, z, θ, vx,y) corresponds to the (spatial) location,
orientation and velocity of the robot, respectively. The 8D
space models a bipedal robot. Here, a configuration of each
of the robot’s feet (x, y, z, θ) corresponds to the (spatial)
location and orientation of the foot. The distance metrics for
these three domains are:

dist(s, s′) = E(s, s′) + λ ·A(s, s′), (7)

where E(s, s′) is the Euclidean distance between state s
and s′, A(s, s′) is the angular distance between state s
and s′, in radian. The multiplier λ is the weight of the
angular distance compared to the Euclidean distance. As a
base heuristic, we ran a BFS search from the goal taking
into account only the location (planar and spatial locations
in 3D, 5D and 8D planning domains, respectively) on a
discretized state space.We used this heuristic within the WA*
framework as well as with our penalty-based approach and
denote the corresponding algorithms BFS-WA*. In addition,
we implemented the Barraquand algorithm and the Gonza-
lez algorithm. Finally, we implemented the RRT algorithm.
In all our results, we gave each planner a timeout of 120
seconds and report the solution length as our cost metric.
For all algorithms that require an approximation factor (ε0)
we used a value of three. All experiments were run on an
Intel i7-3770 CPU (3.40 GHz) with 16GB RAM.

A. 3D Space Planning Results

1) Domain: For this domain, we use 66 benchmarks from
Moving AI Lab [26] Starcraft set as well as a toy scenario
used to qualitatively compare the different algorithms (Fig. 3
and 4). The map sizes taken from the Moving AI Lab range
from 500×500 to 1024×1024 grids with resolution 0.025 m.
Start and goal pairs are randomly generated in the free space
for each map.

2) Motion primitives: We generated motion primitives
using the SBPL2 library that has a unicycle model with
constraints on the turning radius. The motion primitives im-
plemented here share the same prototype as shown in Fig. 1:
four successors are generated from the predecessor A via the
action set Uaction = {∆x,∆y,∆θ}. Specifically, we ran two
sets of experiments, corresponding to two types of motion
primitives generated using different kinematic constraints.
The two types, referred to as “short” and “long” correspond
to systems that can achieve higher (lower) velocity.

2http://www.sbpl.net/Software

0

20

40

60

80

100

120

140

((a)) BFS-WA*

0

20

40

60

80

100

120

140

((b)) Penalty-WA* ((c)) Barraquand ((d)) Gonzalez

0

20

40

60

80

100

120

140

((e)) RRT

Fig. 3: Solutions (red) and expanded states (heatmap) of each algorithm for 3D planning using short motion primitives. BFS-
WA* and Penalty-WA* found better solutions than Barraquand and RRT, however, Gonzalez failed to find a solution within
time limit. The number of states expanded in each experiment from (a) to (d) are 6, 961, 1, 242, 708, 99, 472 and 896, 254,
respectively. The number of samples generated by RRT (e) is 86, 640.

((a)) BFS-WA*

0

20

40

60

80

100

120

140

((b)) Penalty-WA* ((c)) Barraquand ((d)) Gonzalez

0

20

40

60

80

100

120

140

((e)) RRT

Fig. 4: Solutions (red) and expanded states (heatmap) of each algorithm for 3D planning using long motion primitives. BFS-
WA* failed to find a solution without duplicate detection, while Penalty-WA* found one due to soft duplicate detection.
Barraquand Gonzalez and RRT found solutions with equivalence classes or via sampling methods. The number of states
expanded in each experiment from (a) to (d) are 440, 217, 18, 380, 173, 523 and 879, 243, respectively. The number of
samples generated by RRT (e) is 13, 434.

3) Results and Analysis: We start with a qualitative
comparison between the algorithms using the toy scenario
depicted in Fig. 3. Here, there exists a kinematically-feasible
path using the narrow passage, yet all algorithms except
Penalty-WA* and BFS-WA* missed it. Here, due to the fact
that we are using short motion-primitives, BFS-WA* can
find a solution while expanding a small number of states
while Penalty-WA* unnecessarily expands more states as it
penalized some “useful” states. As we will see in Fig. 4,
when using long motion primitives, the penalty will be
much more beneficial when compared to BFS-WA*. Without
the assistance of duplicate detection, BFS-WA* keeps on
expanding states at the entrance of narrow passage until time
runs out. On the contrary, Penalty-WA* sparsely searched
the open area and densely searched the area near obsta-
cles before it quickly exited this region. Both Gonzalez’s
and Barraquand’s algorithms end up expanding multiple
states at the entrance of the narrow passage since they
perform (standard) duplicate detection. RRT, on the other
hand, does not concentrate its search efforts at the entrance
of the narrow passage but explores the entire search space
and eventually finds an (highly sub-optimal) alternative path.
We now move to a quantitative comparison between the
algorithms performed on the benchmarks from the Moving
AI lab. Results for the short motion primitives can be found
in Table. I and Fig 5. The test cases where at least one
algorithm failed are not considered in planning time and
solution cost plots (the same for long motion primitives); As
we can see Penalty-WA* was able to solve all problem in-
stances doing so significantly and consistently faster than the
alternative algorithms. The quality of the solutions obtained
by RRT is higher than Penalty-WA* due to the fact that only

