
PPCP: Efficient Probabilistic Planning with Clear Preferences in Partially-Known
Environments ∗

Maxim Likhachev
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
maxim+@cs.cmu.edu

Anthony Stentz
The Robotics

Carnegie Mellon University
Pittsburgh, PA 15213
axs@rec.ri.cmu.edu

Abstract

For most real-world problems the agent operates in onlypar-
tially-known environments. Probabilistic planners can reason
over the missing information and produce plans that take into
account the uncertainty about the environment. Unfortunately
though, they can rarely scale up to the problems that are of in-
terest in real-world. In this paper, however, we show that for
a certain subset of problems we can develop a very efficient
probabilistic planner. The proposed planner, called PPCP, is
applicable to the problems for which it is clear what values
of the missing information would result in the best plan. In
other words, there exists a clear preference for the actual val-
ues of the missing information. For example, in the problem
of robot navigation in partially-known environments it is al-
ways preferred to find out that an initially unknown location
is traversable rather than not. The planner we propose ex-
ploits this property by using a series of deterministic A*-like
searches to construct and refine a policy in anytime fashion.
On the theoretical side, we show that once converged, the pol-
icy is guaranteed to be optimal under certain conditions. On
the experimental side, we show the power of PPCP on the
problem of robot navigation in partially-known terrains. The
planner can scale up to very large environments with thou-
sands of initially unknown locations. We believe that this is
several orders of magnitude more unknowns than what the
current probabilistic planners developed for the same prob-
lem can handle. Also, despite the fact that the problem we
experimented on in general does not satisfy the conditions for
the solution optimality, PPCP still produces the solutions that
are nearly always optimal.

Introduction
For many real-world problems the agent operates in an en-
vironment that is only partially-known. Examples of such
problems include robot navigation in partially-known ter-
rains, route planning under partially-known traffic condi-

∗This work was sponsored by the U.S. Army Research Labora-
tory, under contract Robotics Collaborative Technology Alliance
(contract number DAAD19-01-2-0012). The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory or the U.S.
Government. The authors would also like to thank Dave Ferguson
for his very helpful comments on the paper.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tions, air traffic management with changing weather condi-
tions and others. Ideally, in all of these situations, to produce
a plan, a planner needs to reason over the probability dis-
tribution over all the possible instances of the environment.
Such planning corresponds to POMDP planning, however,
and is known to be hard (PSPACE-complete (Papadimitriou
& Tsitsiklis 1987)).

For many of these problems, however, one can clearly
name beforehand the best values of the variables that repre-
sent the unknowns in the environment. We call such values
preferredvalues. Thus, in the robot navigation problem, for
example, it is always preferred to find out that an initially un-
known location is traversable rather than not. In the problem
of route planning under partially-known traffic conditions, it
is always preferred to find out that there is no traffic on the
road of interest. And in the air traffic management problem
it is always preferred to have a good flying weather. In this
paper we give an algorithm called PPCP (Probabilistic Plan-
ning with Clear Preferences) that is able to scale up to very
large problems by exploiting this property.

PPCP constructs and refines a plan by running a series of
deterministic searches. By making a certain approximating
assumption about the problem, PPCP keeps the complexity
of each search low and independent of the amount of the
missing information. Each search is extremely fast, and run-
ning a series of fast low-dimensional searches turns out to be
much faster than solving the full problem at once since the
memory requirements are much lower. While the assump-
tion the algorithm makes does not need to hold for the found
plan to be valid, it is guaranteed to be optimal if the assump-
tion holds.

We demonstrated the power of PPCP on the problem of ro-
bot navigation in partially-known environments. We found
that it was able to scale up to large (0.5km by 0.5km) envi-
ronments with thousands of initially unknown locations.

