
Planning for Landing Site Selection in the Aerial Supply Delivery

Aleksandr Kushleyev
ESE Department

University of Pennsylvania

Brian MacAllister
CIS Department

University of Pennsylvania

Maxim Likhachev
Robotics Institute

Carnegie Mellon University

Abstract— In the aerial supply delivery problem, an un-
manned aircraft needs to deliver supplies as close as possible to
the desired location. This involves choosing, flying to, sensing,
and landing at a safe landing site that is most accessible from
the goal. The problem is often complicated by the fact that
the availability of these landing sites may be unknown before
the mission begins. Therefore, the aircraft needs to compute
a sequence of actions that will minimize the expected value of
the objective function. The problem of computing this sequence
corresponds to planning under uncertainty in the environment.
In this paper, we show how it can be solved efficiently via
a recently developed probabilistic planning framework, called
Probabilistic Planning with Clear Preferences (PPCP). We show
that the problem satisfies the Clear Preferences assumption
required by PPCP, and therefore all the theoretical guarantees
continue to hold. The experimental results in simulation demon-
strate that our approach can solve large-scale problems in real-
time while experiments on our custom quad-rotor helicopter
provide a proof of concept for the planner.

I. INTRODUCTION

Autonomous aerial robots can sometimes be tasked to
deliver supplies to various remote locations. Their high speed
and operating altitude offer advantages over ground robots,
which have to drive through possibly cluttered environments.
However, UAVs need to take off and land, often requiring
special equipment and algorithms for choosing a landing
site that is good for landing and is easiest to reach from
the desired goal location for the supplies. Much work has
been done previously on the analysis of the ground terrain in
search for good landing sites [1], [2], [3]. Similarly, there has
been work done on the control aspect of landing robustly at
a selected landing site [4], [5]. This paper studies a different
aspect of the landing site selection problem: the problem of
planning a sequence of flights and sensing actions in order to
find and land at the best landing site as quickly as possible.

Figure 2 demonstrates a sample scenario for the planning
problem we are considering and shows the steps required
for completing the task. The helicopter (Figure 1(b)) needs to
deliver a payload to a location marked GOAL in Figure 2(b).
Based on prior terrain information and its analysis, the
helicopter identifies 7 possible landing sites, shown in the
same figure. These possible landing sites could have been
also provided by a human operator. The task of the planner
is to decide where the helicopter should fly, sense, and
potentially land in order to minimize the expected sum of
the flight time and the cost of reaching the landing site from
the designated goal location for the supplies.

To compute this plan, one could use assumptive planning

(a) Autonomous quad-rotor aircraft, fully built by our group,
is used as a test bed before transitioning to a larger aircraft

(b) Tandem aircraft, built by Dragonfly Pictures, Inc.,

Fig. 1. Aircrafts involved in the experiments. (a) shows our current test
platform. (b) shows the target platform for our autonomy software

techniques [6], [7], [8] by assuming that all possible landing
sites are valid, flying to the landing site that minimizes the
objective function, and then landing there if it is good, or
flying to the next one otherwise. While fast to plan, these
approaches do not minimize the expected cost and can result
in unnecessary flight time and landing at a suboptimal site.

In this paper, we present a planning approach to computing
plans that do minimize the expected cost. In particular, while
our planning problem corresponds to an instance of planning
with missing information and, in general, is hard-to-solve, we
show that it exhibits clear preference on uncertainty. This
makes it solvable via a recently proposed approach PPCP
(Probabilistic Planning with Clear Preferences) [9], which
uses these preferences to decompose the problem into a series
of easy-to-solve graph searches. This decomposition allows
PPCP to solve large scale planning under uncertainty prob-
lems in anytime fashion while providing rigorous theoretical
guarantees on the solution quality. Our experimental analysis
in simulations shows that our approach can solve problems
with up to 15 possible landing sites in under a second on
average. Experiments on our custom quad-rotor helicopter



(a) satellite image (b) start, goal, candidate land sites

Fig. 2. Landing site selection problem. (a) shows a sample satellite
image that can be used for extracting candidate landing sites shown in (b).
Trajectories A and B are only two out of O(cn) possible paths with no
loops for n sites.

