
Probabilistic Planning with Clear Preferences on
Missing Information

Maxim Likhachev a and Anthony Stentz b

aComputer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
bThe Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

For many real-world problems, environments at the time of planning are only partially-
known. For example, robots often have to navigate partially-known terrains, planes often
have to be scheduled under changing weather conditions, and car route-finders often have to
figure out paths with only partial knowledge of traffic congestions. While general decision-
theoretic planning that takes into account the uncertainty about the environment is hard
to scale to large problems, many such problems exhibit a special property: one can clearly
identify beforehand the best (called clearly preferred) values for the variables that represent
the unknowns in the environment. For example, in the robot navigation problem, it is always
preferred to find out that an initially unknown location is traversable rather than not, in the
plane scheduling problem, it is always preferred for the weather to remain a good flying
weather, and in route-finding problem, it is always preferred for the road of interest to
be clear of traffic. It turns out that the existence of the clear preferences can be used to
construct an efficient planner, called PPCP (Probabilistic Planning with Clear Preferences),
that solves these planning problems by running a series of deterministic low-dimensional
A*-like searches.

In this paper, we formally define the notion of clear preferences on missing information,
present the PPCP algorithm together with its extensive theoretical analysis, describe sev-
eral useful extensions and optimizations of the algorithm and demonstrate the usefulness
of PPCP on several applications in robotics. The theoretical analysis shows that once con-
verged, the plan returned by PPCP is guaranteed to be optimal under certain conditions. The
experimental analysis shows that running a series of fast low-dimensional searches turns
out to be much faster than solving the full problem at once since memory requirements
are much lower and deterministic searches are orders of magnitude faster than probabilistic
planning.

Keywords: planning with uncertainty, planning with missing information, Partially Ob-
servable Markov Decision Processes, planning, heuristic search

Preprint submitted to Elsevier Science 4 November 2008

1 Introduction

A common source of uncertainty in planning problems is lack of full information
about the environment. A robot may not know the traversability of the terrain it
has to traverse, an air traffic management system may not be able to forecast with
certainty future weather conditions, a car route-finder may not be able to predict
well future traffic congestions or even be sure about present traffic conditions, a
shopping planner may not know whether a particular item will be on sale at one of
the stores it considers. Ideally, in all of these situations, to produce a plan, a planner
needs to reason over the probability distribution over all the possible instances of
the environment. Such planning is known to be hard [1, 2].

For many of these problems, however, one can clearly name beforehand the “best”
values of the variables that represent the unknowns in the environment. We call
such values clearly preferred values. Thus, in the robot navigation problem, it is
always preferred to find out that an initially unknown location is traversable rather
than not. In the air traffic management problem it is always preferred to have a
good flying weather. In the problem of route planning under partially-known traffic
conditions, it is always preferred to find out that there is no traffic on the road of
interest. And finally, in the shopping planning example, it is always preferred for a
store to hold a sale on the item of interest. These are just few of what we believe
to be a large class of planning problems that exhibit clear preferences on missing
information. One of the reasons for this is that the knowledge of clear preferences
on missing information is not the same as the knowledge of a best action at a state
or the value of an optimal policy. Instead, we often know at intuitive level what
would be the best event for us (i.e., no traffic congestion, sale, etc), independently
of whether we choose to make use of this event or not. All the other outcomes, on
the other hand, are of less preference to us. This intuitive information can be used
in planning.

In this paper we present an algorithm called PPCP (Probabilistic Planning with
Clear Preferences) that is able to scale up to very large problems by exploiting the
fact that these preferences exist. PPCP constructs and refines a plan by running a
series of deterministic A*-like searches. Furthermore, by making an approximating
assumption that it is not necessary to retain information about the variables whose
values were discovered to be clearly preferred values, PPCP keeps the complexity
of each search low and independent of the amount of the missing information.
Each search is extremely fast, and running a series of fast low-dimensional searches
turns out to be much faster than solving the full problem at once since the memory
requirements are much lower and deterministic searches can often be many orders
of magnitude faster than probabilistic planning techniques. While the assumption
PPCP makes does not need to hold for the algorithm to converge, the returned plan
is guaranteed to be optimal if the assumption does hold.

2

The paper is organized as follows. We first briefly go over A* search and explain
how it can be used to find least-cost paths in graphs. We then explain how a planning
problem changes when some of the information about the environment is missing.
In section 4, we introduce the notion of clear preferences on missing information
and briefly talk about the problems that exhibit them. In section 5, we explain the
PPCP algorithm and how it makes use of the clear preferences. The same section
gives an extensive theoretical analysis of PPCP that includes the correctness of
the algorithm, some complexity results as well as the conditions for the optimal-
ity of the plan returned by PPCP. In section 6 of the paper, we describe two useful
extensions of the algorithm such as how one can interleave PPCP planning and exe-
cution. In the same section, we also give two optimizations of the algorithm which
at least for some problems can speed it up by more than a factor of four. On the
experimental side, section 7 shows how PPCP enabled us to successfully solve the
path clearance problem, an important problem in defense robotics. The experimen-
tal results in section 8.1, on the other hand, evaluate the performance of PPCP on
the problem of robot navigation in partially-known terrains. They show that in the
environments small enough to be solved with methods guaranteed to converge to
an optimal solution (such as Real-Time Dynamic Programming [3]), PPCP always
returns an optimal policy while being much faster. The results also show that PPCP
is able to scale up to large (costmaps of size 500 by 500 cells) environments with
thousands of initially unknown locations. The experimental results in section 8.2,
on the other hand, show that PPCP can also solve large instances of path clearance
problem and results in substantial benefits over other alternatives. We finally con-
clude the paper with a short survey of related work, discussion, and conclusions.

2 Backward A* Search for Planning with Complete Information

Notations. Let us first consider a planning problem that can be represented as a
search for a path in a fully known deterministic graph G. The fact that the graph
G is completely known at the time of planning means that there is no missing
information about the domain (i.e., environment). We use S to denote a state (a
vertex, in the graph terminology) in the graph G. State Sstart refers to the state of
the agent at the time of planning, while state Sgoal refers to the desired state of
the agent. We use A(S) to represent a set of actions available to the agent at state
S ∈ G. Each action a ∈ A(S) corresponds to a transition (i.e., an edge) in the graph
G from state S to the successor state denoted by succ(S, a). Each such transition is
associated with the cost c(S, a, succ(S, a)). The costs need to be be bounded from
below by a (small) positive constant.

Backward A* Search. The goal of shortest path search algorithms such as A*
search [4] is to find a path from Sstart to Sgoal for which the cumulative cost of the
transitions along the path is minimal. The PPCP algorithm we present in this paper
is based on running a series of deterministic searches. Each of these searches is

3

a modified backward A* search - the A* search that searches from Sgoal towards
Sstart by reversing all the edges in the graph. In the following, we therefore briefly
describe the operation of a backward A* search.

Suppose for every state S ∈ G we knew the cost of a least-cost path from S to
Sgoal. Let us denote such cost by g∗(S). Then a least-cost path from Sstart to Sgoal

can be easily followed by starting at Sstart and always executing such action a ∈
A(S) at any state S that a = arg mina∈A(S)(c(S, a, succ(S, a)) + g∗(succ(S, a)).
Consequently, A* search tries to compute g∗-values. In particular, A* maintains
g-values for each state it has visited so far. g(S) is always the cost of the best path
found so far from S to Sgoal. The pseudocode in Figure 1 gives a simple version
of backward A*. In this version, besta pointers are used to store the actions that
follow the found paths.

1 g(Sstart) =∞, OPEN = ∅;
2 g(Sgoal) = 0, besta(Sgoal) = null;
3 insert Sgoal into OPEN with the priority equal to g(Sgoal) + heur(Sgoal);
4 while(g(Sstart) > minS∈OPEN(g(S) + heur(S)))
5 remove state S with minimum priority (g(S) + heur(S)) from OPEN;
6 for each action a and S′ such that S = succ(S′, a)

7 if search hasn’t seen S′ yet or g(S′) > c(S′, a, S) + g(S)

8 g(S′) = c(S′, a, S) + g(S), besta(S′) = a;
9 insert S′ into OPEN with the priority equal to g(S′) + heur(S′);

Fig. 1. Backward A* search

The code starts by setting g(Sgoal) to 0 and inserting Sgoal into OPEN. The code then
repeatedly selects states from OPEN and expands them - executes lines 6 through
9. At any point in time, OPEN is a set of states that are candidates for expansion.
These are also the states from which new paths to Sgoal have been found but have
not been propagated to their predecessors yet. As a result, the expansion of state S
involves checking if a path from any predecessor state S ′ of S can be improved by
using the found path from S to Sgoal, and if so then: (a) setting the g-value of S ′

to the cost of the new path found; (b) setting action besta(S ′) to the action a that
leads to state S; and (c) inserting S ′ into OPEN. The last operation makes sure that
S ′ will also be considered for expansion and, when expanded, the cost of the found
path S ′ to Sgoal will be propagated to the predecessors of S ′.

The goal of A* is to expand states in such order as to minimize the number of
expansions required to guarantee that the states on at least one of the least-cost
paths from Sstart to Sgoal are expanded. Backward A* expands states in the order
of g(S) + heur(S), where heur-values estimate the cost of a least-cost path from
Sstart to S. The heur-values must never overestimate (i.e., must be admissible),
or otherwise A* may return a suboptimal solution. In order for each state not to be
expanded more than once, heur-values need to be also consistent: heur(Sstart) = 0
and for any two states S, S ′ ∈ G such that S ∈ succ(S ′, a) for some a ∈ A(S ′),
heur(S ′) + c(S ′, a, S) ≥ heur(S). If heur-values are consistent then every time
the search expands a state S, a least-cost path from S to Sgoal has already been
found and therefore a better path will never show up later and the state will never

4

be re-inserted into OPEN. Ordering expansions based on the summation of g- and
heur-values makes the search focus expansions on the states through which the
whole path from Sstart to Sgoal looks most promising.

The search terminates when g(Sstart) - the cost of the best path found so far from
Sstart to Sgoal - is at least as small as the smallest summation of g and heur values in
OPEN. Consequently, OPEN no longer contains states that belong to the paths with
smaller costs than g(Sstart). This means that A* can terminate and guarantee that
the found path is optimal. The proof of this guarantee relies in one way or another
on the fact that the g∗-values of the states on an optimal path are monotonically
decreasing: if an optimal path from Sstart to Sgoal contains a transition S → S ′

via some action a, then g∗(S) > g∗(S ′). This monotonicity property will show up
later in the paper. In particular, while in a general case optimal plans in domains
with missing information do not necessarily exhibit monotonicity of state values,
we will show that in case of clear preferences, the state values on optimal plans are
indeed monotonic in some sense. This will allow us to use a series of backward A*
searches to plan.

Example. To make later explanations clearer, let us consider a trivial planning prob-
lem shown in Figure 2 (a). Suppose an agent needs to buy wine and cheese, and
there are two stores, store A and store B. Both stores have both products but at
different prices as shown in the figure. Initially, the agent is at home and the cost
of traveling from home to each store and in between stores can also be translated
into money (all the costs are shown in Figure 2(a)). The planning problem is for
the agent to purchase wine and cheese with the minimal cost (including the cost of
travel) and return home.

Figure 2(b) shows how this problem can be represented as a graph. Each state
encodes the position of the agent and what it has already bought. Thus, Sstart

is {Agent = Home,Bought = ∅} and Sgoal is {Agent = Home,Bought =
wine, cheese}. Figure 2(c) shows g-values, heuristics and priorities f = g + heur
of states as computed by backward A* search that was used to find a least-cost path.
The found path is shown by thicker lines. The states expanded by A* are shown in
grey. For each state S, the heuristic heur(S) is the cost of moving from home to the
store the agent is in at state S plus the cost of purchasing the items that are bought
at state S assuming the price is the minimum possible price across both stores (re-
member that the search is backward and therefore the heuristics estimate the cost
of a least-cost path from start state to state in question). Thus, an optimal plan for
the agent is to go to store A, buy cheese there, go to store B, buy wine there and
then return home.