The Motivating Problem
The motivation for our research was the problem of robot
navigation in partially-known terrains. In outside environ-
ments it is often the case that the robot has only a rough map
of the environment (for example, a map based on a satellite
image as shown in figure 1(b), or a map constructed from
previous scans of the environment). In such a map many
places can not be classified as traversable or untraversable

(a) XUV (b) satellite image (c) planning map

(d) navigation with (e) policy (f) navigation with
freespace assumption produced by PPCP PPCP planning

Figure 1:Robot Navigation in Partially-Known Terrain

with full certainty. Instead, for each such place we can esti-
mate a probability of it being obstructed.

Figure 1(a) shows the ground vehicle used to motivate
this task. The robot has a number of sensors on it including
a laser rangefinder for scanning environment. Figure 1(b)
shows a satellite image of the environment in which the ro-
bot operates. It covers the area of 1km by 1km area. This
image is post-processed to produce a discretized 2D envi-
ronment of size 1000 by 1000 cells. Each cell is associated
with the cost of traversability. Figure 1(c) shows a simpler
planning map of size 200 by 200 cells. In this particular ex-
ample, 5 cells are assumed to be unknown (shown as raised
white rectangles) and are associated with the probability of
them being obstructed; we assume independence between
unknown squares. To simplify the problem we only con-
sider two possibilities for each of these cells: traversable or
not.1 (The described PPCP algorithm, however, can handle
more than two possible values for each unknown cell.) The
cells that are occupied by obstacles are shown in dark red
color. The robot is located in the near right corner of the
map, while its goal is at the far end of the map.

The robot must take the unknown locations into account
when planning for its route. It may plan a path through
these locations, but it risks having to turn back if its way
is blocked. For example, figure 1(d) shows the path tra-
versed by the robot if it always assumes that unknown loca-
tions are free unless sensed otherwise and plans and follows
the shortest trajectories under this assumption (freespace as-
sumption (Koenig & Smirnov 1996)). The trajectory tra-
versed by the robot is shown in white, while the planned
path is shown in black. We assume that the sensing range
of the robot is 1 meter, which corresponds to 1 cell. We
also assume perfect sensors: after the robot senses a square
it knows its true state forever after.

In contrast to planning with freespace assumption, fig-
ure 1(e) shows the full policy after convergence (in black

1This assumption also models better the problem of robot nav-
igation in the environment where some locations can be occupied
by adversaries. We are actually more interested in this problem,
but use the problem of robot navigation in partially-known terrains
to illustrate the algorithm since it is easier to describe, is highly
related and is also an important problem in robotics.

color) produced by our algorithm. This policy happens to be
optimal: it minimizes the expected distance traveled by the
robot before it reaches its destination. According to the pol-
icy the robot should first try the path on its left since there are
4 unknown locations in there and therefore there is a higher
chance that one of them will be free and the robot will be
able to go through. Figure 1(f) shows the actual trajectory
traversed by the robot after it executed the policy.

Designing a good policy for the robot is a POMDP plan-
ning problem, which are in general very hard to solve. In the
POMDP representation, a state is the position of the robot
and the true status of each unknown location. The position of
the robot is observable, and the hidden variables are whether
each unknown place is occupied. The number of states is (#
of robot locations)×2# of unknown places. So, the number of
states is exponential in the number of unknown places and
therefore quickly becomes very large. We can define, how-
ever, clear preferences for the unknown locations: it is al-
ways preferred to have an unknown location to be free rather
than obstructed. This makes our PPCP algorithm applicable
to the problem.

Notations and Assumptions
In this section we introduce some notations and formalize
mathematically the class of problems our algorithm is suit-
able for. Throughout the rest of the paper, to help understand
various concepts we will often explain them on the prob-
lem of robot navigation in partially-known environments de-
scribed in the previous section.

We assume that the environment is fully deterministic and
can be modeled as a graph. That is, if we were to know
the true value of each variable that represents the missing
information about the environment then there would be no
uncertainty in an outcome of any action. There are certain
elements of the environment, however, whose status we are
uncertain about and which affect the outcomes (and/or pos-
sible costs) of one or more actions. In the following we re-
phrase this mathematically.

