
SIPP: Safe Interval Path Planning for Dynamic Environments

Mike Phillips∗ and Maxim Likhachev∗
∗ Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract— Robotic path planning in static environments is
a thoroughly studied problem that can typically be solved
very efficiently. However, planning in the presence of dynamic
obstacles is still computationally challenging because it requires
adding time as an additional dimension to the search-space
explored by the planner. In order to avoid the increase in
the dimensionality of the planning problem, most real-time
approaches to path planning treat dynamic obstacles as static
and constantly re-plan as dynamic obstacles move. Although
gaining efficiency, these approaches sacrifice optimality and
even completeness. In this paper, we develop a planner that
builds on the observation that while the number of safe
timesteps in any configuration may be unbounded, the number
of safe time intervals in a configuration is finite and generally
very small. A safe interval is a time period for a configuration
with no collisions and if it were extended one timestep in either
direction, it would then be in collision. The planner exploits this
observation and constructs a search-space with states defined
by their configuration and safe interval, resulting in a graph
that generally only has a few states per configuration. On the
theoretical side, we show that our planner can provide the
same optimality and completeness guarantees as planning with
time as an additional dimension. On the experimental side, in
simulation tests with up to 200 dynamic obstacles, we show that
our planner is significantly faster, making it feasible to use in
real-time on robots operating in large dynamic environments.
We also ran several real robot trials on the PR2, a mobile
manipulation platform.

I. INTRODUCTION

Whether it be autonomously driving a vehicle or perform-
ing household jobs, such as cleaning a room, almost all tasks
that robots perform assume the ability to safely navigate from
place to place in the presence of moving objects such as
people, pets, cars, etc. In order to accomplish this, robots
need to be able to predict where these dynamic obstacles will
be moving in the near future. They need to plan short paths
to their goals that do not endanger or inconvenience people.
Robots also need to be able to plan these paths very quickly,
in the likely situation that a dynamic obstacle’s trajectory is
not what the robot predicted, and a new plan must be created
to prevent collision. Being able to plan paths efficiently will
allow robots to be more responsive and robust to a constantly
changing environment.

When planning in dynamic environments, adding a time
dimension to the state-space is needed in order to properly
handle moving obstacles, shown in Figure 1(b). However, the
large increase in the number of states to be searched causes
planning times to be much longer. Since the environment
is constantly changing, plans need to be generated quickly
or they will be out of date before they can even be used.

Goal	

Robot	
(b)	

Wait	

Goal	

Robot	
(a)	

Fig. 1. (a) Treating the dynamic obstacle as a static one results in no
solution, (b) Planning with time finds a solution by waiting for the obstacle
to pass and then proceeding

Therefore, for practical purposes, a common approach to
producing faster plans is to treat the environment as though
it were static [5], [9]. This is done by turning each dynamic
obstacle (and sometimes its predicted trajectory for the near
future) into a static obstacle. This ensures that the plan
generated will not be allowed to collide with the dynamic
obstacle in the near future. However, this approach suffers
from suboptimality in cases where the robot could have
crossed a trajectory without being hit, or just waited until
the obstacle passed and then crossed. Instead it takes a long
path around the trajectory of the obstacle. There are even
cases when this approach will fail to find a solution at all,
such as when a dynamic obstacle’s trajectory goes through
or crosses in front of a doorway that the robot must also use
in order to reach its goal, shown in Figure 1(a).

In this paper we propose a method that exploits the
observation that the number of contiguous safe intervals is
generally significantly smaller than the number of timesteps
that compose those intervals. For example, a configuration
that no dynamic obstacles pass through only has one safe
interval, which spans from the start time to infinity. With

this in mind, we develop a planner that uses states defined by
configuration (x,y,θ,etc) and the safe interval as independent
variables, while only storing the actual timestep as a depen-
dent variable. A configuration is the set of non-time variables
that describe the robot’s state, such as position, heading, joint
angles, etc. An independent variable is one that is used to
actually identify a state, while a dependent variable is stored
with the state but is not used to identify it. Specifically, two
states with the same values for their independent variables,
but different dependent ones, are still considered the same
state, by the planner. We provide theoretical guarantees that
the states we eliminate from consideration cannot be part
of the optimal solution with respect to the time it takes
to traverse the path. As a result, our planner can guarantee
optimality, while avoiding the increase in dimensionality of
the problem. We demonstrate the efficiency in simulation
with experiments on randomly generated indoor and outdoor
environments, showing a significant speed increase over a
planner that represents states with configuration and timestep
as independent variables. Using the PR2 robot, we also
demonstrate that the planner is suitable for real-time use.