5

(a) shopping example

(b) corresponding graph

(c) state values after A* search and the path it finds

Fig. 2. Simple example of planning with complete information

3 Planning with Missing Information

In the example above, the graph G that represents the planning problem and all of
its edge costs were fully known. By planning with missing information, on the other6

hand, we refer to the case when the outcomes of some actions and/or some edge
costs are not known at the time of planning. In particular, there are some hidden
variables whose status affects the outcomes and/or costs of certain actions. The
status of these hidden variables is unknown to the agent at the time of planning.
Instead, the agent has probability distribution (belief) over the possible values of
these hidden variables. During execution, however, the agent may sense one or
more of these hidden variables at certain states. Once it senses them, the actual
values of these hidden variables become known. By sensing we refer to any action
that results in knowing a hidden variable. Sometimes, it is an explicit sensing action
such as seeing if a region in front of the robot is traversable. In other cases, the
value of a hidden variable can be deduced from an outcome of an action such as
trying to pick up an object and realizing that it is too heavy to be picked up with
a single robot arm. In either case, we assume that the value of the hidden variable
that controls the outcome of an action becomes known after the action is executed.
In terms of explicit sensing, this corresponds to assuming perfect sensing.

For example, consider a variation of the grocery shopping problem described above.
The variation, shown in Figure 3(a), is that store A may conduct a 50% sale on wine
products, whereas store B may conduct a 50% sale on cheese products. The agent
does not know whether either of the sales is actually happening but estimates the
probability of having a sale at store A to be 40% and the probability of having a
sale at store B to be 80%. This modified version of the problem corresponds to the
problem of planning with missing information, in which the underlying state now
includes two additional boolean variables, each indicating whether there is a sale at
the corresponding store. Let us denote these variables by SaleA and SaleB. We will
use SaleA = 1 (0) to mean that store A has (doesn’t have) a sale on wine and similar
notation for SaleB. The problem differs from the original deterministic planning
because the agent does not know the status of variables SaleA and SaleB until it
visits stores A and B respectively. At the same time, the problem is related but
much narrower than planning for Partially Observable Markov Decision Problems
(POMDPs) due to the following two assumptions we make:

• Perfect sensing. There is no noise in sensing: once the agent visits the store, it
knows whether there is a sale or not.
• Deterministic actions. There is no uncertainty in the outcomes of actions if

values of hidden variables are known: the agent moves deterministically and the
cost of each purchase is known if the status of SaleA and SaleB variables is
known.

Despite these restrictions, we explain the problem of planning with missing infor-
mation using the notation and terminology of POMDPs, similar to how it was done
in [5].

Belief MDP Formulation. In POMDPs, an agent does not know its full state.
Instead, it has a probability distribution over the possible states it can be in.

7

(a) shopping example

(b) corresponding belief state-space

(c) optimal policy

Fig. 3. An example of planning with missing (incomplete) information

A belief state is any particular value of this distribution (the dimensionality of
the distribution can be as high as N − 1, where N is the number of possible
states in the original graph G). Let us denote belief states by X . For instance,
in the grocery shopping example, the initial belief state of the agent, Xstart, is:
{Agent = Home,Bought = ∅, P (SaleA = 1) = 0.4, P (SaleB = 1) = 0.8}.

8

Note that this concisely represents a probability distribution over all possible states
since the position of the agent and what items it has already purchased is always
known and the probability distribution over possible store sales can be represented
as the probability of a sale at each store assuming store sales are independent events.

Figure 3(b) shows the corresponding belief state-space. The notation SaleA = u
and SaleB = u represents P (SaleA = 1) = 0.4 and P (SaleB = 1) = 0.8
respectively. The notation SaleA = 0 (SaleA = 1), on the other hand, represents
the knowledge of the agent that there is no sale (there is sale) at store A. In other
words, SaleA = 0 is equivalent to the belief P (SaleA = 1) = 0. Similar notation
is used for SaleB.

The belief state-space is a Markov Decision Process (MDP). After every action, the
agent knows precisely the belief state it is in. Some actions, however, are probabilis-
tic. The outcomes of these actions depend on the actual status of the correspond-
ing hidden variables. Essentially, these are the actions that incorporate sensing of
hidden variables. The probability of the outcomes of these actions thus follows the
probability distribution over the hidden variables that are being sensed. Because we
assume that sensing is perfect, the subgraphs that result from different outcomes of
a single stochastic action are disjoint. This also implies that an optimal policy in
such a belief state-space is acyclic.

Let us now explicitly splitX into two sets of (discrete and of finite-range) variables,
S(X) and H(X): X = [S(X);H(X)].

• S(X) is the set of variables whose values are always observed. These are the
variables that define the state in the original graph G (i.e., Figure 2). S(X) can
also be thought of as the projection of X onto the state-space defined by the
completely observed variables.
• H(X) is the set of hidden variables that represent the missing information about

the environment.

So, in our example, S(X) is the location of the agent and what the agent has pur-
chased so far, and H(X) is the status of variables SaleA and SaleB. We will use
hi(X) to denote an ith variable in H(X).

The goal of the planner is to construct a policy that reaches any state X such that
S(X) = Sgoal (i.e., {Agent = Home,Bought = wine, cheese}) while minimiz-
ing the expected cost of execution. Figure 3(c) shows this policy for our example.
A full policy is more than a single path since some actions are probabilistic and
a full policy dictates to the agent what to do at any state it may end up in during
execution. According to the policy, the agent will visit store A, and then, if there is
no sale at store A, it will go to store B, and it may even return to store A again, if
there is no sale at store B either. This is very different from a single path found in
case of planning with complete information (Figure 2(c)).

9

Finding a policy of good quality is difficult for two reasons: first, a belief state-space
is probabilistic and therefore deterministic planners such as A* do not typically
apply; second, and perhaps more importantly, the size of a belief state-space is
exponential in the number of hidden variables. More specifically, given that X =
[S(X), H(X)], the size of a belief state-space is roughly the number of states in the
original graph G times the number of possible beliefs over hidden variables. In our
example, the latter is 32 since there are three possible beliefs - unknown, 1 and 0 -
about each of the two hidden variables (i.e., SaleA and SaleB).

4 Clear Preferences on Missing Information

In this section we introduce the notion of clear preferences. This notion is central to
the idea behind PPCP. We first, however, define several other notations and assump-
tions. For the sake of simplicity, the notation hi(X) = u at state X will represent
the fact that the value of hi is unknown at X . If hi(X) 6= u, on the other hand, then
the actual value of hi is known at X (since sensing is perfect).

Assuming at most one hidden variable per action. We assume that any time there
is an action with uncertainty in outcomes or uncertainty in costs (i.e., an action
that involves sensing a hidden variable), the uncertainty is due to a single hidden
variable. Thus, the execution of any single action can result in deducing the value of
at most one hidden variable. (In some domains, in case two or more factors control
the outcome of an action, they can be combined into a single hidden variable.) We
do allow, however, for a single hidden variable to control more than one action
though. For example, in our example above, there could be a single hidden variable
Sale, which, if 1, would imply a sale at both stores.

Denoting hidden variables. We use hS(X),a to represent the hidden variable that
controls the outcomes and costs of action a taken at S(X). By hS(X),a = null we
denote the case when there was never any uncertainty about the outcome of action
a taken at state X . In other words, none of the variables in H control the out-
comes of a executed at S(X), and since the underlying environment is determin-
istic, there is only one outcome. Thus, in the above example, the action a of mov-
ing from store A to home has hAgent=StoreA,Bought=wine,cheese,a=movetohome = null
since its outcome does not depend on the values of any of the hidden vari-
ables. The action a of moving to store A from home, on the other hand, has
hAgent=Home,Bought=∅,a=movetostoreA = u since once the agent enters the store A
it finds out whether there is a sale or not. Therefore, the action a executed at
Xstart = [Agent = Home,Bought = ∅, SaleA = u, SaleB = u] has two pos-
sible outcomes: X1 = [Agent = StoreA,Bought = ∅, SaleA = 1, SaleB = u]
and X3 = [Agent = StoreA,Bought = ∅, SaleA = 0, SaleB = u].

Denoting successors. Sometimes, we will also need to refer to the set of successors

10

Fig. 4. An example of clear preferences: it is always better (or at least no worse) to have a
sale

in the belief state-space. In these cases we will use the notation succ(X, a) to denote
the set of belief states Y such that S(Y) ∈ succ(S(X), a) and H(Y) is the same
as H(X) except for h(S(X),a)(Y) which becomes known if it was unknown at X
and remains the same otherwise. The function PX,a(Y), the probability distribution
of outcomes of action a executed at state X , follows the probability distribution of
hS(X),a, P (hS(X),a). As mentioned above, once action a was executed at state X
the actual value of hS(X),a can be deduced since we assumed the sensing is perfect
and the environment is deterministic. Thus, in our example, for Xstart = [Agent =
Home,Bought = ∅, SaleA = u, SaleB = u], a = movetostoreA, and X1 =
[Agent = StoreA,Bought = ∅, SaleA = 1, SaleB = u], PXstart,a(X1) = 0.4.

Assuming independence of hidden variables. PPCP also assumes that the vari-
ables in H can be considered independent of each other. In other words, the sale
event at store A is independent of the sale event at store B.

Assuming clear preferences. The main assumption PPCP makes is that clear pref-
erences on the values of the hidden variables are available. It requires that for each
variable hi ∈ H , it is given its preferred value, denoted by b (i.e., best). This value
is defined as follows.

Definition 1 A clearly preferred value b for a hidden variable hS(X),a is such a
value that given any state X and any action a such that hS(X),a is not known (that
is, hS(X),a(X) = u), there exists a successor state X ′ which has hS(X),a(X ′) = b
and satisfies the following:

X ′ = argminY ∈succ(X,a)c(S(X), a, S(Y)) + v∗(Y)

where v∗(Y) is the expected cost of executing an optimal policy at state Y .

We will use the notation succ(X, a)b (i.e., the best successor) to denote the state X ′

whose hS(X),a(X ′) = b if hS(X),a(X) = u and whose hS(X),a(X ′) = hS(X),a(X)
otherwise. (In the latter case it may even be possible that hS(X),a(X ′) 6= b if
hS(X),a(X) 6= u. There were simply no other outcomes of action a executed at
X .)

Our grocery shopping example satisfies this property since for each sensing action
there always exist two outcomes: a sale is present or not and the former one is

11

the preferred outcome. Thus, as shown in Figure 4, for action a = movetostoreA
executed at Xstart = [Agent = Home,Bought = ∅, SaleA = u, SaleB = u], the
preferred outcome succ(X, a)b is X1 = [Agent = StoreA,Bought = ∅, SaleA =
1, SaleB = u]. It is trivial to show this. If X3 is the second outcome of action a
(the one that corresponds to SaleA = 0 outcome), then c(S(Xstart), a, S(X1)) =
c(S(Xstart), a, S(X3)), and v∗(X1) ≤ v∗(X3) sinceX1 andX3 are exactly the same
states with the only difference that X1 has a sale event at store A and X3 does not.

We believe that there is a wide range of problems that exhibit clear preferences.
People can often predict the outcomes that optimize their costs-to-goal. For exam-
ple, when planning a car route, a person would clearly prefer for any single road
to be free of traffic. Similarly, when choosing a sequence of connecting flights, a
person would clearly prefer for the weather to be a good flying weather and for the
planes to have no delays. These preferences can be determined without computing
optimal values. One of the frequent reasons for this is the fact that a particular value
of a hidden variable does not commit the agent to any particular action. The agent
is still free to choose any route or any sequence of planes. The only requirement is
that an optimal plan in case of no traffic, a good weather, and no plane delays can
not be worse than the corresponding optimal plan in case of a traffic, bad weather,
and plane delays.

Obviously, there is also a wide range of problems that do not exhibit clear prefer-
ences. For example, in case of a long flight delay, there may be a non-zero prob-
ability that the air carrier will provide customers with some sort of compensation
(i.e., first-class upgrade or a free ticket). In this case, it may be less clear to a person
whether he/she prefers to have a flight on-time or delayed. The actual preference
depends on other penalties that will be incurred by the person if the flight is delayed
(e.g., missing connecting flights, dinners, etc.) and can therefore be computed only
after the expected costs of optimal plans for both outcomes are computed. Apart
from the compensation and other non-obvious factors though, typically, it is clearly
preferred to have a non-delayed flight: a person flying a non-delayed flight has al-
ways a freedom to stay at the arrival airport for the length of the possible delay if
it is more optimal to leave the airport later. Clear preferences just capture the fact
that the cost of an optimal plan with a non-delayed flight can not be worse than the
cost of an optimal plan with a delayed flight. These preferences are often known
without computing the costs of actual optimal plans.