Fig. 3. Backward search on a fully known environment from start state B
to goal G with two possible landing locations. Location 1 is known to be bad
(shown in gray), and 2 is known to be good (shown in white). Transitions
are denoted with arrows and costs are marked next to each transition. Only
one path to the goal is possible and is shown with the thick arrow.

(Figure 1(a)) show that the approach is indeed feasible to
run on a real system. To the best of our knowledge, the
proposed approach is the first one to investigate the problem
of planning a sequence of landing site sensing operations
with the goal of minimizing the expected cost before landing.

II. PROBLEM FORMULATION

A. Task

The desired autonomous behavior can be summarized as
follows: an unmanned helicopter (also referred to as robot),
equipped with GPS, lidar and elevation maps, must safely
deliver a certain payload to the designated location. It has
to choose a landing location, fly a collision free trajectory,
and land. This process involves a combination of planning,
perception, and motion control, however the main focus of
the paper is on planning an efficient landing site selection.

B. Problem Representation

Scenario 1: Fully known environment. Consider first a
scenario, in which the full environment is known to the robot.
We represent the problem with a fully deterministic concise
graph Gd containing states si which can be of one of five
types: B (robot is at the base), Oi (robot is hovering over a
candidate landing site i), Si (the robot is still hovering over
site i and has performed the sensing action to confirm the
ability to land there), Li (the robot has landed at site i) and
G (the payload has been delivered to the destination).

Fig. 4. Sample environment with missing information. The status of land
sites 1 and 2 is no longer known as ground truth (shown with gradient-filled
states).

Transitions are defined for a pair of states and an action
such that sj = succ(si, a), where sj is the successor of si
if action a is executed at si. Corresponding transition costs
c(si, a) are known a priori and depend only on the current
state si and deterministic action a and are independent of
past transitions (Markov property). Figure 3 shows the full
graph of such environment along with the optimal solution,
which may be trivially obtained by observation or running
backward A*. The g-values represent the optimal cost-to-
goal from any state.

The construction of graph Gd reflects the sequence of
events that is required for successful completion of the
mission. The robot starts out at the base, flies to one of the
candidate landing sites and senses it to confirm the ability
to land. If the outcome of sensing action is positive (site is
clear for landing), the helicopter can either land or fly to a
different location, otherwise, flying is an only option. In this
example, we assume that the sensing action is deterministic
and reveals the ground truth about the status of the site.

If the robot is eventually able to find a good site and
land, we assume that the payload can be delivered to the
final destination by other means (e.g. human picks it up).
Without missing information, the problem of selecting the
optimal flight policy is quite simple and is trivially solved
by a forward or backward search on the full state space. We
chose the backward option in this example so that it directly
relates to our next scenario (the direction is reversed and the
search is performed from the goal to the start state).

Scenario 2: Effect of missing information. In reality,
it may not be possible to guarantee that any particular site
is available for safe landing. For example, there may be a
chance that some external event interferes with the landing
procedure. In our context, the sensing action reveals the true
state of the site, which is no longer known a priori. Therefore,
the problem formulation has to be modified slightly, making
the sensing action stochastic. In particular, for each possible
landing location, we assign a binary variable, whose true
value represents the ground truth, and it simply tells whether
or not the helicopter is capable of successfully landing at a
particular location. Regardless of what may actually prevent
it from doing so, this implies that the flight plan must be
created without knowing for sure whether any particular
site will accomondate safe landing. In practice, a number
of sources may introduce such uncertainty such as possible



exposure to enemy and recent changes to terrain due to
military activity such as bombing, inaccurate prior maps,
and other factors. Figure 4 shows the modified environment,
reflecting the unknown state of sites 1 and 2. Note that an
additional action is present, allowing the robot to return to
the base if no landing site is available for landing.