II. RELATED WORK

Most of the approaches to dealing with dynamic obstacles,
model them as static obstacles with a short window of high
cost around the beginning of their projected trajectories [5],
[9]. While efficient, these approaches suffer from potential
high suboptimality and even incompleteness, as described
in our introduction. Another common approach is to only
consider dynamic obstacles (still treating them as static
obstacles) while executing the path, using local obstacle
avoidance methods [2]. This method can get stuck in local
minima and is not globally optimal. Another alternative is for
the local planner to use velocity obstacles, which determine
the controls that lead to collision with moving obstacles [13].
While this is more accurate, it still can lead to local minima
as it greedily minimizes the difference between the desired
control without dynamic obstacles, and the set of feasible
controls that are not in velocity obstacles.

Some approaches plan in the full space-time search space
[10]. Silver’s HCA* algorithm is designed for planning
for multiple robots, but in the paper, he points out that it
can be applied to planning in dynamic environments. In
dynamic environments, HCA* provides the same guarantees
on optimality and makes the same assumptions that we do. In
our experimental results, we show a comparison against the
HCA* algorithm and show a significant speed up. The reason
our approach is faster is because our search space is much
smaller. HCA* and other planners that use a time dimension
have a state for every (configuration, timestep) pair and since
the number of timesteps is usually large the search space is
also large. Our algorithm groups contiguous, collision-free
timesteps into safe intervals, and then represents each state by
a (configuration, safe interval) pair. The maximum number
of safe intervals for any given configuration is at most the
number of dynamic obstacles whose trajectories intersect in
that configuration. Therefore, the number of safe intervals

is significantly smaller than the number of timesteps for the
same configuration. As a result, the search space our planner
constructs is much smaller, leading to faster planning and
smaller memory requirements.

The approach [12] is similar to ours in that it recognizes
that a state is only needed for the earliest arrival time in a
safe interval. The major difference is how we evaluate an
edge from one interval to another. In [12], an “expand”
is a partial move of a “probe” along an edge via a single
timestep which then must be replaced back into the queue.
This means that for each edge a “probe” goes back into the
queue many times (and queue operations are the expensive
part of the A* search) instead of just once as it is for our
planner. Essentially, the approach in [12], has taken each
cost-n edge and converted it into n cost-1 edges, which raises
the asymptotic runtime to be a function of the edge weights
as well as the number of vertices and edges. Nevertheless,
[12] is very closely related to our approach.

Planning with time, required for dealing with dynamic
obstacles, is hard to perform on-line, since constant demand
for re-planning enforces tight constraints on execution cycle.
To address the real-time constraints, a number of approaches
have been proposed that sacrifice near-optimality guarantees
for the sake of efficiency [3], [11]. Our proposed approach
differs in that we aim for computing paths that are optimal
with respect to shortest time. Some other approaches use
RRT-variants to plan quickly in higher-dimensional search
spaces that can handle the kinodynamic constraints of more
complex robots [7], [1]. However, these sampling-based
approaches cannot provide the guarantees on optimality that
we strive for. There have also been approaches that plan with
the added time dimension only until the end of an obstacle’s
trajectory (or when the uncertainty about the obstacle is
too large) and then finish the plan in the simpler static
state-space [4]. In this Time-Bounded Lattice approach, the
dynamic obstacles and the time dimension are dropped in the
search space, after a certain point in the time dimension. This
sacrifices optimality. Our algorithm does not prune dynamic
obstacle trajectories at all, making it optimal with respect to
the entire given trajectories.