5 The PPCP Algorithm

The explanation of the algorithm can be split into two steps. In the first section we
present a planner that constructs a provably optimal policy using a series of A*-like
searches in the full belief state-space. It gains efficiency because each search is a
deterministic search and can use heuristics to focus its efforts. Nevertheless, each

12

search is still very expensive since the size of the belief state-space is exponential in
the number of hidden variables. In the following section we show how the planner
can be extended to use a series of searches in the underlying environment instead.
These resulting searches are exponentially faster and are independent of the number
of hidden variables. The overall solution though, is guaranteed to be optimal only
under certain conditions.

5.1 Optimal Planning via Repeated Searches

The algorithm works by executing a series of deterministic searches. We will first
describe how the deterministic search works and then we will show how the main
function of the algorithm uses these searches to construct the first policy and then
refine it.

The function that does the deterministic search is called ComputePath and is shown
in Figure 5. The search is done in the belief state-space. It is very similar to
(backward) A*. It also computes g-values of states, uses heuristic values to fo-
cus its search and performs repeated expansions of states in the order of g-value
plus heuristic (known as f -values). The meaning of the g-values and the criterion
that the solution minimizes, however, are somewhat different from the ones in A*
search.

Suppose that for each state X we have an estimate v(X) of v∗(X), the mini-
mum expected cost of reaching a goal from the state. These estimates are pro-
vided to the search by the function Main() of the algorithm (the estimates are
always non-negative). Then, every state-action pair X ′, a ∈ A(S(X ′)) has a
value Qv,g(X

′, a) > 0 associated with it. It is calculated using action costs
c(S(X ′), a, S(Y)), value estimates v(Y) for the outcome states Y ∈ succ(X ′, a),
and the g-value of the preferred outcome state Y b = succ(X ′, a)b. Qv,g(X

′, a) is
defined as follows:

Qv,g(X ′, a) =
∑
Y ∈succ(X′,a) PX′,a(Y) ·max(c(S(X ′), a, S(Y)) + v(Y),

c(S(X ′), a, S(Y b)) + g(Y b))
(1)

To understand the meaning of the above equation, consider first the standard def-
inition of an undiscounted Q-value of an action [6] (in terms of costs, rather than
rewards though):

Q(X ′, a) =
∑
Y ∈succ(X′,a) PX′,a(Y) · (c(S(X ′), a, S(Y)) + v(Y)) (2)

13

In other words, a Q-value is the expectation of the sum of the immediate cost plus
the value of an outcome over all possible outcomes of action a executed at state
X ′. If v-values are perfect estimates (i.e., equal to corresponding v∗-values), then
Q(X ′, a) gives the expected cost of an optimal policy that starts at state X ′ with
the execution of action a. If the v-values are under-estimates of v∗-values, however,
then the computed Q(X ′, a) will also be an under-estimate. Now consider the defi-
nition of clear preferences (Def. 1). According to it, c(S(X ′), a, S(Y b))+v∗(Y b) ≤
c(S(X ′), a, S(Y)) + v∗(Y) for any successor Y ∈ succ(X ′, a). This also implies
that c(S(X ′), a, S(Y b)) + v(Y b) ≤ c(S(X ′), a, S(Y)) + v∗(Y) since v-values are
under-estimates and therefore v(Y b) ≤ v∗(Y b). Consequently, if our current v-
values are imperfect, we can (potentially) improve the Q-value estimate in equa-
tion 2 using the v-value of the preferred outcome:

Qv,v(X ′, a) =
∑
Y ∈succ(X′,a) PX′,a(Y) ·max(c(S(X ′), a, S(Y)) + v(Y),

c(S(X ′), a, S(Y b)) + v(Y b))
(3)

Finally, the ComputePath function computes g-values of some states. The property
that it guarantees is that any computed g-value is also an under-estimate of the cor-
responding v∗-value. These g-values, however, are improvements over the previous
v-values (one can think of them as state values after a series of specially ordered
backups). Thus, instead of v(Y b), the ComputePath function uses the newly com-
puted g-value, g(Y b). This is exactly the equation 1.

It should now be straightforward to see that if the provided v-values are equal to
the corresponding v∗-values and g(Y b) is equal to v∗(Y b), then equations 1 and 2
are identical. As a result, the plan that has the minimum expected cost of reaching
the goal would then be given by a simple strategy of always picking an action with
the smallest Qv,g(X, a) at any current state X .

In reality, v-values may not necessarily be equal to the corresponding v∗-values at
first. Nevertheless, the search computes g-values based on Qv,g-values. In particu-
lar, let us define g∗-values as the solution to the following fixpoint equation:

g∗(X) =

 0 if S(X) = Sgoal

mina∈A(S(X))Qv,g∗(X, a) otherwise
(4)

These g∗-values are the expected costs of optimal plans under the assumption that
the v-values of the non-preferred outcomes are also the expected costs of optimal
plans (in other words, the v-values of non-preferred outcomes are assumed to be
perfect estimates). The g-values computed by the search in the ComputePath func-
tion are estimates of these g∗-values. In fact, it can be shown that the g-values of
the states expanded by the search are exactly equal to the corresponding g∗-values

14

(theorem 3).

Also, because of the max operator in the equation 1 and the fact that all costs
are positive, Qv,g∗(X

′, a) is always strictly larger than g∗(succ(X ′, a)b), indepen-
dently of whether v-values are correct estimates or not. This means that g∗-values
along optimal paths are monotonically decreasing: g∗(X ′) = Qv,g∗(X

′, a′) >
g∗(succ(X ′, a′)b), where a′ = arg mina∈A(S(X′))Qv,g∗(X

′, a). This monotonicity
allows us to perform a deterministic (A*-like) search which computes g-values,
and sets the g-values of relevant states to their corresponding g∗-values.

The ComputePath function, shown in Figure 5, searches backwards in the belief
state-space from goal states towards the state Xp on which it was called. (It is
important to remember that the number of goal states in the belief state-space is
exponential in the number of hidden variables, since a goal state is any state X
whose S(X) = Sgoal.) The trajectory the search returns uses only the transitions
that correspond to either deterministic actions or preferred outcomes of stochas-
tic actions. This is implemented by starting off the search with all and only those
goal states, whose hidden variables assume unknown or preferred values if they are
also unknown in H(Xp) and values equal to the corresponding hidden variables in
H(Xp) otherwise (lines 3– 6). The first time ComputePath is called, Xp is Xstart

and therefore all the hidden variables are unknown. For the subsequent calls, how-
ever, Xp can be a different state, and the values of some of its hidden variables can
be known.

Just like (backward) A* search, the ComputePath function expands states in the
order of g plus heuristic and during each expansion (lines 8– 13) updates the
g-value and besta pointer of each predecessor state of the expanded state. (The
ComputePath function does not retain g-values in between searches. The states
that are encountered for the first time within a specific call to the function have
their g-values reset anyway on lines 11-12.) It differs from A* though in that
g-values are computed according to formula 1. In fact, it is the computation of
this formula that requires the ComputePath function to search backwards (and
not forwards). Heuristics are used to focus the search. Since the search is back-
ward, they estimate the cost of following a least-cost trajectory from Xp to state
in question. In the pseudocode, a user-provided function heur(Xp, X) returns a
heuristic value for state X . These values need to be consistent in the following
sense: heur(Xp, Xp) = 0 and for every other state X and action a ∈ A(S(X)),
heur(Xp, X) + c(S(X), a, S(succ(X, a)b)) ≥ heur(Xp, succ(X, a)

b). This re-
duces to normal consistency requirement on heuristics used by a backward A* if
the state-space is fully deterministic, that is, no information is missing at the time
of planning (section 2). For instance, for our grocery shopping example it could
be the same heuristics as the one used for planning with complete information in
section 2 except that in computing the heuristics we would use the sale prices. This
is equivalent to computing heuristics under the assumption that all hidden variables
are known to have preferred values.

15

Initially, v-values of states need to be non-negative and smaller than or equal to the costs of least-cost trajectories to a goal
under the assumption that all hidden variables are set to their clearly preferred values.

1 procedure ComputePath(Xp)

2 g(Xp) =∞, OPEN = ∅;
3 for every H whose every element hi satisfies:

[(hi = u
∨
hi = b)

∧
hi(Xp) = u] OR [hi = hi(Xp)

∧
hi(Xp) 6= u]

4 X = [Sgoal;H];
5 g(X) = 0, besta(X) = null;
6 insert X into OPEN with g(X) + heur(Xp, X);
7 while(g(Xp) > minX′∈OPEN g(X

′) + heur(Xp, X′))
8 remove X with smallest g(X) + heur(Xp, X) from OPEN;
9 for each action a and state X′ s.t. X ∈ succ(X′, a)

10 compute Qv,g(X′, a) according to formula 1;
11 if this search hasn’t seen X′ yet or g(X′) > Qv,g(X′, a)

12 g(X′) = Qv,g(X′, a), besta(X′) = a;
13 insert/update X′ in OPEN with the priority g(X′) + heur(Xp, X′);

14 procedure UpdateMDP(Xpivot)

15 X = Xpivot;
16 while (S(X) 6= Sgoal)
17 v(X) = g(X);
18 X = succ(X, besta(X))b;

19 procedure Main()

20 Xpivot = Xstart;
21 while (Xpivot! = null)

22 ComputePath(Xpivot);
23 UpdateMDP(Xpivot);
24 find state X on the current policy such that S(X) 6= Sgoal and it has

v(X) < EX′∈succ(X,besta(X))c(S(X), besta(X), S(X′)) + v(X′);
25 if found set Xpivot to X;
26 otherwise set Xpivot to null;

Fig. 5. Optimal planning via repeated searches

The search finishes as soon as the g-value of Xp is no larger than the smallest
priority of states in OPEN. (A min operator over empty set is assumed to return
infinity. The same assumption was made about the expectation operator on line 24.)
Once the ComputePath function exits the following holds for the path from Xp to
a goal state constructed by always picking action besta(X) at any state X and then
moving into the state succ(X, besta(X))b if besta(X) has more than one outcome:
the g-value of every state on the trajectory is equal to the g∗-value of the same state.

The Main function of the algorithm (shown in Figure 5) uses this fact. Starting with
Xstart, it repeatedly executes searches on states that reside on the current policy
(defined by besta pointers) and whose v-values are smaller than what they should
be according to the v-values of the successors of the policy action (line 24). The
initial v-values need to be non-negative and smaller than or equal to the costs of
least-cost trajectories to a goal under the assumption that all hidden variables are
equal to b (a simple initialization to zero suffices). In particular, these values can be
set to heuristics if these are admissible with respect to the underlying graph gen-
erated when values of all hidden variables are set to their clearly preferred values.
The Main function terminates when no state on the current policy has its v-value
smaller than what it should be according to the v-values of its successors.

After each search, the UpdateMDP function iterates over the found path (lines 16-
18) and updates the v-values of the states on the path found by the search by setting

16

them to their g-values (line 17). As mentioned above, these are equal to their cor-
responding g∗-values. (The v-values of states are retained until the termination of
the algorithm.) On one hand, this increases v-values and is guaranteed to correct
the error between the v-values of these states and the v-values of their successors
in the policy. On the other hand, g∗-values are bounded from above by v∗-values
as long as v-values do not overestimate v∗-values. As a result, the algorithm con-
verges, and at that time, the states on the found policy have their v-values equal to
their v∗-values and the found policy itself is optimal (the proof of this and other
theorems can be found in [7]):

Theorem 1 The Main function in Figure 5 terminates and at that time the expected
cost of the policy defined by besta pointers is given by v(Xstart) and is equal to the
minimum expected cost of reaching a goal from Xstart.

The algorithm remains correct independently of how states satisfying the condi-
tion on line 24 are selected. Typically however, out of all the states satisfying the
condition, it is most beneficial to always select first the state that has the highest
probability of being reached, as it is likely to influence the cost of the policy the
most. The probabilities of reaching states on the policy can be computed in a sin-
gle pass over the states on the policy starting from the start state. In addition, it
is even more efficient to select the states using the following simple optimization
demonstrated in section 5.3: whenever a state X is chosen as the next Xpivot, we
can backtrack from X up along the policy until we encounter the first stochastic
transition (or Xstart, whichever comes first), at which point Xpivot is chosen to be
the outcome of that transition, the transition that resides on the same branch as X .