Let X be a full state-vector (a belief state). We assume
it can be split into two sets of variables,S(X) andH(X):
X = [S(X);H(X)]. S(X) is the set of variables whose
values are always observed such as the position of the robot
in the robot navigation problem.H(X) is the set of (hidden)
variables that initially represented the missing information
about the environment. These correspond to the status of
unknown cells in the robot navigation problem. We will use
hi(X) to denote anith variable inH(X). The variables in
H(X) are never moved toS(X) and vice versa. We restrict
the variables inS(X) and H(X) to be discrete and with
a finite range of possible values.Xstart is used to denote
the start state: in the robot navigation problem, the value of
S(Xstart) is the start location of the robot, while the values
of all the variables inH(Xstart) are unknown. The goal of
the planner is to construct a policy that reaches any stateX
such thatS(X) = Sgoal, whereSgoal is given, while mini-
mizing the expected cost of execution. In the robot naviga-
tion problem,Sgoal corresponds to the goal location of the
robot.

We assume perfect sensing.For the sake of easier nota-
tion let us introduce an additional valueu for each variable
hi ∈ H. The settinghi(X) = u at stateX will represent the
fact that the value ofhi is unknown atX. If hi(X) 6= u, then
the true value ofhi is known atX since sensing is perfect:
if a cell has ever been sensed its status is known. In the ro-
bot navigation problem, we assume that the robot’s sensors
are noise free: it can sense the status of a neighboring cell
exactly.

We assume at most one hidden variable per action.Let
A(S(X)) represent the set of actions available at any state
Y whoseS(Y) = S(X). (The actions are associated with
S(X) since the values of variables inH(X) affect purely the
costs and outcomes of actions.) Each actiona ∈ A(S(X))
taken at stateX may have one or more outcomes. If the exe-
cution of an action does not depend on any of the variableshi

whose values are not yet known, then there is only one out-
come ofa. Otherwise, there can be more than one outcome.
We assume that each such action can not be controlled by
more than one hidden variable. The value of one hidden vari-
able can affect more than one action though. We usehS(X),a

to represent the hidden variable that controls the outcomes
and costs of actiona taken atS(X). By hS(X),a = null
we denote the case when there was never any uncertainty
about the outcome of actiona taken at stateX. In other
words, none of the variables inH control the outcomes ofa
executed atS(X), and since the underlying environment is
deterministic, there is only one outcome.

The set of possible outcomes of actiona taken atS(X) is
notated bysucc(S(X), a), whereasc(S(X), a, S(Y)) such
that S(Y) ∈ succ(S(X), a) denotes the cost of the ac-
tion and the outcomeS(Y). The costs are assumed to be
bounded from below by a (small) positive constant. Some-
times, we will need to refer to the set of successors in the
belief state-space. In these cases we will use the notation
succ(X, a) to denote the set of belief statesY such that
S(Y) ∈ succ(S(X), a) and H(Y) is the same asH(X)
except forh(S(X),a)(Y) which becomes known if it was un-
known atX and remains the same otherwise. The function
PX,a(Y), the probability distribution of outcomes of action
a executed in stateX, follows the probability distribution of
hS(X),a, P (hS(X),a). Once actiona was executed in stateX
the actual value ofhS(X),a can be deduced since we assumed
the sensing is perfect and the environment is deterministic.

In our robot navigation problem each unknown cell is rep-
resented by its own hidden variable. Whenever the robot
senses a previously unobserved location, the value of the
corresponding variablehi transitions fromu to either 0 or
1 with the appropriate probabilities and remains there after-
wards.

We assume independence of the hidden variables.For
the sake of efficient planning we assume that the variables
in H can be considered independent of each other and there-
foreP (H) =

∏|H|
i=1 P (hi). In the robot navigation problem,

the independence assumption corresponds to the assumption
that the status of an unknown cellhi is independent of the
status of an unknown cellhj , i 6= j. In reality, of course,
they may depend on each other, especially if they are ad-

jacent. Nevertheless, their independence is commonly as-
sumed in order to ease the planning process.