III. ALGORITHM

We define a safe interval as a contiguous period of time
for a configuration, during which there is no collision and
it is in collision one timestep prior and one timestep after
the period. The obvious exception to this is that the last
safe interval for a configuration may go until infinity, if a
dynamic obstacle never again is predicted to pass through
this configuration. A collision interval is the opposite of a
safe interval. A collision interval is a contiguous period of
time for a configuration, where each timestep in this period
is in collision with a dynamic obstacle and it is safe one
timestep prior and one timestep after the period. Each spatial
configuration (such as the one shown in Figure 2) has a
timeline (Figure 3), which is just an ordered list of intervals,
alternating between safe and collision. Clearly, there cannot
be two safe intervals in a row in the timeline because that

Fig. 2. An environment with dynamic obstacles and a highlighted
configuration

Timeline

Safe
interval

Safe
interval

Safe
interval

Collision
interval

Collision
interval

Fig. 3. A timeline for the highlighted configuration in Figure 2

would violate the definition of a safe interval, since a safe
interval should be bounded by collision intervals or infinity.
The same argument applies for collision intervals. Using safe
intervals to represent the time dimension of the search space
is what makes our algorithm efficient, and is the key idea to
our approach. A single state, represented by a (configuration,
interval) pair, replaces what used to be many states, one for
each timestep in the safe interval. This makes the state space
significantly smaller, allowing us to search for a solution in
far less time.

Dynamic Obstacle Representation Our algorithm as-
sumes there is another system that tracks dynamic obstacles
in the environment, predicts their future trajectories, and
formats them into a general representation we define. We
are given a list of dynamic obstacles, where each obstacle
has a radius and a trajectory. A trajectory is just a list
of points, where each point has state variables, specifying
its configuration, time, and some measure of the point’s
uncertainty. The points in the trajectory list are ordered from
earliest time to latest time, so by reading the points in order,
it can be seen how the obstacle is predicted to move in
the near future. Our representation also allows for dynamic
obstacles to have more than one possible future trajectory.
However, while the algorithm described in this paper applies
to multiple hypothesis trajectories, for simplicity, we will
assume each obstacle only has one trajectory.

Notations and Assumptions We will now introduce some
notation used to explain the algorithm. A state s has a
variable, g(s), which is the cost of best known path from

1 g(sstart) = 0; OPEN = ∅;
2 insert sstart into OPEN with f(sstart) = h(sstart);
3 while(sgoal is not expanded)
4 remove s with the smallest f -value from OPEN;
5 successors = getSuccessors(s);
6 for each s′ in successors
7 if s′ was not visited before then
8 f(s′) = g(s′) =∞;
9 if g(s′) > g(s) + c(s, s′)
10 g(s′) = g(s) + c(s, s′);
11 updateTime(s′);
12 f(s′) = g(s′) + h(s′);
13 insert s′ into OPEN with f(s′);

Fig. 4. A* with safe intervals

the start state to s. The heuristic function h(s) is an estimate
of the cost from s to the goal state. We will be assuming
the heuristic function is consistent, meaning that it never
overestimates the cost to the goal and it satisfies the triangle
inequality (without this our approach our approach loses
completeness). The cost of a transition or edge from s to
one of its successors s′ is defined by c(s, s′).

The main assumptions that our algorithm makes are:
• c(s, s′) = time to execute the action from s to s′. In

other words, the goal of the planner is to find a time-
minimal trajectory.

• The robot is capable of waiting in place (this assumption
would not be true of a motorcycle).

• Inertial constraints (acceleration/deceleration) are neg-
ligible. The planner assumes the robot can stop and
accelerate instantaneously.

A. Planning with Safe Intervals

Graph Construction When the planner is initialized, we
create a timeline for each spatial configuration, using the
predicted dynamic obstacle trajectories1. This is done by
iterating through each point along the trajectory of each
dynamic obstacle and updating the timelines for all the
configurations within collision distance of the point. This
collision distance is the sum of the obstacle’s radius and
the radius of the robot. (The radius may also be inflated
appropriately with respect to the uncertainty associated with
the point.)

Graph Search After the initialization, we run the A*
search, shown in Figure 4, which runs as usual except for
how it gets the successors of a state (Figure 5) and how it
updates the time variable for states (line 11, Figure 4).

In Figure 5, the function M(s) returns the motions that
can be performed from state s. These motions indicate how
they change the spatial variables of a state. The motions also
have an amount of time that it takes to execute them, which
we will use to help determine what safe intervals we can get
to in the resulting configuration. The startT ime(i) returns
the start time of safe interval i and endT ime(i), the end
time of safe interval i.

When a state s is expanded, we generate successors for it,
shown in Figure 5. For each of the motions that our robot
can perform from s, we compute the resultant configuration

1On the implementation side, we only generate and store timelines for
configurations that the planner examines. This avoids memory requirements
to be on the order of the size of the configuration space.