5.2 Scaling Up Searches

Each search in the version of the algorithm just presented can be very slow be-
cause it operates in the belief state-space whose size is exponential in the number
of hidden variables. We now describe the actual version of PPCP that addresses
this inefficiency. At a high level, the main idea is to forget the outcomes of sensing
within each particular search (not within the overall planning though!). This means
that within a particular search the values of hidden variables are not being tracked -
they remain the same. Consequently, each search can be performed in the original
graph G (i.e., underlying environment) with costs and outcomes modified to reflect
the initial settings of the hidden variables. This graph is exponentially smaller than
the full belief state-space. In other words, a search state consists of S(X) variables
only and the size of the search state-space is therefore independent of the amount of
missing information. This results in a drastic increase in efficiency of searches and
the ability to solve much bigger problems without running out of memory. This effi-
ciency, however, comes at the expense of optimality, which can only be guaranteed
under the conditions described later in theorem 7. In brief, this theorem states that
optimality guarantees require that no branch of an optimal policy executes two ac-

17

tions that rely on the same hidden variable whose value is a clearly preferred value.
In other words, when executing optimal policy, it is not necessary to retain infor-
mation about the variables whose values were discovered to be clearly preferred
values.

Suppose the agent executes some action a whose outcome it is uncertain about at
a belief state X . Suppose also that the execution puts the agent into succ(X, a)b.
This means that the agent can deduce the fact that the value of the hidden variable
hS(X),a that represents the missing information about action a is b. During each
search, however, we assume that in the future the agent will not need to execute
action a or any other action whose outcome is dependent on the value of this hidden
variable (remember that the value of a single hidden variable is allowed to control
the outcomes of more than one action). In case it does need to execute such action
again, the search assumes that the value of the hidden variable is unknown again.
As a result, the search does not need to remember whether hS(X),a is unknown
or known to be equal to b. In fact, whenever the search needs to compute a Qv,g-
value of a stochastic action, it assumes that the values of all hidden variables are
unknown unless they were known to have non-preferred values in the belief state
Xp, the state the ComputePath function was called on. Under this assumption, the
calculation ofQv,g(X)-value (equation 1) becomes independent ofH(X) since any
hidden variable in H(X) whose value is different from the same variable in H(Xp)
can only be equal to b, and these are replaced by u. Thus, each search can be done
in the original graph G rather than the exponentially larger belief state-space. The
search no longer needs to keep track of H(·) part of the states, it operates directly
on S(·) states.

The ComputePath function, shown in Figure 6 performs this search. While the func-
tion is called on a belief state Xp, it searches backwards from a single state, Sgoal,
towards a single state S(Xp), and the states in the search state-space consist only
of variables in S. The search assumes that each action a has only one outcome.
It assumes that S(X) is an outcome of action a executed at S(X ′) if and only
if S(X) = S(succ([S(X ′);Hu(Xp)], a)

b) (line 7), where Hu(Xp) is defined as
H(Xp) but with each hidden variable equal to b set to u. This corresponds to set-
ting up a deterministic environment in which each action a executed at S(X ′) has a
single outcome corresponding to the value of the hidden variable hS(X′),a inH(Xp)
if it is known there and to the preferred value of hS(X′),a if it is unknown in H(Xp).
The heuristics need to be consistent with respect to this environment we have just
set up. The ComputePath function performs backward A* search in this state-space
with the exception of how g-values are computed.

To implement the assumption that the agent has no memory for the preferred val-
ues of the hidden variables that were previously observed we need to compute
Qv,g-values appropriately. For any state-action pair (S(X), a), a ∈ A(S(X)) the
ComputePath function now computes g-values based on Q̃v,g(S(X), a) instead. Let
Xu denote a belief state [S(X);Hu(Xp)]. We then define Q̃v,g(S(X), a) as:

18

Initially, v-values of states need to be non-negative and smaller than or equal to the costs of least-cost trajectories to a goal
under the assumption that all hidden variables are set to their clearly preferred values.

1 procedure ComputePath(Xp)

2 g(S(Xp)) =∞, OPEN = ∅;
3 g(Sgoal) = 0, besta(Sgoal) = null;
4 insert Sgoal into OPEN with g(Sgoal) + heur(S(Xp), Sgoal);
5 while(g(S(Xp)) > minS(X)∈OPEN g(S(X)) + heur(S(Xp), S(X)))

6 remove S(X) with smallest g(S(X)) + heur(S(Xp), S(X)) from OPEN;
7 for each action a and S(X′) s.t. S(X) = S(succ([S(X′);Hu(Xp)], a)b)

8 compute Q̃v,g(S(X′), a) according to formula 5;
9 if this search hasn’t seen S(X′) yet or g(S(X′)) > Q̃v,g(S(X′), a)

10 g(S(X′)) = Q̃v,g(S(X′), a), besta(S(X′)) = a;
11 insert/update S(X′) in OPEN with the priority g(S(X′)) + heur(S(Xp), S(X′));

12 procedure UpdateMDP(Xpivot)

13 X = Xpivot;
14 while (S(X) 6= Sgoal)
15 v(X) = g(S(X)), v(Xu) = g(S(X)), besta(X) = besta(S(X));
16 X = succ(X, besta(X))b;

17 procedure Main()

18 Xpivot = Xstart;
19 while (Xpivot! = null)

20 ComputePath(Xpivot);
21 UpdateMDP(Xpivot);
22 find state X on the current policy such that S(X) 6= Sgoal and it has

v(X) < EX′∈succ(X,besta(X))c(S(X), besta(X), S(X′)) + v(X′);
23 if found set Xpivot to X;
24 otherwise set Xpivot to null;

Fig. 6. PPCP: Planning via repeated efficient searches

Q̃v,g(S(X), a) = Qv,g(Xu, a),

where g(succ(Xu, a)b) = g(S(succ(Xu, a)b))
(5)

According to this formula, during the computation of theQ-value of action awe as-
sume that we execute this action at a belief stateXu, at which we are unaware of any
hidden variables with preferred values. In the calculation of Qv,g(X

u, a) (eq. 1) we
then use v-values of the corresponding belief states. The calculation of Qv,g(X

u, a)
also requires the g-value of succ(Xu, a)b. The search does not compute g-values for
full belief states. Instead, g(succ(Xu, a)b) is substituted with g(S(succ(Xu, a)b)).
This computation of Q̃v,g implements the assumption that the agent does not re-
member the values of the hidden variables whenever they are detected as b.

For example, in the grocery shopping problem described in section 3, this Com-
putePath function corresponds to searching the original graphG shown in Figure 2.
The search proceeds from Sgoal towards a state whoseAgent andBought variables
are given by S(Xp). The search is done in graph G but the prices of items are not
on sale if the corresponding values of SaleA or SaleB variables are known to be 0
in H(Xp). Otherwise, the prices are assumed to be unknown and the computation
of the g-values is done by taking the expectation according to equation 5. Apart
from how the g-values are computed, the ComputePath functions is identical to the
backward A* search performed on graph G.

19

(a) environment (b) corresponding belief state-space

(c) clear preferences

Fig. 7. The problem of robot navigation in a partially-known terrain

The Main and UpdateMDP functions (Figure 6) operate in the exact same way
as before with the exception that for each state X the UpdateMDP function up-
dates, it also needs to update the corresponding belief state Xu (line 15). Note that
the UpdateMDP function updates an actual policy that can be executed. Therefore,
the successors of besta(X) depend on the value of the hidden variable hS(X),a in
H(X), which is not necessarily equal to the one used to set up the search environ-
ment or the value of hS(X),a in H(Xu).

5.3 Example

We now demonstrate the operation of the PPCP algorithm as we have described
it in the previous section on the problem of robot navigation in a partially-known
terrain example shown in Figure 7. At the time of planning, the robot is in cell A4
and its goal is to go to cell F4. In black are shown cells that are untraversable.
There are two cells (shaded in grey) whose status is unknown to the robot: cell B5
and E4. For each, the probability of containing an obstacle is 0.5. In this example,
we restrict the robot to move only in four compass directions. Whenever the robot
attempts to enter an unknown cell, we assume the robot moves towards the cell,
senses it and enters it if it is free and returns back otherwise. The cost of each move
is 1, the cost of moving towards an unknown cell, sensing it and then returning back
is 2.

20

Figure 7(b) shows a belief state-space for the robot navigation problem. The fully
observed part of X , S(X) is the location of the robot, while the hidden part of
X , H(X), is the status of cells E4 and B5. For example, X4 = [R = B4;E4 =
u,B5 = 1], where R = B4 means that the robot is at cell B4 and E4 = u,B5 =
1 means that the status of cell E4 is still unknown and cell B5 is known to be
blocked. The robot navigation problem exhibits clear preferences since for each
sensing action there always exist two outcomes: a cell is blocked or unblocked and
the latter one is the preferred outcome. For example, suppose the robot state is
X = [R = D4;E4 = u,B5 = u] (Figure 7(c)). Then the action a = East has two
outcomes: Y1 = [R = D4;E4 = 1, B5 = u] and Y2 = [R = E4;E4 = 0, B5 = u].
The latter is the preferred outcome (Y2 = succ(X, a)b), and it satisfies the definition
of clear preferences because the robot can always move fromE4 back toD4 at cost
of 1, implying that 1+v∗(Y1) ≥ v∗(Y2) and therefore c(S(X), a, S(Y1))+v

∗(Y1) =
2 + v∗(Y1) ≥ 1 + v∗(Y2) = c(S(X), a, S(Y2)) + v∗(Y2).

Figures 8 and 9 show how PPCP solves the problem. In the left columns of
Figures 8 and 9 we show the environment each ComputePath function sets up
when executed on Xp (specified underneath the figure). Thus, when executed on
Xp = [R = D4;E4 = 1, B5 = u] in Figure 8(e), the ComputePath function
assumes cell E4 is blocked whereas cell B5 is free. We also show the heuristics
(shown as h-values), the g-values and the path from S(Xp) to Sgoal (shown in grey
dashed line) computed by the search. The heuristics are Manhattan distances (sum-
mation of x and y differences) from S(Xp) to the cell in question.

In the right column of each figure we show the current policy found by PPCP after
the UpdateMDP function incorporates the results of the most recent search, which
is shown in the left column in the same row. The states whose v-values are smaller
than what they are supposed to be according to their successors are outlined in
bold. These states are candidates for being Xpivot in the next search iterations. As
mentioned earlier, we exercise the following simple optimization in this example
and all experiments: whenever a state X is chosen as the next Xpivot, we backtrack
from X up along the policy until we encounter the first stochastic transition (or
Xstart, whichever comes first), at which point Xpivot is chosen to be the outcome
of this transition that resides on the same branch as X . For example, in Figure 9(d)
Xpivot is chosen to be state [R = B4;E4 = u,B5 = 1] (robot is at B4, cell E4 is
unknown and cell B5 is known to contain an obstacle) as a result of backtracking
from state [R = D4;E4 = u,B5 = 1].

In computing Q̃v,g, the v-values of belief states that do not yet exist are assumed
to be equal to the Manhattan distances to the goal. These distances are also used
to initialize the v-values of new belief states. The difference between the way the
ComputePath function computes g-values and the way A* computes them can be
seen well in Figure 8(g). There, the g-value of cell C4 is 8, which is 1+g(D4). The
g-value of cell D4, on the other hand, is 7, despite the fact that g(E4) = 1, and the
reason is that the v-value of the state [R = D4;E4 = 1, B5 = u] that corresponds

21

(a) environment (b) initial PPCP policy

(c) Xp = [R = A4;E4 = u,B5 = u] (d) PPCP policy after update

(e) Xp = [R = D4;E4 = 1, B5 = u] (f) PPCP policy after update

(g) Xp = [R = A4;E4 = u,B5 = u] (h) PPCP policy after update

Fig. 8. An example of PPCP operation

to the ”bad” outcome of going east at cell D4 is 10. The v-value of this state has
just been updated in the previous iteration (Figure 8(f)). When computing Q̃v,g

according to the equation 5, the ComputePath function accounts for this v-value.
As a result, the path the ComputePath function comes up in this iteration is going
through cell B5, which is different from the path that would have been produced
by running normal A* assuming all cells free. In fact, the latter path is exactly the
path computed by the ComputePath function in its first iteration (Figure 8(c)).