the solutions of RRT are post processed (smoothed). These
results back up our original intention that soft duplicate
detection allows the planner to reason when and where to
expand different states. Regarding long motion primitives,
Fig. 4 visually compares BFS-WA* with Penalty-WA* and
demonstrates that in highly-constrained environments, the
soft duplicate detection employed by Penalty-WA* allows to
efficiently reduce the number of states expanded. Results for
the Moving AI Lab benchmarks for long motion primitives
are consistent with those depicted of short motion primitives
and are presented in Table II and Fig. 6

TABLE I: 3D planning using short motion primitives

Algorithm BFS-WA* Penalty-WA* Barraquand Gonzalez RRT
Success Rate (%) 95 100 77 100 91
Median Time (s) 0.50 0.030 0.075 0.093 0.79

Median Cost 36,815 40,555 47,322 36,079 21,887

TABLE II: 3D planning using long motion primitives

Algorithm BFS-WA* Penalty-WA* Barraquand Gonzalez RRT
Success Rate (%) 95 100 29 100 61
Median Time (s) 0.0665 0.0585 0.0195 0.073 13.426

Median Cost 35,197 37,153 – 35,713 33,422

B. 5D Space Planning
1) Domain: In this setting we used 22 different scenarios

where maps are mesh models of the real world with no-
fly zones configured as obstacles. Start and goal pairs are
generated randomly in the free space for each map. Map
dimensions are 19.20 km × 19.20 km × 1.50 km with
resolution of 20 m.

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

5

10

15
so

lu
tio

n
co

st
104

((a)) solution cost

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

0.5

1

1.5

2

pl
an

ni
ng

 ti
m

e
(s

)

((b)) planning time (s)

Fig. 5: 3D planning using short motion primitives.

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

5

10

15

so
lu

tio
n

co
st

104

((a)) solution cost

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

0.5

1

1.5

2

pl
an

ni
ng

 ti
m

e
(s

)

((b)) planning time (s)

Fig. 6: 3D planning using long motion primitives.

2) Motion primitives: As solving the two point BVP for
actions with acceleration and non-linear turning radius is
highly non-trivial, we generated motion primitives using a
local controller. The input for the controller is the robot’s
acceleration axy planar and vertical velocity vxy and vz ,
respectively and yaw angular velocity ω.

3) Results and Analysis: We present a sample solution
for the UAV in Fig. 7 and present the success rate, solution
cost and planning time in Table. III and Fig. 8. In terms
of success rate, Penalty-WA* is able to solve all but two of
the scenarios. We attribute the failure to solve all scenarios
to the fact that the BFS heuristic is not as informative in 5D
as in 3D state space and note that using only this heuristic,
BFS-WA* managed to solve only one scenario.

Similar to BFS-WA*, neither Barraquand’s nor Gonza-
lez’s algorithm were able to consistently solve these high-
dimensional problems. This comes in stark contrast to RRT

TABLE III: 5D planning

Algorithm BFS-WA* Penalty-WA* Barraquand Gonzalez RRT
Success Rate (%) 4.5 91 36 32 100
Median Time (s) 120 8.80 120 120 11.87

Median Cost – 10,585 – – 12,559

Fig. 7: Sample 5D solution. The blue area indicates local
minima area, where more states are expanded. The red line
is solution.

that managed to solve all problems (though with larger
planning times). Indeed, it is often believed that sampling-
based planners are preferable to search-based planners in
solving high-dimensional motion-planning problems. How-
ever, as shown in previous work, we demonstrate that, by
exploiting domain knowledge [27], search-based planners
can outperform sampling-based planners in planning time
and solution quality while providing their favorable traits
such as deterministic behavior and provable bounds on the
quality of the solution.

C. 8D Space Planning

1) Domain: The experimental setup is inspired by recent
work by Ranganeni et al. [28] who employed search-based
planning for a humanoid robot (though using a different
approach). Specifically, we have one house setup (as shown
in Fig. 9), with 80 randomly generated start and goal pairs.
The dimension of the house are 23.8 m × 15.3 m × 5.2 m
with resolution of 0.1 m.