We assume clear preferences on the values of the hid-
den variables are available.We require that for each vari-
ablehi ∈ H we are given its preferred value, denoted by
b (i.e., best). This value must satisfy the following prop-
erty. Given any stateX and any actiona such thathS(X),a

is not known (that is,hS(X),a(X) = u), there exists a
successor stateX ′ such thathS(X),a(X ′) = b andX ′ =
argminY ∈succ(X,a)c(S(X), a, S(Y))+v∗(Y), wherev∗(Y)
is the expected cost of executing an optimal policy at stateY
(Def. 1). We will use the notationsucc(X, a)b (i.e., the best
successor) to denote the stateX ′ whosehS(X),a(X ′) = b
if hS(X),a(X) = u and whosehS(X),a(X ′) = hS(X),a(X)
otherwise. (In the latter case it may even be possible that
hS(X),a(X ′) 6= b. There were simply no other outcomes of
actiona executed atX sincehS(X),a(X) 6= u.) Our robot
navigation problem clearly satisfies this property since for
each sensing action there always exist two outcomes: a cell
is blocked or unblocked. The latter is clearly the preferred
outcome.

Algorithm
In the first section we present a planner that constructs a
provably optimal policy using a series of A*-like searches in
the belief state-space. Each search, however, can be very ex-
pensive since the size of the belief state-space is exponential
in the number of hidden variables. In the following section
we show how the planner can be extended to use a series of
searches in the underlying environment instead.

Optimal Planning via Repeated Searches
The algorithm works by executing a series of deterministic
searches. We will first describe how the deterministic search
works and then we will show how the main function of the
algorithm uses these searches to construct the first policy and
then refine it.

The function that does the deterministic search is called
ComputePath and is shown in figure 2. The search is done
in the belief state-space. It is very similar to (backward) A*.
It also computesg-values of states, uses heuristic values to
focus its search and performs repeated expansions of states
in the order ofg-value plus heuristic (known asf -values).
The meaning of theg-values and the criteria that the solution
minimizes, however, is somewhat different from the ones in
A* search. Suppose that for each stateX we have an esti-
matev(X) of v∗(X), the minimum expected cost of reach-
ing a goal from the state. These estimates are provided to the
search by the main function of the algorithm (they are always
non-negative). Every state-action pairX ′ anda ∈ A(X ′)
then has aQv,g(X ′, a) > 0 associated with it that is cal-
culated from the action costsc(S(X ′), a, S(Y)) and value
estimatesv(Y) for all statesY ∈ succ(X ′, a) and theg-
value for stateY b = succ(X ′, a)b. Qv,g(X ′, a) is defined
as follows:

Qv,g(X′, a) =
∑

Y ∈succ(X′,a)
PX′,a(Y)·

max(c(S(X′), a, S(Y)) + v(Y),

c(S(X′), a, S(Y b)) + g(Y b))

(1)

Suppose for a moment that the providedv-values are
equal to the correspondingv∗-values andg(Y b) is also
equal tov∗(Y b). SinceY b = succ(X ′, a)b is the pre-
ferred outcome of actiona, according to the definition 1,
c(S(X ′), a, S(Y)) + v(Y) ≥ c(S(X ′), a, S(Y b)) + g(Y b)
for any outcomeY ∈ succ(X ′, a). As a result, the equa-
tion 1 corresponds to the standard definition of an undis-
countedQ-value (in terms of costs, rather than rewards
though): the expectation over the sum of the immediate cost
plus the value of an outcome. The plan that has the minimum
expected cost of reaching the goal would then be given by a
simple strategy of always picking an action with the smallest
Qv,g(X, a) at any current stateX.