Legal Actions. Initially, the robot is in state B and its
goal is G. There are two candidate landing sites and their
status is given by the hidden variables L1 and L2. We use
Li = u if the status is unknown, Li = 0 if the site is not
available for landing, and Li = 1 if landing is possible at
site i. Initially, the values of two variables L1 and L2 are
not known to the robot and remain unknown until the robot
actually senses the sites. The robot can get to the goal by
landing (if possible) at either land site or returning to the
base if neither locations are suitable for landing. The legal
actions are assumed as follows: from B, the helicopter can
only fly to either O1 or O2; from Oi the robot performs
a stochastic sensing action, whose outcome will depend on
the true value of Li. Sensing gets the robot to the state Si

with Li set to its true value. Only if Li=1, the robot has an
option of landing at i, but either value of Li allows flying
to a different location Oj where i 6= j (in other words, the
robot is not forced to land if the site is good). After landing,
the mission is complete and the payload is delivered to the
goal with an additional known cost (referred to as land2goal
cost). If Li = 0∀i then helicopter can return to the base via
an extra action (marked with dotted lines in Figure 4), which
also completes the mission.

Consequences. The representation in Figure 4 no longer
describes the full state space of the problem (as opposed
to graph Gd in Figure 3 for the first example). Since there
are now two unknowns, each state must be augmented
with two independent variables having values u, 0, or
1 (corresponding to unknown, bad, good). In addition,
we introduce stochastic actions and sensing now has two
possible outcomes according to the probability of success
pi. In Figure 5, graph Gb reflects the new problem structure,
showing the belief state space of the problem. Each belief
state consists of an observable part (location of the robot
R ∈ {B,Oi, Si, Li,G}) and a hidden part (true status
of the unknown variables Li ∈ {u, 0, 1}). As the robot
transitions from one state to another, variable R is updated
accordingly and Li is updated with the result of sensing
action at site i, only if sensing actually occurs. We assume
perfect sensing, that is, the sensing action reveals the true
value of the corresponding unknown. Figure 5 shows the
full belief state space and the optimal policy for probability
of sensing success p1,2=0.5. It is clear how much the state
space increased after only adding two unknowns - in fact,
the size of the belief state space is exponential in the number
of sites (exact formula for our formulation is (3×n+2)×3n).

III. PPCP ALGORITHM

In this section, we briefly describe how the landing site
selection problem with our formulation can be efficiently

Fig. 5. Graph Gb (full belief state space). Optimal policy for p1,2 = 0.5
is marked with the thick arrows. V-values show the expected cost-to-goal
from any state.

solved using the PPCP algorithm. We state the required as-
sumptions and later show that they hold for our formulation.
A more detailed description of the algorithm can be found
in [9].

The PPCP algorithm is well-suited for planning in the
environments that are only partially-known. The algorithm
assumes that the true environment itself is fully deterministic
and can be modeled as a graph. Thus, in the landing site
selection problem, if we knew precisely which sites are
good and bad, then there would be no uncertainty about
any robot actions: both sensing and move actions would be
deterministic actions. In reality, the robot is uncertain which
sites can provide safe landing conditions. As a result, there
are two possible outcomes of a sensing action: the land site
is confirmed at the possible landing location that was sensed
and land site is rejected. PPCP assumes perfect sensing, so
once the robot has sensed a particular location, it then knows
with full certainty whether a site is suitable for landing or
not.

The goal of the planner is to construct a policy that
reaches any state at which R = G while minimizing the
expected cost of execution. Figure 5 shows a sample policy
generated by PPCP. The policy specifies the path which the
robot should follow after each outcome of sensing action.
All branches of the policy end at a state whose R = G, in
other words, the robot is at its goal location.