1 getSuccessors(s)
2 successors = ∅;
3 for each m in M(s)
4 cfg =configuration of m applied to s
5 m time =time to execute m
6 start t = time(s) + m time
7 end t = endTime(interval(s)) + m time
8 for each safe interval i in cfg
9 if startT ime(i) > end t or endTime(i) < start t
10 continue
11 t =earliest arrival time at cfg during interval i with no collisions
12 if t does not exist
13 continue
14 s′ = state of configuration cfg with interval i and time t
15 insert s′ into successors
16 return successors;

Fig. 5. getSuccessors

B
A

C

Fig. 6. An example environment with two dynamic obstacles moving at
a speed of one cell per timestep. There are three highlighted configurations
(A,B,C) and the robot is located at configuration B.

and the time of execution (line 3-5, Figure 5). Then for each
of the time intervals in this new configuration, we generate
a successor with the earliest possible arrival time that does
not have any collisions along the motion. When generating
successors, we say that s uses “wait and move” actions. This
means that for each safe interval in the new configuration,
we wait the minimal amount of time possible, so that when
the move to the new configuration is used, we arrive in the
new safe interval as early as possible. The arrival time is
stored with the state, but the state will not be identified by
its time value, only by its other dimensions.

During A*, whenever a shorter path to s′ is found, the
cost is replaced with the smaller one. Similarly, when this
happens it corresponds to arriving at s′ at an earlier time
(since cost is equal to time) and so we also replace the time
value stored in state s′ with this new shorter time (line 10-
11, Figure 4). We are guaranteed that when s′ is expanded
we have found the earliest time that we can arrive at s′.
This allows us to safely generate and set the time for the
successors of s′.

Figures 6 and 7 show an example of an expansion under
the SIPP algorithm. In Figure 6, we have two gray dynamic

A

B

C
SC0

cfg=C, i=0
t=1, [0,1]

SC1
cfg=C, i=1
t=3, [3,3]

SC2
cfg=C, i=2
t=∞, [5,∞)

SA0
cfg=A, i=0
t=1, [0,5]

SA1
cfg=A, i=1
t=∞, [7,∞)

SB0
cfg=B, i=0
t=0, [0,4]

1

1 3

Fig. 7. An illustration of an expansion of state SB0. Each white circle
in this figure represents a state. The first line in each state is its name.
The second line defines the state by indicating its configuration (cfg) from
Figure 6 and its safe interval (i). The third line shows the earliest known
time we can reach this state (t) and the safe interval [a,b]. The gray ovals
group states by their configuration. The arrows indicate transitions from one
state to another, labeled with their cost. The red X indicate invalid transitions
due to collision with a dynamic obstacle.

obstacles moving in the direction indicated by their arrows
at a speed of one cell per timestep. We have three labeled
configurations (A,B,C) that we will examine. The robot is
located at configuration B and can move one cell per timestep
in a 4-connected fashion. In Figure 7, we show the graph
during the expansion of the robot’s current state, SB0. The
other state in configuration B (SB1) is not pictured because
you cannot transition between safe intervals within the same
configuration because the robot would have to wait through
the separating collision interval (making it irrelevant). In
configuration B, there are two valid motions the robot can
perform on a 4-connected grid (up to configuration A and
down to configuration C).

There are two possible successors in A. The robot could
move immediately to A and arrive in safe interval 0, one
timestep later (SA0). The other successor in A is at safe
interval 1 (SA1), however this interval starts at time 7 and
we can only safely wait in SB0 until time 4 (after which
we would get hit by the upward moving dynamic obstacle),
making this transition invalid. This case is handled on lines
9-10 in Figure 5. So for the upward motion we would add
only SA0 to our set of successors. The time (t) for SA0 is 1
because it takes one timestep to move one cell, while the t
for SA1 is ∞ because we haven’t found any valid paths to
that state yet.