2) Motion primitives: The motion primitives3 are pre-
computed. Before each action, one foot is selected as the
pivot foot and the other foot is the active foot. The stop
point of the active foot is calculated based on the action
set Uaction = {∆x,∆y,∆z,∆θ}, which is precomputed
given the joints limits of the robot. The linear part of actions
in the set Uaction are discretized with a resolution of 0.01 m

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

0.5

1

1.5

2

2.5

3

so
lu

tio
n

co
st

104

((a)) solution cost

BFS-W
A*

Pen
alt

y-
W

A*

Barr
aq

ua
nd

Gon
za

lez
RRT

0

20

40

60

80

100

120

pl
an

ni
ng

 ti
m

e
(s

)

((b)) planning time (s)

Fig. 8: Simulation results of 5D planning.

3https://github.com/wweedd/footstep_planner/
tree/master/proto

AB

C

D

E

Fig. 9: Sample 8D solution. The color gradient from red to
green represents the BFS heuristic value from high to low.
The robot starts from the living room (region B), trying to
figuring out a way to the bath room (region D).

TABLE IV: 8D planning

Algorithm BFS-WA* Penalty-WA* Gonzalez
Success Rate (%) 56 67 55
Median Time (s) 0.63 2.58 2.32

Median Cost 3,929 4,850 3,726

in each direction with maximum step size of 0.3 m; The
angular action resolution is 11.25◦.

3) Results and Analysis: The experiment results from
BFS-WA*, Gonzalez and Penalty-WA* are compared in
terms of success rate, solution cost and planning time in
Table. IV and Fig. 10. As is presented in Table. IV and
Fig. 10(b), the Penalty-WA* algorithm still has the high-
est success rate compared to the other two algorithms. A
possible explanation why the success rate of Penalty-WA*
decreases for the 8D-dimensional space could be accounted
for by an increased amount of local minima regions and an
increased size of these minima (when compared to the lower-
dimensional spaces). We believe that these local minima are
caused due to (i) the complex kinodynamic constraints on

BFS-W
A*

Pen
alt

y-
W

A*

Gon
za

lez

2000

4000

6000

8000

10000

12000

so
lu

tio
n

 c
os

t

((a)) solution cost

BFS-W
A*

Pen
alt

y-
W

A*

Gon
za

lez

0

10

20

30

40

pl
an

ni
ng

 ti
m

e
(s

)

((b)) planning time (s)

Fig. 10: Simulation results of 8D planning.

the robot’s feet and (ii) the BFS heuristic we are using
in 8D space planning is less informative than it is in
3D or 5D. In terms of solution quality, penalizing states
that could be useful leads to lower-quality solutions. For
a given certain time limit, the Penalty-WA* algorithm has
higher chances of finding one bounded solution. In terms
of planning times, penalizing states requires performing an
additional nearest-neighbor look up which has complexity
of O(log |U |) [25] (recall that U is the set of all states in the
OPEN and CLOSED lists). This is in contrast to the O(1)
update time for the case of BFS-WA*. Notice that the big-O
notation hides an exponential dependency on the dimension
which explains why this phenomenon is accentuated in this
high-dimensional setting. However, as is shown in Fig. 10(b)
and Table. IV, although the Penalty-WA* algorithm runs
slightly slower than the Gonzalez algorithm in terms of me-
dian values, the planning-time variance of Penalty-WA* is
smaller. This implies that Peanlty-WA* has more consistent
behavior in terms of planning time.

IV. CONCLUSIONS AND FUTURE WORK

We presented an approach to escaping local minimum
regions for search-based planning in continuous spaces.
While improving the success rate of planner, the Penalty-
WA* algorithm requires longer planning time compared to
other baseline algorithms. Improving its speed is one of
the directions for future work. During the planning process,
the duplicity of states are frequently calculated. Unfortu-
nately, designing an appropriate metric is non-trivial and
more research effort on this topic is required to improve
the performance of the current algorithm. As search-based
planners commonly suffer from the curse of dimensionality,
we will also strive to improve the success rate in high-
dimensional spaces.

V. ACKNOWLEDGEMENTS

This work was in part supported by ONR grant N00014-
18-1-2775.

REFERENCES

[1] B. Triggs, “Motion Planning for Nonholonomic Vehicles: An Introduc-
tion,” 1993, survey paper presented at Seminar on Computer Vision
and Robotics, Newton Institute of Mathematical Sciences, Cambridge,
England.

[2] J. P. Laumond, “Finding collision-free smooth trajectories for a
non-holonomic mobile robot.” in International Joint Conferences on
Artificial Intelligence (IJCAI), 1987, pp. 1120–1123.