The main requirement for using the PPCP algorithm is
that the problem must exhibit clear preferences on unknown
information. What this means is that for any stochastic
transition, it must be always clear which value of the
missing variable results in the best outcome. In other words,
there must exist a clear preference for the actual values of
the missing information. Mathematically, for any unknown



variable h, the preferred value exists and is equal to b if for
any state X in which h is unknown and action a, which
reveals the value of h, there exists a (best) successor state
X ′ which has h=b and satisfies the requirement

X ′ = argminY ∈succ(X,a)c(S(X), a, S(Y )) + v?(Y )

where S(X) represents the part of X that is always observ-
able ( [9]).

PPCP exploits the existence of clear preferences to scale
up to very large problems. In particular, PPCP constructs
and refines a plan by running a series of deterministic
A*-like searches. Furthermore, by making an approximating
assumption that it is not necessary to retain information
about the variables whose values were discovered to be
clearly preferred values, PPCP keeps the complexity of each
search low (exponentially smaller than the size of the belief
state-space) and independent of the amount of the missing
information. Each search is extremely fast, and running
a series of fast low-dimensional searches turns out to be
much faster than solving the full problem at once since the
memory requirements are much lower and deterministic
searches can often be many orders of magnitude faster than
probabilistic planning techniques. While the assumption
PPCP makes does not need to hold for the algorithm to
converge, the returned plan is guaranteed to be optimal if
the assumption does hold.

IV. APPLICATION OF PPCP TO LANDING SITE
SELECTION

A. Clear Preferences

In the context of landing site selection, we claim that
the preferred outcome of a sensing action always exists.
Consider the following for the proof. Let Xg and Xb be the
good and bad successors of any state Y after performing
a sensing action. Let v?(Xb) be the cost of executing
the optimal policy at Xb. Similarly, we define v?(Xg) for
Xg . Also, let A(Xb) and A(Xg) be the sets of possible
further actions at the corresponding states. According to our
formulation, A(Xg) = {A(Xb), land}. This is true since if
the outcome of sensing action is good, the further action set
is augmented by the ability to land. Therefore, the robot at
Xg still has an option of following Xb’s optimal policy and
v?(Xg) ≤ v?(Xb), making Xg the preferred outcome. This
is a consequence of the fact that knowing that a landing site
is good does not invalidate Xb’s (or, in fact, any other state’s)
optimal policy.

B. Operation

The PPCP algorithm operates in anytime fashion. It
quickly constructs an initial policy and then refines it until
convergence. At the time of convergence, the policy it obtains
is guaranteed to minimize the expected execution cost under
certain conditions (described in [9]). Figure 6 demonstrates
how PPCP solves the landing site selection in a partially-
known environment given in Figure 4.

PPCP repeatedly executes deterministic searches that are
very similar to the A* search [10], an efficient and widely-
known search algorithm. During each iteration PPCP as-
sumes some configuration of unknown variables and per-
forms search in the corresponding deterministic graph. Thus,
the first search in Figure 6 assumes that both unknown sites
are good and finds a path that goes straight to the goal
(Figure 6(a)). (The shown g-values are equivalent to those
maintained by the A* search). PPCP takes this path and uses
it as an initial policy for the robot (Figure 6(b)). The first
policy, however, has only computed a path from the preferred
outcome of sensing site 1, corresponding to the site being
available for landing. The state [R = S1;L1 = 0, L2 = u],
on the other hand, has not been explored yet. The second
search executed by PPCP explores this state by finding a
path from it to the goal. This search is shown in Figure 6(c).
During this search cell site 1 is assumed to be unavailable,
same as in the state [R = S1;L1 = 0, L2 = u]. The found
path is incorporated into the policy maintained by PPCP
(Figure 6(d)).