For the downward motion to configuration C we have three
possible successors. The robot could move down immedi-
ately to C and arrive in safe interval 0 (SC0) one timestep

later (before both dynamic obstacles reach C). Another
successor is SC1, which is available only during timestep
3 (after the first dynamic obstacle has passed, but before
the second one arrives). To arrive at time 3, the robot would
have to wait 2 timesteps before moving to C (which takes one
timestep). This is an example of our “wait and move” actions.
This transition has a cost of 3, since it takes that much time
to execute. The final possible successor is SC2, which is the
state below the robot (C) after the upward moving dynamic
obstacle has passed. The safe intervals align such that the
robot could wait until time 4 and then move to C, arriving
at 5, within safe interval 2. However, the collision check on
lines 11-13 in Figure 5 would return no valid transition in
this case. This collision check interpolates between the two
states the robot moves between and in this case would detect
that the robot and the dynamic obstacle are switching places
by passing through each other. Therefore, SC2 is not a valid
successor.

So from the expansion of SB0, the set of successors is
(SA0, SC0, SC1).

B. Theoretical Analysis

Here we sketch the proofs for completeness and optimality
of our algorithm.

Theorem 1: Arriving at a state at the earliest possible
time guarantees the maximum set of possible successors.

A state s is defined by a configuration and a safe interval.
Let t0 and t1 be two times within the safe interval of s,
such that t0 < t1. Let A1 be the set of successors generated,
if we expanded s from time t1 and let A0 be the set of
successors generated, if we expanded from time t0. Since s
exists in a safe interval, the robot can wait from any time in
the interval to any later time in the interval, before moving.
Therefore, A0 is a superset of A1, since it can wait until t1
and later to get the successors in A1, but it may also have
more successors from earlier than t1. This is illustrated in
Figure 8. Therefore, if a state is expanded at the earliest
possible time, we are guaranteed to have the largest set of
successors. This is why the algorithm is still complete, even
though it only has one state per safe interval. By having
that state be the earliest time possible in the interval and
using “wait and move” actions, we can still generate all the
successors that would be generated by an algorithm that
plans with timesteps. This theorem leads to the proof of
completeness.

Theorem 2: When the safe interval planner expands a
state in the goal configuration, it has found a time-minimal,
collision-free path to the goal.

In optimal A*, when a state is expanded, its g-value is
minimal. In this planner, the cost on an edge is equal to the
time it takes to execute that edge and whenever a g-value is
updated (from finding a shorter path), the time value is also
updated to the earlier time. Therefore, when a state (defined
by configuration and safe interval) is expanded it is also the
earliest possible time to arrive in this safe interval. So when
a state in the goal configuration is expanded, it is also the
earliest time we can arrive at the goal configuration. This is

Fig. 8. The set of successors generated from t0 is a superset of the set of
successors generated from t1

optimal with respect to our time-minimal cost function. We
also know that all states exist within safe intervals, which
makes the entire path collision-free, from the start state to
the goal state.

Theorem 3: If the configuration with the most dynamic
obstacles passing through it has n such occurrences, then
each configuration can have at most n+ 1 safe intervals.

Since every collision interval is followed by a safe interval
and the configuration has n collision intervals then the
configuration already has n safe intervals. If the configuration
also starts out safe then there is one more safe interval before
the first collision interval, making n+1 safe intervals. Since
this is the configuration with the most collision intervals we
can say for all configurations in the environment, the number
of safe intervals is no more than n+ 1.

This shows why usually the maximum number of safe
intervals is very small, since it isn’t common for large
numbers of dynamic obstacles to pass through the same
configurations.

IV. EXAMPLE

Here we will go over a small example showing how the
algorithm works. Figure 9 shows the initial environment and
the first 3 actions in the optimal plan. Figure 9(a) shows the
initial environment we will be planning on. The robot starts
in the cell marked R and it has a goal in the cell marked G.
The dynamic obstacle on the right is moving to the left and
the dynamic obstacle at the bottom is moving upward. The
dynamic obstacles both move at one cell per timestep. The
robot moves on a 4-connected grid at a speed of one cell
per timestep and can also wait in place. When the planner
expands the starting state, it will generate successors in the
cells above and below the current state. The cell below the
robot’s initial position, c has 3 safe intervals and therefore,
3 states. From the start state, we cannot generate a state in c
during the first interval, because by the time we move there,
we would be in collision with the first dynamic obstacle. We
can generate a state in the second safe interval, after the first
dynamic obstacle passes. The earliest time we can do so is
by waiting one time step and then moving down. This is a
single ”wait and move” action. We cannot generate a state
in the third safe interval, because we would be hit by the
bottom dynamic obstacle before we could arrive there.