22

(a) Xp = [R = B4;E4 = u,B5 = 1] (b) PPCP policy after update

(c) Xp = [R = D4;E4 = 1, B5 = 1] (d) PPCP policy after update

(e) Xp = [R = B4;E4 = u,B5 = 1] (f) PPCP policy after update

(g) Xp = [R = A4;E4 = u,B5 = u] (h) final PPCP policy

Fig. 9. An example of PPCP operation (cont’d)

Figure 9(h) shows the policy that PPCP returns after it converges. In general, the
expected cost of the found policy is bounded from above by the cost of the policy in

23

which the robot always forgets the outcome of sensing if it was a preferred outcome.
If an optimal policy does not require remembering preferred outcomes, then the
policy returned by PPCP is also guaranteed to be optimal. In our example, this
memoryless property would mean that during each search, the planner assumes
that as soon as the robot successfully enters cell E4, for example, and therefore
finds out that is free, it resets back the status of cell E4 to an unknown cell. (The
non-preferred outcomes of sensing are never reset, and so if the robot finds that the
cell E4 is blocked, then this information is always used.)

While in the example, an optimal plan does not need to remember the status of any
cell the robot has successfully entered, it is possible to set up an environment when
it will be sub-optimal. An optimal policy for such environment would require the
robot to sense a cell but then come back from it, and use the fact that the cell is free
at a later time. In section 6.1 we will discuss how this memoryless assumption of
PPCP can be relaxed.

Independently of whether the memoryless property is satisfied or not however, the
algorithm is guaranteed to converge in a finite amount of time. It is important to
emphasize that forgetting the best outcomes of hidden variables is only happening
at the level of each search iteration (i.e., execution of the ComputePath function).
The Main function constructs a policy in which none of the states forget anything.
Thus, in Figure 6, the Main function calls UpdateMDP function that updates the
policy in the full belief state-space using the path found by each search iteration.
This UpdateMDP function iterates over the found path while retaining the values of
the hidden variables, both preferred and non-preferred (lines 15-16, Figure 6). This
can also be seen in the Figures 8-9 example, where the constructed policy does not
forget the preferred outcomes. Instead, forgetting these preferred outcomes happens
only at the level of each search iteration.

5.4 Theoretical Properties

We now present some of the theorems about the algorithm. They are supposed to
give a sense as to why the algorithm converges and what it converges to. All the
theorems together with their proofs can be found in [7].

The first few theorems relate the properties of the ComputePath function to the
properties of the (backward) A* search. For example, the following theorem, per-
haps unsurprisingly, states that each execution of the ComputePath function ex-
pands each state at most once, the same guarantee A* makes. (Here and in the
following when comparing with A* we assume the heuristics are consistent.)

Theorem 2 No state is expanded more than once during a single execution of the
ComputePath function.

24

The statement of the next theorem is once again very similar to the property (back-
ward) A* maintains: every state with f -value (which is the summation of g-value
and heuristics) smaller than or equal to the smallest f -value of the states in OPEN
has its g-value equal to its goal distance, the cost of a shortest path from the state
to the goal. While A* computes the cost of a shortest path, the ComputePath func-
tion computes the cost of a path which takes into account v-values of ”bad” out-
comes. To put it formally, let us re-define g∗-values for states S(X) (as opposed
to g∗-values defined in eq. 4 for states X in the full belief state-space). For given
v-values and a given pivot state Xp, g∗-values are the solution to the following
fixpoint equation:

g∗(S(X)) =

 0 if S(X) = Sgoal

mina∈A(S(X)) Q̃v,g∗(S(X), a) otherwise
(6)

These g∗-values are goal distances for the ComputePath function, and the g-values
of the computed states are equal to them.

Theorem 3 Assuming function v is non-negative, at line 5 in Figure 6, for any
state S(X) with (heur(S(X)) < ∞ ∧ g(S(X)) + heur(S(X)) ≤ g(S(X ′)) +
heur(S(X ′)) ∀S(X ′) ∈ OPEN), it holds that g(S(X)) = g∗(S(X)).

Given the terminating condition of the while loop in ComputePath and the fact that
h(S(Xp)) = 0 since heuristics are consistent, it is clear that after ComputePath
terminates g(S(Xp)) = g∗(S(Xp)). Also, same as in A*, the states on the found
path all have g- plus heur-values smaller than or equal to the g-value of the goal
of the search (S(Xp)). Therefore, they all are going to have their g-values equal to
their corresponding g∗-values according to theorem 3. The proof of the next theo-
rem uses this fact, since UpdateMDP sets v-values of the states on the found path to
their g-values. This theorem shows that updating the v-values of states on the tra-
jectory found by ComputePath makes states at least as consistent as the v-values of
the policy successors. In other words, the update removes negative Bellman errors
on the path returned by the ComputePath function.

Theorem 4 Suppose that before the ComputePath function is executed, for ev-
ery state X it is true that 0 ≤ v(X) ≤ v(Xu). Then after the UpdateMDP
returns, it holds that for each state X whose v-value was just updated by Up-
dateMDP function it holds that v(X) = 0 if S(X) = Sgoal and v(X) ≥
EX′∈succ(X,besta(X))(c(S(X), besta(X), S(X ′)) + v(X ′)) otherwise.

For the purpose of the following theorem let us also define vu-values which are
somewhat similar to v∗-values. vu(X) is the minimum expected cost of a policy
under which the preferred values of hidden variables are forgotten as soon as they
are observed. vu-values are upper bounds on the expected cost of the policy PPCP

25

returns.

vu(X) =

 0 if S(X) = Sgoal

mina∈A(S(X))Qvu,vu(Xu, a) otherwise

The next theorem says that v-values after each iteration can never decrease. The
reason is that each ComputePath function computes the lowest possible g-values,
namely g∗-values, for the states on the found path and then the UpdateMDP func-
tion sets v-values to them. Assuming properly initialized v-values, the proof that
after each iteration v-values can only increase can be done by induction on execu-
tions of the UpdateMDP functions. The next theorem also proves that v-values are
bounded from above by the corresponding vu-values. The proof of this statement
can also be done by induction based on the fact that the g∗-values the ComputePath
function sets g-values to can never be larger than vu-values as long v-values were
not exceeding corresponding vu-values before the ComputePath function was exe-
cuted.

Theorem 5 v-values of states are monotonically non-decreasing but are bounded
from above by the corresponding vu-values.

After each iteration of the algorithm the value of state Xp (and possibly others)
is corrected by either changing its besta pointer or making an increase in its v-
value. The number of possible actions is finite. The increases, on the other hand,
are bounded from below by a positive constant because the belief state-space is
finite (since we assumed perfect sensing and a finite number of possible values for
each hidden variable). Therefore, the algorithm terminates. Moreover, at the time of
termination v-value of every state on the policy is no smaller than the expectation
over the immediate cost plus v-value of the successors. Therefore, the expected cost
of the policy can not be larger than v(Xstart). This is summarized in the following
theorem.

Theorem 6 PPCP terminates and at that time the cost of the policy defined by
besta pointers is bounded from above by v(Xstart) which in turn is no larger than
vu(Xstart).

The final theorem gives the conditions under which the policy found by PPCP is
optimal. It states that the found policy is optimal if the memory about preferred
outcomes is not required in an optimal policy, notated by ρ∗. We use ρ∗(X) to
denote a pointer to the action dictated by policy ρ∗ at the belief state X .

Theorem 7 Suppose there exists a minimum expected cost policy ρ∗ that satisfies
the following condition: for every state X ∈ ρ∗ it holds that hS(X),ρ∗(X)(X) 6= b.
Then the policy defined by besta pointers at the time PPCP terminates is also a
minimum expected cost policy.

26

The condition hS(X),ρ∗(X)(X) 6= b means that whenever an agent executes a policy
action ρ∗(X) at state X , the hidden variable that controls the outcomes of this
action is not known to have a preferred outcome or there is no hidden variable that
controls the outcomes (i.e., there was never any uncertainty about the outcome of
the action). If this property holds for any action on the policy, then there is no need
for the agent to retain information about the values of hidden variables it has already
observed to have clearly preferred values. Typically, this means that the knowledge
about these hidden variables has been exercised immediately and there is no need
to remember them anymore. Another way of stating the memoryless property of
PPCP is that if no branch of an optimal policy executes two actions that rely on the
same hidden variable and assume its value is a clearly preferred value, then PPCP
is guaranteed to find an optimal policy.

6 Extensions and Optimizations

In the following first two sections we describe some useful extensions of PPCP
algorithm. The first extension makes PPCP applicable to problems for which no
acceptable policy exists that forgets the preferred outcomes of sensing. The second
extension makes PPCP useable on real-time systems by making it possible to in-
terleave planning with PPCP and execution. The last two sections describe general
optimizations of the PPCP algorithm that prove to be very effective for the path
clearance problem. Both optimizations leave the theoretical properties of the algo-
rithm such as convergence and optimality under certain conditions unchanged and
can be considered general optimizations of PPCP.

6.1 Overcoming memoryless property

Each search of PPCP assumes that the policy does not need to remember the out-
comes of sensing if they are preferred outcomes. In the Figure 8 example, for in-
stance, the robot senses a cell when trying to enter it. If it is free then the robot
enters it and does not really need to remember that it is free afterwards, its future
path does not involve entering the same cell again. It only needs to remember if
some cells turn out to be blocked, and policies generated by PPCP do retain this
information.

There are many problems, however, that do require remembering preferred out-
comes, and there are at least several simple approaches to relaxing the memoryless
property of PPCP. Before trying them though, perhaps the first thing one should
see is if it is enough to just make sure that sensing action is done as part of the
action that requires the knowledge of the status of the hidden variable. This is es-
sentially how we set up the robot navigation problem in Figure 8. The robot senses

27

a cell and then enters it or backs up in a single action. Therefore, the preferred out-
come of sensing is used in the same action as sensing itself and does not need to be
remembered.

A slightly more complex solution to this problem is to augment each state S(X)
with the last k preferred outcomes of sensing. During each search done by the
ComputePath function, each sensing operation results in a preferred outcome, as
before, but now the corresponding hidden variable is pushed onto the queue of
maximum size k. Thereafter, sensing does not need to be done for the value of this
hidden variable as long as it remains in the queue (i.e., does not get pushed out by
the new results of sensing). For example, in the robot navigation problem S(X) will
now consist of the location of the robot plus the last k locations that were sensed
by the robot. The addition of k last preferred outcomes of sensing makes each
execution of the ComputePath function more expensive, however. In particular, the
size of the state-space on which the search is done now grows roughly by a factor
of |H|k, where |H| is the number of hidden variables. Therefore, k should be set
to a small number such as two or three to keep the complexity of each search low.
This approach is good for the problems in which the results of most recent sensing
are more likely to be useful.

If the addition of k last preferred outcomes of sensing is still not sufficient, one can
also just split the vector of hidden variables H(X) into two sets: H(X) and H(X).
The first one can be hidden variables whose preferred outcomes the ComputePath
function does keep track of, same as in the pseudocode of the ComputePath func-
tion in Figure 5. The second set of hidden variables, H(X), are the ones whose
preferred outcomes the ComputePath function does not retain, same as in the pseu-
docode of the ComputePath function in Figure 6. The version of PPCP that uses
this approach generalizes PPCP given in sections 5.1 and 5.2. The pseudocode of
this generalized version is given in [7]. (In fact, this is the version all of the proofs
are derived for.) The approach of splitting H(X) into two sets is suitable for the
problems in which one can have a good idea about which preferred outcomes are
likely to be useful later and which are not.

6.2 Interleaving planning and execution

In many cases we would like to be able to interleave planning with execution. The
agent can then start executing whatever current plan it has and while executing it, a
planner can work on improving the plan. This way the agent does not need to wait
for the planner to fully converge.

Interleaving planning with PPCP with execution can be done as follows. The agent
first executes PPCP for several seconds. The loop in the Main function of PPCP is
then suspended (right after the UpdateMDP function returns on line 21, Figure 6),

28

and the agent starts following the policy currently found by PPCP as given by besta
pointers. During each agent move, Xstart state maintained by PPCP is updated to
the current state of the agent and the main loop of PPCP is resumed for another
few seconds. After it is suspended again, the policy that the agent currently follows
is compared against the policy that PPCP currently has and is updated to it only
if the latter has a higher probability of reaching a goal location. If the policy the
agent currently follows has a higher probability of reaching the goal then the agent
continues to follow it. This way we avoid changing policies every time PPCP de-
cides to explore a different policy but has not explored much of the outcomes on it
yet. The probabilities of reaching a goal for an acyclic policy can be computed in a
single pass over the states on the policy in their topological order starting with the
start state.