In reality,v-values may not necessarily be equal to the cor-
respondingv∗-values at first. Nevertheless, the search com-
putesg-values based onQv,g-values. In particular, suppose
g∗-values are the solution to the following fixpoint equation:

g
∗
(X) =

{
0 if S(X) = Sgoal
mina∈A(S(X)) Qv,g∗ (X, a) otherwise (2)

Then, settingv-values to be equal to the correspondingv∗-
values, would also makeg∗(X) = v∗(X) for every stateX.
Also, because of the max operator in the equation 1 and the
fact that all costs are positive,Qv,g∗(X ′, a) is always strictly
larger thang∗(succ(X ′, a)b), independently of whetherv-
values are correct estimates or not. Thus, the trajectory from
any state with a finiteg∗-value to a goal state is guaranteed to
be acyclic and reach the goal, when constructed by always
picking an actionamin = argmina∈A(S(X))Qv,g∗(X, a) at
any stateX and then moving into the statesucc(X, amin)b.
This acyclicity allows us to perform a deterministic search
which computes and sets theg-values of relevant states to
their correspondingg∗-values.

The ComputePath function, shown in figure 2, searches
backwards in the belief state-space from goal states towards
the stateXp on which it was called. (It is important to re-
member that the number of goal states in the belief state-
space is exponential in the number of hidden variables, since
a goal state is any stateX whoseS(X) = Sgoal.) The tra-
jectory the search returns uses only the transitions that corre-
spond to either deterministic actions or preferred outcomes
of stochastic actions. This is implemented by starting off the
search with all and only those goal states, whose hidden vari-
ables assume unknown or preferred values if they are also
unknown inH(Xp) and values equal to the corresponding
hidden variables inH(Xp) otherwise (lines 3– 6). The first
time ComputePath is called,Xp is Xstart and therefore all
the hidden variables are unknown. For the subsequent calls,
however,Xp can be a different state, and the values of some
of its hidden variables can be known.

Just like (backward) A* search, the ComputePath func-
tion expands states in the order ofg plus heuristic and dur-
ing each expansion (lines 8– 13) updates theg-value and
besta pointer of each predecessor state of the expanded
state. It differs from A* though in thatg-values are com-
puted according to formula 1. Heuristics are used to fo-
cus the search. Since the search is backward, they esti-
mate the cost of following a least-cost trajectory fromXp

to state in question. In the pseudocode, a user-provided

1 procedure ComputePath(Xp)

2 g(Xp) = ∞; OPEN= ∅;
3 for everyH whose every elementhi satisfies:

[(hi = u
∨

hi = b)
∧

hi(Xp) = u] OR [hi = hi(Xp)
∧

hi(Xp) 6= u]

4 X = [Sgoal; H];
5 g(X) = 0, besta(X) = null;
6 insertX into OPENwith g(X) + heur(Xp, X);
7 while(g(Xp) > minX′∈OPENg(X′) + heur(Xp, X′))
8 removeX with smallestg(X) + heur(Xp, X) from OPEN;
9 for each actiona and stateX′ s.t.X ∈ succ(X′, a)

10 computeQv,g(X′, a) according to formula 1;
11 if this search hasn’t seenX′ yet org(X′) > Qv,g(X′, a)

12 g(X′) = Qv,g(X′, a); besta(X′) = a;
13 insert/updateX′ in OPENwith the priorityg(X′) + heur(Xp, X′);

14 procedure UpdateMDP(Xpivot)

15 X = Xpivot;
16 while (S(X) 6= Sgoal)
17 v(X) = g(X);
18 X = succ(X, besta(X))b;

19 procedure Main()

20 Xpivot = Xstart;
21 while(Xpivot! = null)

22 ComputePath(Xpivot);
23 UpdateMDP(Xpivot);
24 find stateX on the current policy such thatS(X) 6= Sgoal and it has

v(X) < EX′∈succ(X,besta(X))c(S(X), besta(X), S(X′))+ v(X′);
25 if found setXpivot to X;
26 otherwise setXpivot to null;