G

R

G

R

G

R

G

R

(a)

(d) (c)

(b)

Fig. 9. (a) The initial environment with the robot R trying to get to goal
G. The dynamic obstacle on the right moves to the left and the one at the
bottom moves up. The dynamic obstacles and the robot can move one cell
each timestep. (b) The optimal plan’s first step is to wait one timestep and
move down. (c) Then the plan moves to the right with no waits. (d) The
third action of the plan waits a timestep and then moves to the left.

Figure 9(b) shows the environment after the optimal plan’s
first action. The cell to the right of the robot, c, has only one
safe interval. Moving right immediately, and waiting one
timestep and then moving right are both safe moves. Our
algorithm only stores one state per (configuration, interval)
pair and that is the one with the earliest time reachable.
Therefore, moving right immediately is the only action
considered for the cell to the right.

Figure 9(c) shows the environment after the optimal plan’s
second action. Here the planner’s next action will be to move
to the left into that cell’s third safe interval (after the second
dynamic obstacle has passed). That means this action will
wait one timestep in place and then move left.

Figure 9(d) shows the environment after the optimal plan’s
third action. The plan’s remaining 3 actions are all downward
with no waits.

V. EXPERIMENTAL RESULTS

We ran experiments in simulation and on a real robot to
show the benefits of using safe intervals, while planning in
dynamic environments.

A. Planner Implementation

Our test domain is in 4D (x,y,θ,time), with the first 3
dimensions (x,y,θ) being used for non-holonomic robots
to generate smooth paths that satisfy constraints on the
minimum turning radius. The actions used to get successors
for states are a set of “motion primitives,” which are short
kinematically feasible motions sequences [5] used in a
lattice-type planner shown in Figure 10. For our A* heuristic,
we initially run a 16-connected 2D Dijkstra search from

Fig. 10. An example of a lattice type graph

the goal to all the (x,y) cells in the environment, assuming
the robot is a circular with a radius equal to the actual
robot’s inscribed circle. Since our lattice planner also has
its orientation dimension discretized into 16 directions, the
heuristic value in each cell underestimates the cost to the
goal. This stems from the fact that the 2D search essentially
assumes the robot can turn in place at no cost and its collision
model is its narrowest diameter. This heuristic is computed
quickly, relative to our search, because it has much lower
dimensionality. However, it is also much more informative
than the common Euclidean distance heuristic, since it takes
static obstacle information into account.

B. Simulation

1) Experiment Design: We compare SIPP against HCA*.
This implementation of Silver’s HCA* [10] is in a 4D
search space (x,y,θ,time). For the heuristic, this algorithm
uses a lower dimensional search from the goal backward that
ignores the time dimension and the dynamic obstacles. In our
case, this was a 2D search, just over the (x,y) dimensions2.
Under the guidance of this informative heuristic, it then plans
a path forward in the full state space with the time dimension
and taking dynamic obstacles into account.

In order to test the efficiency of the algorithm we made
two sets of 50 randomly generated experiments to simulate
indoor and outdoor type environments. All environments are
500 by 500 cells with θ being discretized into 16 directions.
The time dimension had a resolution of 0.1 seconds. Optimal
solutions had an average duration of 12.7 seconds (127
timesteps). The robot’s footprint occupies a single cell on
the map and it has a random start and goal for each map.
For each environment 200 dynamic obstacles were generated.
Each dynamic obstacle could come in a large or small size
(chosen randomly) and started at a random configuration
in the environment. To generate a trajectory for a dynamic

2In Silver’s work he used a 2D heuristic for a 3D problem. Although
our problem is in 4D, we chose to keep the heuristic as a 2D search. We
believe the additional dimension θ would slow down the heuristic part of
the search significantly.

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Student Version of MATLAB

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Student Version of MATLAB

(a) (b)

Fig. 11. (a) An example indoor map used for our experiments, (b) An
example outdoor map used for our experiments

obstacle, random goals were chosen and 2D A* was used to
find a paths to follow between the goal points. The indoor
environments (Figure 11(a)) are composed of a series of
randomly placed narrow hallways and rooms on a grid. The
large dynamic obstacles fill the entire width of the hallways,
so there is no way to pass them while the narrow dynamic
obstacles only fill half a hallway, so they can be passed.
The outdoor environments (Figure 11(b)) are very open, with
randomly placed circular obstacles (representing trees, rocks,
etc.) that occupy roughly 20% of the map.