In the third iteration, PPCP tries to find a path from the
start state to the goal again (Figure 6(e)). Now, however, it no
longer generates the same path as initially in (Figure 6(a)).
The reason for this is that it has learned that the cost of at-
tempting to reach the goal through site 1 is higher than what
it initially thought to be. It now appears that going through
site 2 is cheaper, resulting in the new PPCP policy, shown in
Figure 6(f). This policy, however, has an unexplored outcome
state again, namely, state [R = S2;L1 = u, L2 = 0]. This
becomes the state to explore in the next iteration.

PPCP continues to iterate in this manner until convergence.
In this example, it converges on the 5th iteration. The full
belief state space with the final policy are shown in Figure 5.
In this example the final policy is optimal: it minimizes
the expected cost of reaching the goal. In general, PPCP
is guaranteed to converge to an optimal policy if it does
not require remembering the status of any site the robot has
discovered to be good (see [9] for more details).

C. Memory

The PPCP algorithm exhibits memoryless property - it
does not remember the preferred outcomes of stochastic ac-
tions. This enables it to efficiently solve large-scale problems
with uncertainty without traversing the whole belief state
space, however the solution may be suboptimal if the true
optimal policy relies on remembering preferred outcomes.
We can never know whether the optimal policy requires
memory, but our implementation allows to vary the number
of remembered preferred outcomes (memory slots), trading
off with execution speed and usage of computer memory.

In order to implement the k-slot memory, the observable
part of the belief states must be augmented with k variables.
This results in substantial increase in the size of the projected
search space. For example, with 10 landing sites and one
memory slot, the number of states is increased by a factor
of 11 (all permutations of the memory, including empty
value). Therefore, k must be chosen very carefully and for



(a) search for a path from [R = B; L1 = u; L2 = u] (b) PPCP policy after update

(c) search for a path from [R = S1; L1 = 0; L2 = u] (d) PPCP policy after update

(e) search for a path from [R = B; L1 = u; L2 = u] (f) PPCP policy after update

(g) search for a path from [R = S2; L1 = u; L2 = 0] (h) PPCP policy after update

(i) search for a path from [R = B; L1 = u; L2 = u]

Fig. 6. Solution of the example problem using PPCP algorithm. All the steps, needed for convergence to the optimal solution, are shown and the final
policy appears in Figure 5.



a very good reason, otherwise, depending on the problem,
it is quite possible that this change would not help improve
the produced policies.

D. Transition Costs and Probabilities

The low-level details of the algorithm have been presented
and now we must explain how all the transition costs and
sensing probabilities are generated.

Flight Cost informs the planner how expensive it is for
the helicopter to fly between different locations (i.e. base and
landing sites). Very simply, Euclidean distance between the
two locations may serve as a reasonable estimate. If a more
accurate approach is desired, a helicopter motion planner,
tuned for the particular aircraft, can be used, which will
take into account the environment and create trajectories that
avoid collisions.

Sensing Cost is associated with the procedure for eval-
uating the quality of the site. The helicopter must resolve
any existing uncertainty by discovering the true values of all
hidden variables, associated with the particular landing site.

Quick-Sensing Cost does not appear in the main for-
mulation, however, if memory slots are enabled, and the
helicopter’s policy instructs it to come back to an already
confirmed landing site, it may still be required to perform
a last-minute check before the landing maneuver. This may
require additional resources, therefore, has a cost.

Landing cost Computation of the landing cost is outside
of the scope of this paper, but has been investigated quite
thoroughly by [1], [2], [3] and others. In general, this
cost depends on the helicopter’s capabilities and various
environmental factors like terrain roughness, wind direction,
and weather conditions.

Land2Goal Cost summarized the efforts required to get
the payload delivered to the desired location after the he-
licopter has landed. Since the landing location may not be
right at the goal, some form of ground transport, manned or
autonomous, might be required for completing the mission.
The amount of additional efforts may also play a role in the
policy through the land2goal cost.

Return2Base Cost If all the landing sites are actually
unacceptable for landing, the only thing that the robot can
do (according to our formulation) is come back to the base.
This may be the same as the forward flight cost, or maybe
different, if factors like wind direction play a significant role.