Once PPCP converges to a final policy, the agent can follow the policy without
re-executing PPCP again unless the agent deviates from its path due to actuation
errors. If the agent does deviate significantly from the plan generated by PPCP, then
PPCP can be used to re-plan. There is no need to re-plan from scratch. Instead,
Xstart is updated to the new state of the agent, the old policy is discarded, and the
main loop of PPCP is resumed. Note that the values of all state variables in PPCP
are preserved. It will then automatically re-use them to find a new policy from the
current agent position much faster than if PPCP was re-executed from scratch.

6.3 Reducing the number of search iterations

As mentioned previously, during each search whenever the ComputePath function
encounters action a executed at state S(X) and the outcome is not known according
to H(Xp), then in evaluating the equation 1, the ComputePath function uses the v-
values of non-preferred outcomes. The v-values are estimates of the goal distances.
If these non-preferred outcomes have never been explored by PPCP, then the v-
values are initial estimates of the cost-to-goal from them and are likely to be much
lower than what they should really be. This means that the ComputePath function
will return a path that uses the state-action pair (S(X), a), and only in the future it-
erations will PPCP find out that the v-value of these non-preferred outcomes should
really be higher and this state-action pair should have been avoided.

Figure 10 gives such example for the robot navigation in a partially-known environ-
ment problem. When solving the environment in Figure 10(a), PPCP at some point
invokes the ComputePath function on state Xp = [R = A4;C4 = 1, C6 = u].
Suppose that by this time PPCP has already computed the v-value of state [R =
B6;C4 = 1, C6 = 1] as 12. This is the cost of getting to the goal from cell B6 if
both cells C4 and C6 are blocked. During the current search, when computing the g-
value of cell C5, PPCP will query the v-value of state [R = C5;C4 = 1, C6 = 1] as
needed by the equation 1. If the v-value of this state has never been computed pre-

29

(a) environment (b) search w/o optimization (c) search with optimization

Fig. 10. The comparison of a search by PPCP (b) without the optimization vs. (c) with the
optimization described in section 6.3

viously, PPCP initializes it to some admissible estimate such as Manhattan distance
from C5 to the goal cell, which is 4 (Figure 10(b)). After evaluating equation 1, the
g-value of cell C5 becomes 6 (= 0.5 max(2 + 4, 1 + 5) + 0.5 max(1 + 5, 1 + 5)).
Consequently, the search returns the path shown in Figure 10(b) that goes through
cells C5 and C6.

One optimization we propose is to use the v-values of neighboring states to obtain
more informative v-values of states that have not been explored yet. Thus, in the
example, we can deduce that the v-value of state [R = C5;C4 = 1, C6 = 1] can
be at least 10 - the v-value of state [R = B6;C4 = 1, C6 = 1], which is 12, minus
an upper bound on the minimum cost of getting from [R = B6;C4 = 1, C6 = 1]
to state [R = C5;C4 = 1, C6 = 1], which we can easily compute as 2. More
formally, suppose we are interested in estimating the v-value of some state X . We
can then take some (small) region R of states around X whose H(·) part is the
same as in H(X). Using each state Y ∈ R and an upper bound cu(Y,X) on getting
from state Y to state X , we can then estimate v(X) as:

v(X) = maxY ∈R(v(Y)− cu(Y,X)) (7)

The upper bounds, cu(·, X) can be computed via a single backward Depth-First
Search from X . In some problems they can also be obtained a priori. To see that
the equation 7 is a valid update for v(X) consider the following trivial proof that
v(X) remains admissible (does not overestimate the minimum expected cost of
getting to goal) provided an admissible value v(Y) for each Y ∈ R. Let v∗(Y)
denote the minimum expected cost of getting to the goal from Y . Then:

v(Y) ≤ v∗(Y) ≤ cu(Y,X) + v∗(X)

Thus, v∗(X) is bounded from below by v(Y)− cu(Y,X) and by setting v(X) to it
we guarantee the admissibility of v(X).

30

The only change to the algorithm is that in Figure 6 on line 15 the v-value update is
now a maximum between the old v-value and the g-value because setting the initial
v-values according to the equation 7 can now sometimes result in v-values larger
than their estimates computed by the search (i.e., g-values). In other words, the new
line 15 is now as follows:

15 v(X) = max(v(X), g(S(X))), v(Xu) = max(v(Xu), g(S(X))), besta(X) = besta(S(X));

Figure 10(c) shows the operation of the ComputePath function that uses this opti-
mization. The g-value of cell C5 now is computed as 9 (= 0.5 max(2+10, 1+5)+
0.5 max(1+5, 1+5)) because it uses the v-value of state [R = B6;C4 = 1, C6 =
1] to better estimate the v-value of [R = C5;C4 = 1, C6 = 1] — the non-preferred
outcome of moving from C5 towards C6. Consequently, the search returns a very
different path and PPCP never has to explore the path through cells C5 and C6 that
would have been returned without the optimization. The proposed optimization can
substantially cut down on the overall number of search iterations PPCP has to do.
This significantly overcomes the expense of computing better estimates of v-values
for non-preferred outcomes.

6.4 Speeding up searches

PPCP repeatedly executes A*-like searches. As a result, much of the search ef-
forts are repeated and it should be beneficial to employ the techniques such as
D* [8], D* Lite [9] or Adaptive A* [10] that are known to significantly speed up
repeated A* searches. We use the last method because it guarantees not to perform
more work than A* search itself and more importantly requires little changes to our
ComputePath function. 1

The idea is simple and is as follows. This optimization computes more informed
heuristic values, heur(S(X)), that are used to focus each search. heur(S(X)) is
a heuristic value that (under) estimates a distance from S(Xp) to S(X) under the
assumption that all hidden variables whose values are unknown are set to b. The
heuristics need to be consistent. Initially, before any search iteration is done, we
compute the start distance (the cost of a least-cost path from S(Xstart) to the state
in question) of every state in S(·) assuming that execution of every stochastic ac-
tion results in a preferred outcome (in other words, the search is done on the de-
terministic environment where the value of each hidden variable is set to b). In the
Figure 8 example, it means that we compute the distance from cell A4 to every
other cell assuming cells E4 and B5 are free. We can do this computation via a

1 It would be an interesting direction for future work to investigate how the ComputePath
function PPCP uses can be made incremental in the same way D* and D* Lite extended
A* to an incremental version.

31

single Dijkstra’s search. Let us denote the computed value for each state S(X) by
heur∗(S(Xstart), S(X)).

The computed value heur∗(S(Xstart), S(X)) is a perfect estimate of the start dis-
tance in the environment where every hidden variable is set to b. Therefore it is
a good heuristic value to use when the ComputePath function is invoked with
Xp = Xstart. The problem, however, is that the ComputePath function is most
of the time called to find a path from some other state Xp 6= Xstart. We employ the
same principle as in [10] that allows us to use our heur∗-values anyway: for every
state S(X), its heuristic value heur(S(X)) can be improved as follows

heur(S(X)) = max(heur(S(X)), heur∗(S(Xstart), S(X))− heur∗(S(Xstart), S(Xp)))

(Note that S(X) does not retain the value of heur(S(X)) from one search to an-
other.) For the same reasoning as in [10], the updated heur(S(X)) is guaranteed
not to overestimate the actual distance from S(Xp) to S(X) and to remain a con-
sistent function.

7 Application to Path Clearance

The problem of path clearance is the problem of planning for a robot whose task is
to reach its goal as quickly as possible without being detected by an adversary [11,
12]. The robot does not know beforehand the precise locations of adversaries, but
has a list of their possible locations. When navigating, the robot can come to a
possible adversary location, sense it using its long range sensor and go around the
area if an adversary is detected or cut through this area otherwise.

The example in Figure 11 demonstrates the path clearance problem. Figure 11(b)
shows the traversability map of the satellite image of a 3.5km by 3km area shown
in Figure 11(a). The traversability map is obtained by converting the image into
a discretized 2D map where each cell is of size 5 by 5 meters and can either be
traversable (shown in light grey color) or not (shown in dark grey color). The robot
is shown by the blue circle and its goal by the green circle. Red circles are possible
adversary locations and their radii represent the sensor range of adversaries (100
meters in this example). The radii can vary from one location to another. The lo-
cations can be specified either manually or automatically in places such as narrow
passages. Each location also comes with a probability of containing an adversary
(50% for each location in the example): the likelihood that the location contains an
adversary. The probabilities can vary from one location to another.

The path the robot follows may change any time the robot senses a possible ad-
versary locations (the sensor range of the robot is 105 meters in our example). A

32

(a) 3.5 by 3.0 km satellite image (b) corresponding traversability map

Fig. 11. Path clearance problem

(a) planned path (b) actual path of the robot

Fig. 12. Solving path clearance problem with freespace assumption

planner, therefore, needs to reason about possible outcomes of sensing before the
execution and to generate a policy that dictates which path the robot should take
as a function of the outcome of each sensing. Ideally, the generated policy should
minimize the expected traversal distance. Finding such policy with guarantees on
its optimality, however, corresponds to planning with missing information about
the environment. In fact, the path clearance problem is very much equivalent to
the problem of planning for a robot navigating in a partially-known terrain. The
difference is that in the path clearance problem, detecting an adversary blocks a
large area resulting in a long detour. An adversary location has also a tendency to
be placed in such places that it blocks the whole path and the robot has to backup
and choose a totally different route. As a result, the detours can be much costlier
than in the case of navigation in a partially-known terrain, even when the amount
of uncertainty is much less.

Solving path clearance using assumptive planning To avoid the computational
complexity, a robot operating in a partially-known terrain often performs assump-
tive planning [8,13,14]. In particular, it often just follows a shortest path under the
assumption that all unknown areas in the environment are free unless the robot has
already sensed them otherwise. This is known as a freespace assumption [14]. The
robot follows such path until it either reaches its goal or senses new information
about the environment. In the latter case, the robot re-computes and starts follow-
ing a new shortest path under the freespace assumption.

33

The freespace assumption is also applicable to the path clearance problem. The
robot can always plan a path under the assumption that no adversary is present un-
less sensed otherwise. This assumption makes path clearance a deterministic plan-
ning problem and therefore can be solved efficiently. The fact that the robot ignores
the uncertainty about the adversaries, however, means that it risks having to take
long detours, and the detours in the path clearance problem tend to be longer than
in the problem of navigation in a partially-known terrain as we have previously
explained.

For example, Figure 12(a) shows the path computed by the robot that uses the
freespace assumption. According to the path, the robot tries to go through the pos-
sible adversary location A (shown in Figure 11(b)) as it is on the shortest route to
the goal. As the robot senses the location A, however, it discovers that the adver-
sary is present in there (the red circle becomes black after sensing). As a result, the
robot has to take a very long detour. Figure 12(b) shows the actual path traversed
by the robot before it reaches its goal.

Solving path clearance using PPCP planning Turns out that the path clearance
problem can be efficiently solved using PPCP. Same as in the robot navigation
in a partially-known terrain, in the path clearance problem, there are also clear
preferences for the values of unknowns. The unknowns are m binary variables, one
for each of the m possible adversary locations. The preference for each of these
variables is to have a value false: no adversary is present.

Differently from our simple example in Figure 7, however, in path clearance, the
robot has a long range sensor. It therefore may sense whether an adversary is present
before actually reaching the area covered by the adversary. As a result, it needs
to remember the preferred outcomes if it wants to sense adversaries from a long
distance. To address this, we augment S(X) with the last k = 3 preferred outcomes
of sensing as described in section 6.1.

Figure 13 shows the application of PPCP to the path clearance example in Fig-
ure 11. Before the robot starts executing any policy, PPCP plans for five seconds.
Figure 13(a) shows the very first policy produced by PPCP (in black color). It is a
single path to the goal, which in fact is exactly the same as the path planned by plan-
ning with the freespace assumption (Figure 12(a)). PPCP produced this path within
few milliseconds in its first iteration. At the next step, PPCP refines the policy by
executing a new search which determines the cost of the detour the robot has to take
if the first adversary location on the found path contains an adversary. The result
is the new policy (Figure 13(b)). PPCP continues in this manner and at the end of
five seconds allocated for planning, it generates the policy shown in Figure 13(c).
This is the policy that is passed to the robot for execution. Each fork in the policy is
where the robot tries to sense an adversary and chooses the corresponding branch.