2) Results: Table I shows our results from our indoor
experiments. The times shown are average planning times.
Our safe interval planner found solutions for all 50 trials but
HCA* was only able to find solutions to 28 of the trials,
since we have a 5 minute cap on the planning time. The
results in this table are therefore computed only across the
28 tests that both planners found solutions for. For Table II,
the safe interval planner found solutions for all 50 outdoor
trials and HCA* found solutions for 47 of them within the
5 minute limit. Our results show SIPP outperforms HCA*
in both types of tests, however the speed up is significantly
greater for indoor environments. HCA* also seems to have
a harder time getting solutions at all, in 5 minutes on the
indoor cases. The major reason is that in the indoor cases,
the places the robot can move are highly constrained, due to
the tight hallways. This results in the robot often having to
wait in place for an obstacle to move out of a hall or doorway,
in order to get to the goal. In HCA*, waiting for an obstacle
to go by would require many expands in the time dimension
depending on how long the wait is, while SIPP would only
expand one state to accomplish the same thing, regardless
of the length of the wait. In the outdoor environments,
this fact is less important, since there is so much open
area, that the optimal path rarely involves waiting and the
robot usually can just go around the dynamic obstacles.
Across the experiments, we averaged 0.4s to precompute the
safe intervals for 200 dynamic obstacles (this time drops to
almost nothing as we approach a more reasonable number
of dynamic obstacles, shown in our real robot results).

C. Tests on the PR2

In order to show SIPP works in real world environments,
we implemented the planner in ROS and tested it on Willow
Garage’s PR2 robot. The PR2 is a mobile manipulation
platform with two 7-DOF, mechanically counterbalanced

TABLE I
RESULTS FOR INDOOR ENVIRONMENTS (AVERAGES COMPUTED ONLY

ACROSS TESTS BOTH ALGORITHMS COMPLETED)

Planner Average Expands Average Time(s) % Completed in 5 minute limit
Full 4D (HCA*) 2,396,378.64 29.61 56%

SIPP 172,815.61 0.97 100%

TABLE II
RESULTS FOR OUTDOOR ENVIRONMENTS (AVERAGES COMPUTED ONLY

ACROSS TESTS BOTH ALGORITHMS COMPLETED)

Planner Average Expands Average Time(s) % Completed in 5 minute limit
Full 4D (HCA*) 2,497,147.15 47.04 94%

SIPP 334,878.79 2.88 100%

arms, an omni-directional base, and an array of sensors such
as two lidars (one base scanner and one tilt scanner for
making point clouds), several cameras, and IMU.

1) Implementation Detail: We wrote a global planner
node which plugs in to ROS’s navigation stack. The nav-
igation stack provides the planner with the robot’s pose and
a map of the environment and expects a path in return. The
only additional input we had to add were predicted dynamic
obstacle trajectories. To do this, we wrote a node, which uses
one of the PR2’s lidar sensors to track people. We do a basic
clustering of lidar points from each scan and then match the
clusters from this scan to clusters from the last iteration. If a
cluster appears to be moving from frame to frame, we mark
it as a dynamic obstacle and on each iteration, we update its
pose using a constant velocity motion model, and the cluster
matching. By saving a few hundred previous locations (2-
4 seconds) for a cluster, we use a linear regression fit to
predict the velocity vector of the dynamic obstacle. We then
use a basic linear extrapolation to predict where the dynamic
obstacle will be over the next 20 seconds.

2) Results: In one of our experiments, the PR2 had to
get past a person in a narrow hallway to get to its goal.
The person was walking toward the robot, so the planner
had the robot duck into a doorway (Figure 12), wait for
the person to pass and then proceed to its goal when the
hall was empty. Another one of our cases has a very slow
moving person starting in front of the PR2 and walking in the
direction of its goal (Figure 13). The hall is initially narrow
and the PR2 must wait for the person to get to where the hall

Fig. 12. The PR2 ducking to a doorway to avoid a person

Fig. 13. The PR2 starting to pass a slow moving person

Fig. 14. The PR2 weaving between two people

widens. Then, it drives up along side the person and passes
him to get to its goal quickest. The final case involved two
staggered people coming toward the PR2. The robot had to
weave between them in order to reach its goal (Figure 14).
In the three experiments we ran, we had an average planning
time of 0.49 seconds. Additionally, it took less than 0.01s to
precompute the safe intervals. The images of our real robot
trials are taken from our accompanying video.