Landing Site Probability. In addition to the landing cost,
it is critical to estimate the probability of each site being
good. For example, a particular landing location may seem
perfect from the terrain analysis point of view, but may not
be so good if there is a chance of enemy appearing in the
area. This probability value may reflect some aspects of the
uncertainty in terrain as well, however, most importantly, it is
able to incorporate environmental factors that are probabillis-
tic in nature. These may include weather conditions, chance
that the site is occupied by another vehicle or people, or
probability of being exposed to enemy surveilance. The exact
values of these quantities may never be known, but good
approximations may be made based on additional sources

of intelligence. Information from a number of such sources
can be combined into one number that summarizes the
probability of the availability of each particular landing site.

E. Theoretical Properties

Theorem 1: The policy returned by our memoryless plan-
ner is guaranteed to be cost-minimal (optimal) if there exists
an optimal policy that does not require the helicopter to sense
a landing site without landing at it when it is found to be a
good landing site.

The expected cost of the PPCP policy after full
convergence, is also upper-bounded by the optimal policy
found by any memoryless planner, assuming that PPCP
assumptions hold. This means that while being very
efficient, our planner cannot be beaten (cost-wise) by any
memoryless planner. If one or more memory slots are used
in the PPCP algorithm, the guarantees are even better. For k
memory slots, the upper bound drops to the optimal policy
found by any planner that can remember the last k good
landing sites.

V. EXPERIMENTAL ANALYSIS

A. Simulation Setup

In order to show the advantage of using PPCP to solve
the landing site selection problem, we have generated test
environments for varying number of possible landing sites.
The transition costs and site probabilities were randomly
generated as follows: The base of the helicopter is assumed at
(0,0) and landing site x-y locations, are generated randomly
on a square region 100 by 100 meters, centered at coordinates
(1000,1000). Goal position is fixed in the middle of that
100 by 100 square. The fly cost is then computed as the
Euclidean distance for each possible pair of landing sites
and the base. Sense cost is assumed to be random on the
range [10..100] and the land costs are generated as uniformly
random variables on the range [50..150], modeling different
landing conditions. Land2go cost is assumed proportional
to the distance to the goal and the proportionality constant
is set to a value of 5. This means that we are assuming that
traveling on land is five times more expensive than flying.
For the experiments with memory, the quicksense action
is assumed to be free and carries no cost. The probability
of each site site is also assumed to be a uniformly random
variable from 0 to 1.

A memoryless PPCP planner, adapted to this problem,
has been implemented according to our formulation and
description in [9]. In addition, we augmented the planner
with an ability to turn on one memory slot for performance
evaluation. This very small addition resulted in a fairly large
implementation overhead in keeping track of the actions and
outcomes. In addition, a very simple assumptive planner
has also been implemented, which ignores the probability
information and assumes that all the landing locations are
good. Its policy always instructs the robot to go towards the
landing site with minimum sum of the fly, sense, land,
and land2goal costs. When the helicopter actually gets to



Number of 0 mem slot 1 mem slot Belief state
sites (msec) (msec) space size

5 0.6± 0.3 1.7± 0.9 4.1× 103

10 32± 36 205± 290 1.9× 106

15 560± 1000 15000± 11000 6.7× 108

Fig. 7. Average planning times and standard deviations for memoryless
PPCP and PPCP with one memory slot. Also, the size of the full belief state
space is given for reference. PPCP planner finds the solution by computing
a tiny fraction of this space.

# PPCP (expected) PPCP (actual) Assumptive Planner
1839.05 1839.16 1947.25

Fig. 8. Summary of the results over 2500 runs with 10 landing sites,
comparing the expected cost of the PPCP policy, actual cost of traversing
PPCP policy, and actual cost of following an assumptive planner

the site, if it turns out bad, the same approach is used to find
the next target location. This continues until a good land site
is discovered, at which point, landing occurs.