As explained in section 6.2, we interleave planning with execution. Thus, while

34

(a) the first policy (b) the second policy

(c) after 5 secs (d) after 15 secs

(e) after 30 secs (PPCP converged) (f) actual path of the robot

Fig. 13. Solving path clearance problem with PPCP

the robot executes the plan, PPCP improves it relative to the current position of
the robot. Figure 13(d) shows the new position of the robot (the robot travels at
the speed of 1 meter per second) and the current policy generated by PPCP after
15 seconds since the robot was given its goal. Figure 13(e) shows the position of
the robot and the policy PPCP has generated after 30 seconds. At this point, PPCP
has converged and no more refinement is necessary. Note how the generated policy
makes the robot go through the area on its left since there are a number of ways to
get to the goal and therefore there is a high chance that one of them will be avail-
able. Unlike the plan generated by planning under freespace assumption, the plan
generated by PPCP avoids going through location A. Figure 13(f) shows the actual
path traversed by the robot. It is 4,123 meters long while the length of the trajectory
traversed by the robot that plans with freespace assumption (Figure 12(b)) is 4,922

35

of Percent Solved Time to Solution

unknowns Convergence (in secs) Cost

VI LAO* RTDP PPCP VI LAO* RTDP PPCP Same for All

6 92% 72% 100% 100% 7.7 43.9 0.4 0.1 112,284

10 — 36% 92% 100% — 123.1 19.7 0.2 117,221

14 — — 80% 100% — — 25.8 0.2 113,918

18 — — 48% 100% — — 52.3 0.7 112,884

(a) runs on small environments

of unknowns Traversal Cost

PPCP Freespace

1,000 (0.4%) 1,368,388 1,394,455

2,500 (1.0%) 1,824,853 1,865,935

5,000 (2.0%) 1,521,572 1,616,697

10,000 (4.0%) 1,626,413 1,685,717

25,000 (10.0%) 1,393,694 1,484,018

v
(X

st
a
rt
)

planning time in secs (log-scale)

(b) rate of convergence (c) runs on large environments

Fig. 14. Experimental Results

meters.

8 Experimental Analysis

8.1 Navigation in a partially-known terrain

In this section, we use the problem of robot navigation in unknown terrain to eval-
uate the performance of PPCP algorithm (without optimizations). In all of the ex-
periments we used randomly generated fractal environments that are often used to
model outdoor environments [15]. A robot was allowed to move in eight directions,
and the cost of each move in between two traversable cells was defined as the dis-
tance between the centers of the corresponding cells times the cost of traversing the
target cell (according to its fractal value). The cost of sensing and discovering an
initially unknown cell to be untraversable was set to the cost of moving towards the
cell and then moving back into the source cell.

36

In the first set of experiments we compared the performance of PPCP with three op-
timal algorithms: VI (value iteration), LAO* [16], and RTDP [3]. All three can be
used to plan in finite-size belief state-spaces, and the latter two have been shown to
be competitive with other planners in belief state-spaces [5]. To make VI more effi-
cient and scalable, we first performed a simple reachability analysis from the initial
belief state, and then ran VI only on the reachable portion of the belief state-space.
Both PPCP and LAO* used the following (admissible and consistent) heuristics to
estimate distances in between any two states with coordinates (x1, y1) and (x2, y2):

√
2 min(|x1 − x2|, |y1 − y2|) + (max(|x1 − x2|, |y1 − y2|)−min(|x1 − x2|, |y1 − y2|))

The same heuristics were also used to initialize the state values when running VI
and RTDP algorithms.

Figure 14(a) shows the time it takes to converge, the percent of solved environments
(the environments were declared to be unsolved when an algorithm ran for more
than 15 minutes), and the solution costs for the four algorithms for the environments
of size 17 by 17 cells. The number of unknown locations increases from 6 to 18 and
for each number the results are averaged over 25 environments.

The figure shows that PPCP converges faster than the other algorithms and the dif-
ferences in speeds grow large very fast with the increase in the number of unknown
locations. More importantly, PPCP was able to solve all environments in all cases.
(We do not give numbers for VI for more than 6 unknowns and LAO* for more
than 10 unknowns because they were running out of memory on almost all envi-
ronments. 2) Figure 14(a) also shows that in all the cases the solution returned by
PPCP turned out to be the same as the one returned by other algorithms, an optimal
solution. (An interesting and potentially important by-product of these results is an
implication that, at least in randomly generated environments, an optimal naviga-
tion in a partially-known environment does not really need to memorize the cells
that turn out to be free.) Finally, Figure 14(b) shows the rate of convergence (v-
value of start state) of the algorithms for one of the environments with 6 unknowns
(note the log scale of the time).

Besides the algorithms we compared PPCP against, there are other efficient algo-
rithms such as HDP [17], MCP [18], FF-replan [19] and FPG [20] that can be used
to plan in finite belief state-spaces. While we have not compared their performance,

2 In many domains, LAO* runs much better than VI. In our domain however, the perfor-
mance of LAO* was comparable to VI and much worse than that of RTDP. We believe that
the reason for this was the fact that the heuristics were not that informative since the costs
of cells were often much larger than ones. If the heuristics do not focus efforts well, then
VI with a reachability analysis may even become more efficient than LAO* due to its much
smaller overhead.

37

(a) A typical group I environment (b) A typical group II environment
Fig. 15. The example of environments used in testing and the plans generated by PPCP for
each.

we believe they would show the performance similar to the one exhibited by RTDP
and LAO* since they all have to perform planning in the belief state-spaces that are
exponential in the number of unknowns.

The second set of experiments shows that PPCP can be applied to the problem of
robot navigation in environments of large size and with large number of unknown
locations. Figure 14(c) compares the performance of PPCP against a strategy of
planning with freespace assumption. The comparison is done on the environments
of size 500 by 500 cells with the number of unknown locations ranging from 1,000
(0.4% of overall size) to 25,000 (10%). (The size of the corresponding belief state-
spaces therefore ranges from 250, 000 · 31,000 to 250, 000 · 325,000.) Unlike in the
previous experiments, in these ones the robot was moving and was given only 1
second to plan during each of its moves (for both planning with PPCP and planning
with freespace assumption). This amount of time was always sufficient for planning
with freespace assumption to generate a path. The PPCP planning, however, was
interleaved with execution as described in section 6.2. In most experiments, PPCP
converged to a final policy after several tens of moves. Figure 14(c) summarizes
the execution costs of two approaches averaged over 25 randomly generated fractal
environments for each row in the table. The results show that the cost of the trajec-
tory traversed by the robot with PPCP planning is consistently smaller than the one
traversed by the robot with freespace assumption planning.

8.2 Path clearance

In this section, we study the performance of PPCP algorithm on the path clearance
problem. In all of the experiments we used the extended version of PPCP that al-
lowed it to remember k = 3 last preferred outcomes (described in section 6.1). In
all of our experiments we again used randomly generated fractal environments to
model outdoor environments. On top of these fractal environments, however, we
also superimposed a number of randomly generated paths in between randomly
generated pairs of points. The paths were meant to simulate roads through forests

38

of Time to Convergence Converged

Expansions (secs) within 15 minutes

unoptimized PPCP 59,759,717 281.83 64%

optimized PPCP 11,911,585 60.81 92%

Table 1
The comparison of unoptimized and optimized PPCP on Group I environments. The con-
vergence times are given for the environments on which both algorithms converged within
15 minutes.

and valleys and that are usually present in outdoor terrains. Figures 15(a,b) show
typical environments that were used in our experiments. The lighter colors repre-
sent more easily traversable areas. All environments were of size 500 by 500 cells,
with the size of each cell being 5 by 5 meters.

The test environments were split into two groups. Each group contained 25 envi-
ronments. For each environment in the group I we set up 30 possible adversary
locations at randomly chosen coordinates but in the areas that were traversable.
(The size of the corresponding belief state-space is 250, 000 · 330.) Figure 15(a)
shows a plan the PPCP algorithm with both optimizations (described in sections 6.3
and 6.4) has generated after full convergence for one of the environments in group
I. For each environment in the group II we set up 10 possible adversary locations.
(The size of the corresponding belief state-space is 250, 000 · 310.) The coordinates
of these locations, however, were chosen such as to maximize the length of detours.
This was meant to simulate the fact that an adversary may often be set at a point
that would make the robot take a long detour. In other words, an adversary is often
set at a place that the robot is likely to traverse. Thus, the environments in group II
are more challenging. Figure 15(b) shows a typical environment from the group II
together with the plan generated by PPCP with both optimizations. The shown plan
has about 95% probability of reaching the goal (in other words, the robot executing
the policy has at most 5% chance of encountering an outcome for which the plan
had not been generated yet). In contrast to the plan in Figure 15(a), the plan for the
environment in group II is more complex - the detours are much longer - and it is
therefore harder to compute. For each possible adversary location the probability
of containing an adversary was set at random to a value in between 0.1 and 0.9.

We have run two sets of experiments on these environments. In the first set we
compared the unoptimized PPCP algorithm to the PPCP algorithm with the two
optimizations we have described in sections 6.3 and 6.4. Table 1 shows the results
for the group I averaged over all of the environments in it. The algorithms were run
until full convergence in order to obtain the comparison results. According to them
the number of states expanded by the unoptimized PPCP is about five times more
and its run-time is also close to five times longer than for the optimized PPCP. The
unoptimized PPCP has also converged on less environments within 15 minutes.

39

Overhead in Execution Cost

Group I Group II Group I Group II

no penalty no penalty with penalty with penalty

freespace 5.4% 5.2% 35.4% 21.6%

freespace2 0.5% 4.9% 4.8% 17.0%

freespace3 2.1% 4.3% 0.0% 12.7%

Table 2
The overhead in execution cost of navigating using planning with freespace assumption
over navigating using planning with PPCP

In the second set of experiments we compared the execution cost of the robot plan-
ning with our optimized PPCP versus the execution cost of the robot planning with
freespace assumption [14]. Unlike in the previous experiments, the robot was mov-
ing and had 5 seconds to plan while traversing 5 meter distance. This amount of
time was always sufficient for planning with freespace assumption to generate a
path. The PPCP planning, on the other hand, was interleaved with execution as we
have explained in section 6.2.

Table 2 shows the overhead in the execution cost incurred by the robot that plans
with the freespace assumption over the execution cost incurred by the robot that
uses PPCP for planning. The rows freespace2 and freespace3 correspond to mak-
ing a cost of going through a cell that belongs to a possible adversary location
twice and three times higher than what it really is, respectively. One may scale
costs in this way in order to bias the paths generated by the planner with freespace
assumption away from going through possible adversary locations. The results are
averaged over 8 runs for each of the 25 environments in each group. For each run
the true status of each adversary location was generated at random according to the
probability having an adversary in there.

The figure shows that planning with PPCP results in considerable execution cost
savings. The savings for group I environments were small only if biasing the
freespace planner was set to 2. The problem, however, is that the biasing factor
is dependent on the actual environment, the way the adversaries are set up and the
sensor range of an adversary. Thus, the overhead of planning with freespace for
the group II environments is considerable across all bias factors. In the last two
columns we have introduced penalty for discovering an adversary. It simulated the
fact that the robot runs the risk of being detected by an adversary when it tries to
sense it. In these experiments, the overhead of planning with freespace assumption
becomes very large. Also, note that the best bias factor for freespace assumption
has now shifted to 3 indicating that it does depend on the actual problem. Overall,
the results indicate that planning with PPCP can have significant benefits and do
not require any tuning.

40

9 Related Work

In general, planning with missing (incomplete) information about the environment
and with sensing is a special class of planning for Partially Observable Markov De-
cision Processes (POMDPs) [5]. As a result, theoretically, algorithms for solving
POMDPs are also applicable to solving the problem of planning with missing infor-
mation. Unfortunately, however, planning optimally for POMDPs, in general, and
planning with missing information, in particular, is known to be intractable [1, 2].
Various approximations techniques have been proposed instead [21–28]. For ex-
ample, grid-based approaches such as [28–30] solve POMDPs by putting special-
ized grids over infinite belief state-spaces, thereby converting the planning prob-
lem into solving a finite-size but usually very large MDP. Point-based approaches
such as [24, 26, 27, 31] approximate the value function over the whole belief space
by computing it for a relatively small set of reachable points in the belief space.
Factorization-based approaches such as [21–23] use factored representation of be-
lief states. Baral and Son have developed approximation techniques for solving
planning with missing information problems [32].