VI. CONCLUSIONS

In this paper, we have developed the concept of safe
intervals for planning in dynamic environments. Safe inter-
vals represent time using the indices of contiguous periods,
instead of using timesteps. This idea greatly decreases the
number of states that need to be searched, without sacrificing
the theoretical guarantees on optimality. As shown in our
experimental results, this reduction in the state-space results
in a planner that finds solutions significantly faster than the
standard approach of planning with a timestep variable.

While SIPP does have an order of magnitude improvement
over standard approaches and often produces plans in under
a second, there are still instances of larger environments in
which it can take a few seconds to plan. As any provably
optimal planning, it doesn’t scale as well as suboptimal ap-
proaches to planning. To make it scalable to larger dynamic
environments, in our future work, we plan to consider ex-
tending it to use a weighted A* search [8], which has proven
to be significantly faster than optimal search. Weighted A*
uses an inflated heuristic to trade-off optimality for gains in

efficiency, while maintaining bounds on sub-optimality. The
challenge is that SIPP with inflated heuristics would become
incomplete. But if we do succeed in extending SIPP to use
inflated heuristics, then anytime searches, such as ARA* [6],
would be possible, making SIPP suitable for the use on large
environments.

Another concern is fast replanning since dynamic obstacle
trajectories are difficult to predict and often change. While
having anytime searches would go a long way in fixing
this, an incremental extension would be ideal. The challenge
with this is that doing an efficient backward search would
require the planner to know in advance what the final g-
value is so that it could initialize the time of the goal state in
order to plan properly through the dynamic obstacles. We are
also interested in relaxing some of our assumptions, so that
we can handle arbitrary cost functions and more accurately
handle the acceleration/deceleration limits of the robot.

VII. ACKNOWLEDGMENTS

This research was partially sponsored by the Army
Research Laboratory Cooperative Agreement Number
W911NF-10-2-0016, ONR grant N00014-09-1-1052,
DARPA grant N10AP20011 and DARPA contract
W31P4Q10C0202. We also thank Willow Garage for
their partial support of this work.

REFERENCES

[1] K. Bekris and L. Kavraki. Greedy but safe replanning under kinody-
namic constraints. In IEEE International Conference on Robotics and
Automation, 2007.

[2] Dieter Fox, W. Burgard, and Sebastian Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics and Automation, 4(1),
1997.

[3] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized
kinodynamic motion planning with moving obstacles. International
Journal of Robotics Research, 21:233–255, 2002.

[4] A. Kushleyev and M. Likhachev. Time-bounded lattice for efficient
planning in dynamic environments. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2009.

[5] M. Likhachev and D. Ferguson. Planning long dynamically-feasible
maneuvers for autonomous vehicles. In Proceedings of Robotics:
Science and Systems (RSS), 2008.

[6] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems (NIPS) 16. Cambridge, MA: MIT Press, 2003.

[7] S. Petty and T. Fraichard. Safe motion planning in dynamic environ-
ments. In Proceedings of IEEE Int. Conf. on Intelligent Robots and
Systems (IROS), pages 3726–3731, 2005.

[8] I. Pohl. First results on the effect of error in heuristic search. Machine
Intelligence, 5:219–236, 1970.

[9] M Rufli, D Ferguson, and R Siegwart. Smooth path planning
in constrained environments. In Proc. of The IEEE International
Conference on Robotics and Automation (ICRA), 2009.

[10] D. Silver. Collaborative pathfinding. In Proceedings of AIIDE, 2005.
[11] J. van den Berg, D. Ferguson, and J. Kuffner. Anytime path planning

and replanning in dynamic environments. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages
2366–2371, 2006.

[12] Jur P. van den Berg and Mark H. Overmars. Roadmap-based motion
planning in dynamic environments. IEEE Transactions on Robotics,
21(5):885–897, 2005.

[13] David Wilkie, Jur P. van den Berg, and Dinesh Manocha. Generalized
velocity obstacles. In IROS, pages 5573–5578, 2009.