In order to compare the performance of the two planners,
for each random scenario, which also includes the probability
of success for each site, we generate the ground truth accord-
ing to those probabilities. We then evaluate each approach by
simulating the result of the actions, with stochastic outcomes
taking the value that is pre-determined by the ground truth.
For PPCP, this means taking the final policy and evaluating it
down the tree and accumulating cost until reaching the goal.
All actions are now determined, since we generate and know
the ground truth. In a similar manner, the simple planner is
used to find the first good landing site and land. For each
scenario, fifty random ground truth sets are evaluated in order
to try different possible distributions of good landing sites.

B. Simulation Results

Search Performance. The first set of results summarizes
the planning times until full convergence for the memoryless
and 1 memory slot operation. Table in Figure 7 summarizes
the outcome of the experimental trials.

Comparison with an assumptive planner. Figure 8
summarizes the results after running 2500 planning sce-
narios. Even though the difference between PPCP and the
assumptive planner is only 5%, the result is consistent with
our expectations. For different scenarios, the difference may
be much larger. In our case, most of the cost actually comes
from the initial flight from the base to the first landing site.
Therefore there is not much room for improvement if all the
trajectories contain this high cost component.

Memory Slot. Remembering the preferred outcome is
often not required for finding the optimal policy. However,
we were able to construct an example in this context,
for which allowing the planner to remember one previous
preferred outcome (remembering one previous site which
was sensed ”good”) actually improves expected cost of the
policy. Consider the example shown in Figure 9. Note that
the transitions are not symmetric - the cost of the return path
may be different from the forward path due to various factors

Fig. 9. Landing site selection scenario, where the optimal solution cannot
be found without any memory slots. For this case, memoryless planner
computes expected cost of 279, but adding one memory slot results in a
lower cost of 278.5. The optimal policy is to go to Site1, sense it, and not
land even if it is good. If it’s good, then remember it and proceed to Site2.
Sense Site2 and if it is good, land there. If Site2 is bad and Site1 was
good, then it’s less costly to go back and land there than trying Site3 (and
possibly wasting more resources) because there is no need to sense Site1
again. Memoryless planner does not choose to go back to Site1, since the
landing cost is large and it’s probability is not very high.

(i.e. wind direction). The difference in the expected costs of
the two policies is quite small (0.5 out of 279) but this is
just a result specific to this example - the main point is that
memoryless planner would not find the optimal solution.

C. Experimental Setup

Quadrotor Helicopter Platform. In order to demonstrate
the real-world application of our work, we have designed
and built an autonomous helicopter platform, shown in
Figure 1(a). It is equipped with two complimentary
LIDAR sensors, which allow to perform true 3D localization
and mapping. The aircraft is also capable of rotating the
vertically-scanning LIDAR in the direction of interest. Abil-
ity to densely and accurately map the ground at the same time
as the horizontal features is what distinguishes this platform
from most similar aircrafts, carrying only a single LIDAR.

We have developed the software architecture all the way
from state estimation, stabilization, and control to local-
ization, mapping, terrain analysis, motion planning, and
trajectory following (not discussed for the lack of space).
In order to demonstrate the Land2goal cost, a ground robot
has been set up at the goal (shown in Figure 11(b)), which
must drive to the actual landing location of the quad-rotor.

Offline Computations. A 3D map of the building was
generated by manually flying the aircraft and postprocessing
the collected data. Figure 10 shows the map which was
provided to the PPCP planner to generate the flight policy
and to a 4D helicopter motion planner to generate feasible
collision-free trajectories. Landing costs and probabilities
were picked to have reasonable values and Fly and Land2go
cost were computed in the same way as in simulation. This
prior information was provided to the robot, however the
ground truth about the state of the landing sites was not
disclosed. In fact, another quad-rotor helicopter was placed
in the location of Site1, so that landing another aircraft is
impossible.