A number of approaches capable of planning with missing information have also
been based on the idea of using heuristic searches in one way or another [3, 5, 16–
18, 31, 33–35]. For example, LAO* [16] - one of the algorithms that we used in
our experiments - is an efficient combination of dynamic programming and A*-
like extensions developed specifically for planning in MDPs. It has also be shown,
however, to be able to find policies in the belief state-spaces [5]. MCP [18] can also
efficiently find optimal policies by running a series of A*-like searches in the belief
state-spaces with sparse stochasticity. HSVI [31] and FSVI [35] incorporate some
of the ideas behind heuristic searches into the point-based approaches. MAA* [34]
is an algorithm for solving finite-horizon decentralized POMDPs optimally using
A*-like processing. Similarly to how we used it in our experiments, RTDP [3] can
also be used to find solutions to POMDP problems by planning in belief state-
spaces [5].

Many of the abovementioned algorithms are capable of solving general POMDP
problems. It is important to realize however, that the problem we are addressing
in this paper is a much narrower (and simpler) than solving a general POMDP.
For one, we assume that the underlying problem is deterministic and there is only
uncertainty about some actions due to missing information about the environment.
We also assume sensing is perfect which entails a finite size belief state-space with
an acyclic optimal policy. Most importantly, however, we concentrate on the class
of problems for which there are clear preferences on the missing information. The
most relevant to our work, perhaps, is the algorithm in [36], developed for the
problem of robot navigation in a partially-known terrain. Similarly to our definition
of clear preferences, their planner has taken advantage of the idea that the cost of the
plan if a cell is free can not be larger than the cost of the plan if the cell is occupied.

41

Based on this idea, they proposed a clever planner that is capable of finding optimal
policies much faster than other optimal approaches.

The goal of our work, however, is to avoid dealing with the exponentially large
belief state-spaces altogether, which is required to guarantee the optimality of the
solution. This allows us to solve very efficiently and without running out of memory
large environments with a large amount of missing information. The cost is the
solution optimality guarantee, which can only be made under certain conditions.

10 Discussion and Future Work

Besides its efficiency and low memory requirements, the other important advan-
tages of the PPCP algorithm in our opinion are its simplicity and ease of implemen-
tation. PPCP is easy to implement because it is really just running a series of A*
searches on the instances of underlying problem, each of which is made determin-
istic by making the necessary assumptions about the pieces of missing information.
For example, in the path clearance problem, PPCP reduced to running a series of
A* searches (with the exception of how g-values are computed) to find paths in the
environments. Each environment had some adversaries present and some not, as
specified in Xp. Therefore, the implementation of the algorithm was rather trivial.

The main disadvantage of PPCP is that it can only provide optimality guarantees
under certain conditions (as described in section 5.4). It is our hope, however, that
it might be possible to derive general bounds on the sub-optimality of the solutions
returned by PPCP for the cases when these conditions are not satisfied. Interest-
ingly, in our experiments all of the solutions returned by PPCP were optimal when
compared on the environments small enough to be solved by algorithms that can
find provably optimal solutions.

Experimentally, PPCP works also for problems in which clear preferences are not
so clear. That is, even though a particular outcome of sensing is thought to be
a preferred outcome, it does not satisfy definition 1. In our opinion, it would be
valuable to analyze the behavior of PPCP for such problems from a theoretical
side. In particular, it would be interesting to derive a function that relates the sub-
optimality of PPCP to how much the clear preferences are not satisfied.

Finally, in this paper we concentrated on the notion of clear preferences on the
missing information. There are other common sources of uncertainty, however. One
direction for future research is therefore to explore whether the notion of clear
preferences can be extended to cover other types of uncertainty such as sensor noise
and uncertainty in actuation. For instance, in the latter case, one can also sometimes
name the preferred outcomes of actions. Thus, a robot moving along a cliff clearly
prefers not to slip. Sometimes, these preferences are clear and sometimes they can

42

be “nearly” clear (i.e., sometimes a slip outcome may turn out to be a good outcome
at the end). In either case, however, it would be interesting to investigate whether
clear preferences could be assumed and used to construct a planner capable of
dealing in real-time with large-scale problems exhibiting both the uncertainty in
actuation and the uncertainty in the environment.

11 Conclusions

Most of us are not very good in planning under uncertainty. When faced with such
a task, we never try to derive a plan that minimizes the expected cost. Instead, we
will typically reason only about few contingencies and assume that in all the other
cases the fortune will look upon us. The key to being able to do this, however, is
the fact that we usually know (or assume) ahead of time what is good for us.

One of the goals of this paper was to formally define this notion of clear preferences
on missing information about the environment. A second goal of the paper was to
show how the existence of these clear preferences can be used to construct an effi-
cient planner PPCP. By making use of these preferences, PPCP solves the planning
problem by running a series of deterministic A*-like searches in the space of the
original (deterministic) planning problem (and not in the belief state-space that is
exponential in the number of unknowns). The complexity of each of these searches
is the same as the complexity of planning after making some assumptions about
all of the unknowns, which is a common way to make real-time planning possible.
This makes PPCP highly efficient and scalable to large-scale planning problems
with large amounts of uncertainty.

In our theoretical analysis, we have shown that once converged, the plan returned
by PPCP is guaranteed to be optimal under certain conditions. In our experimen-
tal analysis, we have shown that PPCP can be successfully used for planning in
partially-known terrains and for solving the path clearance problem, both impor-
tant problems in robotics. For both problems, PPCP could scale to much larger
environments and with much more uncertainty than previously possible. We are
also currently working on applying PPCP to several other planning problems in
robotics including navigation under uncertainty in the position of moving objects
such as humans and planning an autonomous landing for unmanned helicopters
under uncertainty in the safety of multiple landing sites. We therefore hope that
this paper will stimulate more research on the notion of clear preferences on uncer-
tainty, will make available to others an efficient algorithm for probabilistic planning
with missing information, and finally, will encourage a wider use of planning under
uncertainty for real-time robots operating in large-scale environments.

43

12 Acknowledgements

This work was sponsored by the U.S. Army Research Laboratory, under con-
tract Robotics Collaborative Technology Alliance (contract number DAAD19-01-
2-0012). The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Government.

References

[1] C. H. Papadimitriou, J. N. Tsitsiklis, The complexity of Markov decision processses,
Mathematics of Operations Research 12 (3) (1987) 441–450.

[2] C. Baral, V. Kreinovich, R. Trejo, Computational complexity of planning and
approximate planning in the presence of incompleteness, Artificial Intelligence 122 (1-
2) (2000) 241–267.

[3] A. Barto, S. Bradtke, S. Singh, Learning to act using real-time dynamic programming,
Artificial Intelligence 72 (1995) 81–138.

[4] P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic determination of
minimum cost paths, IEEE Transactions on Systems, Science, and Cybernetics SSC-
4 (2) (1968) 100–107.

[5] B. Bonet, H. Geffner, Planning with incomplete information as heuristic search
in belief space, in: S. Chien, S. Kambhampati, C. Knoblock (Eds.), Proc. 6th
International Conf. on Artificial Intelligence Planning and Scheduling, AAAI Press,
Breckenridge, CO, 2000, pp. 52–61.

[6] M. Puterman, Markov decision processes : Discrete stochastic dynamic programming,
John Wiley and Sons, 1994.

[7] M. Likhachev, A. Stentz, PPCP: The proofs, Tech. Rep., University of Pennsylvania,
Philadelphia, PA (2008).

[8] A. Stentz, The focussed D* algorithm for real-time replanning, in: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 1995.

[9] S. Koenig, M. Likhachev, D* Lite, in: Proceedings of the Eighteenth National
Conference on Artificial Intelligence (AAAI), 2002.

[10] S. Koenig, M. Likhachev, Adaptive A*, in: Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2005, poster
abstract.

[11] M. Likhachev, A. Stentz, Goal directed navigation with uncertainty in adversary
locations, in: Proceedings of the International Conference on Intelligent Robots and
Systems (IROS), 2007.

44

[12] M. Likhachev, A. Stentz, Path clearance using multiple scout robots, in: Proceedings
of the Army Science Conference (ASC), 2006.

[13] I. Nourbakhsh, M. Genesereth, Assumptive planning and execution: a simple, working
robot architecture, Autonomous Robots Journal 3 (1) (1996) 49–67.

[14] S. Koenig, Y. Smirnov, Sensor-based planning with the freespace assumption, in:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 1996.

[15] A. Stentz, Map-based strategies for robot navigation in unknown environments,
in: AAAI Spring Symposium on Planning with Incomplete Information for Robot
Problems, 1996.

[16] E. Hansen, S. Zilberstein, LAO*: A heuristic search algorithm that finds solutions with
loops, Artificial Intelligence 129 (2001) 35–62.

[17] B. Bonet, H. Geffner, Faster heuristic search algorithms for planning with uncertainty
and full feedback, in: Proceedings of the 18th International Joint Conference on
Artificial Intelligence, 2003, pp. 1233–1238.

[18] M. Likhachev, G. Gordon, S. Thrun, Planning for markov decision processes with
sparse stochasticity, in: Advances in Neural Information Processing Systems (NIPS)
17, Cambridge, MA: MIT Press, 2004.

[19] S. Yoon, A. Fern, R. Givan, FF-replan: A baseline for probabilistic planning, in:
Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), 2007.

[20] O. Buffet, D. Aberdeen, The factored policy gradient planner, in: Proceedings of the
Fifth International Planning Competition (IPC), 2006.

[21] C. Boutilier, D. Poole, Computing optimal policies for partially observable decision
processes using compact representations, in: Proceedings of the National Conference
on Artificial Intelligence (AAAI-96), AAAI Press / The MIT Press, Portland, Oregon,
USA, 1996, pp. 1168–1175.

[22] X. Boyen, D. Koller, Tractable inference for complex stochastic processes, in:
Proceedings of the International Conference on Uncertainty in Artificial Intelligence
(UAI), 1998, pp. 33–42.

[23] C. Guestrin, D. Koller, R. Parr, Solving factored pomdps with linear value functions,
in: Proceedings of the Workshop on Planning under Uncertainty and Incomplete
Information, 2001.

[24] K. Poon, A fast heuristic algorithm for decision-theoretic planning, Ph.D. thesis, The
Hong Kong University of Science and Technology (2001).

[25] N. Roy, G. Gordon, Exponential family pca for belief compression in pomdps, in:
Advances in Neural Information Processing Systems, 2002.

[26] J. Pineau, G. Gordon, S. Thrun, Point-based value iteration: An anytime algorithm
for pomdps, in: Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

45

[27] M. Spaan, N. Vlassis, A point-based POMDP algorithm for robot planning, in:
Proceedings of the IEEE International Conference on Robotics and Automation, 2004,
pp. 2399–2404.

[28] B. Bonet, An ε-optimal grid-based algorithm for partially obserable markov decision
processes, in: Proceedings of the International Conference on Machine Learning,
2002.

[29] W. S. Lovejoy, Computationally feasible bounds for partially observed markov
decision processes, Operations Research 39 (1) (1991) 162–175.

[30] R. Zhou, E. A. Hansen, An improved grid-based approximation algorithm for pomdps,
in: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2001.

[31] T. Smith, R. G. Simmons, Heuristic search value iteration for POMDPs, in:
Proceedings of the International Conference on Uncertainty in Artificial Intelligence
(UAI), 2004.

[32] Baral, Son, Approximate reasoning about actions in presence of sensing and
incomplete information, in: Proceedings of International Logic Programming
Symposium (ILPS), 1997.

[33] R. Washington, BI-POMDP: Bounded, incremental, partially-observable markov-
model planning, in: Proceedings of the European Conference on Planning (ECP),
1997, pp. 440–451.

[34] F. C. D. Szer, S. Zilberstein, Maa*: A heuristic search algorithm for solving
decentralized pomdps, in: Proceedings of the International Conference on Uncertainty
in Artificial Intelligence (UAI), 2005.

[35] G. Shani, R. I. Brafman, S. E. Shimony, Forward search value iteration for pomdps, in:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
2007.

[36] D. Ferguson, A. Stentz, S. Thrun, PAO* for planning with hidden state, in: Proceedings
of the 2004 IEEE International Conference on Robotics and Automation, 2004.

46