[3] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and
K. Tanie, “Planning walking patterns for a biped robot,” IEEE Trans.
Robotics and Automation, vol. 17, no. 3, pp. 280–289, 2001.

[4] M. Pivtoraiko and A. Kelly, “Kinodynamic motion planning with state
lattice motion primitives,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2011, pp. 2172–2179.

[5] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in IEEE International Confer-
ence on Robotics and Automation (ICRA), 2010, pp. 2902–2908.

[6] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 2872–2879.

[7] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[8] T. Ishida, “Moving target search with intelligence,” in Proceedings of
the 10th National Conference on Artificial Intelligence, San Jose, CA,
USA, July 12-16, 1992., 1992, pp. 525–532.

[9] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, pp. 122–155, 1993.

[10] J. P. Gonzalez and M. Likhachev, “Search-based planning with prov-
able suboptimality bounds for continuous state spaces,” in Symposium
on Combinatorial Search, (SoCS), 2011, pp. 60–67.

[11] P. A. Dow and R. E. Korf, “Duplicate avoidance in depth-first search
with applications to treewidth.” in International Joint Conferences on
Artificial Intelligence (IJCAI), 2009, pp. 480–485.

[12] R. Zhou and E. A. Hansen, “Domain-independent structured duplicate
detection,” in AAAI Conference on Artificial Intelligence, 2006, pp.
1082–1088.

[13] J. Pearl, Heuristics: intelligent search strategies for computer problem
solving. Addison-Wesley Pub. Co., Inc., Reading, MA, 1984.

[14] S. M. LaValle and J. J. Kuffner Jr., “Randomized kinodynamic
planning,” The International Journal of Robotics Research (IJRR), pp.
378–400, 2001.

[15] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal
sampling-based kinodynamic planning,” The International Journal of
Robotics Research (IJRR), vol. 35, no. 5, pp. 528–564, 2016.

[16] C. Danilo, K. Przemyslaw, F. Mirko, and P. Lucia, “Motion primitive
based random planning for loco-manipulation tasks,” in International
Conference on Humanoid Robots (Humanoids), 2016, pp. 1059–1066.

[17] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based
optimal kinodynamic planning with motion primitives,” arXiv preprint
arXiv:1809.02399, 2018.

[18] A. J. Dionne, J. T. Thayer, and W. Ruml, “Deadline-aware search
using on-line measures of behavior,” in Symposium on Combinatorial
Search, (SoCS), 2011, pp. 39–46.

[19] F. Islam, O. Salzman, and M. Likhachev, “Online, interactive user
guidance for high-dimensional, constrained motion planning,” in In-
ternational Joint Conferences on Artificial Intelligence (IJCAI), 2018,
pp. 4921–4928.

[20] F. Matoui, B. Boussaid, and M. N. Abdelkrim, “Local minimum

solution for the potential field method in multiple robot motion
planning task,” in 2015 16th International Conference on Sciences and
Techniques of Automatic Control and Computer Engineering (STA).
IEEE, 2015, pp. 452–457.

[21] J. Velagic, B. Lacevic, and N. Osmic, “Efficient path planning al-
gorithm for mobile robot navigation with a local minima problem
solving,” in IEEE International Conference on Industrial Technol-
ogy (ICIT), 2006, pp. 2325–2330.

[22] S. Vats, V. Narayanan, and M. Likhachev, “Learning to avoid local
minima in planning for static environments,” in International Con-
ference on Automated Planning and Scheduling (ICAPS), 2017, pp.
572–576.

[23] M. Phillips and M. Likhachev, “Speeding up heuristic computation in
planning with experience graphs,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 893–899.

[24] I. Pohl, “The avoidance of (relative) catastrophe, heuristic competence,
genuine dynamic weighting and computational issues in heuristic
problem solving,” in International Joint Conferences on Artificial
Intelligence (IJCAI), 1973, pp. 12–17.

[25] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Communications of the ACM, vol. 18, no. 9, pp.
509–517, 1975.

[26] N. Sturtevant, “Benchmarks for grid-based pathfinding,” Transactions
on Computational Intelligence and AI in Games, vol. 4, no. 2, pp. 144
– 148, 2012. [Online]. Available: https://movingai.com/benchmarks/
grids.html

[27] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-Heuristic A*,” The International Journal of Robotics Re-
search (IJRR), vol. 35, no. 1-3, pp. 224–243, 2016.

[28] V. Ranganeni, O. Salzman, and M. Likhachev, “Effective footstep plan-
ning for humanoids using homotopy-class guidance,” in International
Conference on Automated Planning and Scheduling (ICAPS), 2018,
pp. 500–508.