D. Experimental Results

Even though a prior map was generated, the autonomous
run started off with an empty map. The prior information



Fig. 10. Prior 3D map, landsites, and the PPCP policy (order = 1,2,3,4)

(a) Ready to take off (b) Sensing Site1

(c) Sensing Site1 (online 3D map) (d) Landing at Site2
Fig. 11. Stills from an autonomous run

was provided to the PPCP planner and the flight trajectories
of the resulting policy were generated using a 4-dimensional
(x,y,z,yaw) AD* Motion Planner [11] from the SBPL library
[12], developped by our group as well.

The aircraft has autonomously navigated, according to the
PPCP policy, from start to Site1, sensed an obstacle in the
landing site and proceeded to Site2. After confirming that
Site2 was clear, a landing command was issued. Figure 11(a)
shows the quad-rotor a few seconds before start, (b,c) capture
the aircraft in process of evaluating Site1 and (d) shows the
robot just before landing on Site2

For our test configuration, the optimal policy was found
in 0.2 milliseconds (2 milliseconds for 1 memory slot, but
with the same result).

VI. CONCLUSIONS

In this paper, we have studied one of the aspects of
the aerial supply delivery problem. In particular, we have
presented an approach to planning a sequence of flight and
sense operations performed by UAV in order to select a
landing site that minimizes the expected cost of flight, sense
and access to the desired goal location. Our approach was
based on showing that the problem exhibits clear prefer-
ences on uncertainty and therefore using PPCP algorithm
to solve the problem by decomposing it into a series of
deterministic graph searches that are fast-to-solve and require
little memory. We describe the conditions under which the
approach provides theoretical guarantees on the optimality of
the returned policies. The experimental results in simulation
show that our approach can solve problems with up to
15 possible landing sites in real-time while experiments
on a physical quad-rotor we have recently built provide
proof of concept. In addition, we are currently working on
transitioning the software we have developed onto a larger
(outdoor) unmanned aircraft, built by Dragonfly Pictures Inc,
shown in Figure 1(b).

VII. ACKNOWLEDGMENTS
This research was partially sponsored by the DARPA grant

N10AP20011 and TATRC contract W81XWH-07-C-0043.

REFERENCES

[1] S. Scherer, L. Chamberlain, and S. Singh, “Online assessment of
landing sites,” in AIAA, 2010.

[2] N. Serrano, “A bayesian framework for landing site selection during
autonomous spacecraft descent,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006, pp.
5112–5117.

[3] T. Templeton, “Autonomous vision-based rotorcraft landing and accu-
rate aerial terrain mapping in an unknown environment,” in Technical
Report University of California at Berkeley (UCB/EECS-2007-18),
2007.

[4] E. J. Sprinkle, J. and S. Sastry, “Deciding to land a uav safely in real
time,” in Proceedings of the American Control Conference, vol. 5,
2005, p. 3506 3511.

[5] M. J. Johnson, A. and L. Matthies, “Vision guided landing of an
autonomous helicopter in hazardous terrain,” in Proceedings IEEE
International Conference on Robotics and Automation, 2005, p. 3966
3971.

[6] S. Koenig and Y. Smirnov, “Sensor-based planning with the freespace
assumption,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1996.

[7] I. Nourbakhsh and M. Genesereth, “Assumptive planning and exe-
cution: a simple, working robot architecture,” Autonomous Robots
Journal, vol. 3, no. 1, pp. 49–67, 1996.

[8] A. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1995.

[9] M. Likhachev and A. Stentz, “PPCP: Efficient probabilistic planning
with clear preferences in partially-known environments,” in Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), 2006.

[10] N. Nilsson, Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, 1971.

[11] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” Artificial Intelligence Journal
(AIJ), vol. 172, no. 14, 2008.

[12] M. Likhachev, SBPL graph search library,
http://www.cs.cmu.edu/∼maxim/software.html.