Figure 2: Optimal planning via repeated searches

functionheur(Xp, X) returns a heuristic value for stateX.
These values need to be consistent in the following sense:
heur(Xp, Xp) = 0 and for every other stateX and action
a ∈ A(S(X)) heur(Xp, succ(X, a)b) ≤ heur(Xp, X) +
c(S(X), a, S(succ(X, a)b)). This reduces to normal consis-
tency requirement on heuristics (Nilsson 1971) if the state-
space is fully deterministic, that is, no information is missing
at the time of planning. As an example, in the robot naviga-
tion problem the heuristicheur(Xp, X) can be an estimate
of the distance fromS(Xp) to S(X) under the assumption
that all cells are free. Alternatively, a more informative but
much harder to compute heuristic can assume that only all
unknown cells are free.

The search finishes as soon as theg-value of Xp is no
larger than the smallest priority of states inOPEN. (A min
operator over empty set is assumed to return infinity. The
same assumption was made about the expectation operator
on line 24.) Once the ComputePath function exits the fol-
lowing holds for the path fromXp to a goal state constructed
by always picking actionbesta(X) at any stateX and then
moving into the statesucc(X, besta(X))b if besta(X) has
more than one outcome: theg-value of every state on the
trajectory is equal to theg∗-value of the same state.

The Main function of the algorithm (shown in figure 2)
uses this fact by repeatedly executing searches on states that
reside on the current policy (defined bybesta pointers) and
whosev-values are smaller than what they should be ac-
cording to thev-values of the successors of the policy ac-
tion (line 24). The initialv-values need to be smaller than
or equal to the costs of least-cost trajectories to a goal un-
der the assumption that all hidden variables are equal tob (a
simple initialization to zero suffices). After each search, Up-
dateMDP function updates thev-values of the states on the

path found by the search by setting them to theirg-values,
which, as mentioned above, are equal to their correspond-
ing g∗-values. On one hand, this increasesv-values and is
guaranteed to correct the error between thev-values of these
states and thev-values of their successors in the policy. On
the other hand,g∗-values are bounded from above byv∗-
values as long asv-values do not overestimatev∗-values.
As a result, the algorithm converges, and at that time, the
states on the found policy have theirv-values equal to their
v∗-values and the found policy itself is optimal (the proof of
this and other theorems can be found in (Likhachev & Stentz
2003)):
Theorem 1 The Main function in figure 2 terminates and
at that time the expected cost of the policy defined bybesta
pointers is given byv(Xstart) and is equal to the minimum
expected cost of reaching a goal fromXstart.

Scaling Up Searches
Each search in the version of the algorithm just presented
can be very slow because it operates in the belief state-space
whose size is exponential in the number of hidden variables.
We now describe the final version of PPCP that addresses
this inefficiency. At a high level, the main idea is to perform
each search in the underlying environment rather than the
full belief state-space. In other words, a search state consists
of S(X) variables only and the size of the search state-space
is therefore independent of the amount of missing informa-
tion.

The following assumption allows us to do this. Suppose
the agent executes some actiona whose outcome it is un-
certain about at a belief stateX. Suppose also that the exe-
cution puts the agent intosucc(X, a)b. This means that the
agent can deduce the fact that the value of the hidden vari-
ablehS(X),a that represents the missing information about
actiona is b. During each search, however, we assume that
in the future the agent will not need to execute actiona or
any other action whose outcome is dependent on the value
of this hidden variable (remember that the value of a single
hidden variable is allowed to control the outcomes of more
than one action). In case it does need to execute such action
again, the search assumes that the value of the hidden vari-
able is unknown again. As a result, the search does not need
to remember whetherhS(X),a is unknown or known to be
equal tob. In fact, whenever the search needs to query av-
value of any non-preferred outcome of any stochastic action
in order to computeQv,g-value, it assumes that the values of
all hidden variables are unknown unless they were known to
have non-preferred values in the belief stateXp, the state the
ComputePath function was called on. Under this assump-
tion, the calculation ofQv,g(X)-value (equation 1) becomes
independent ofH(X) since any hidden variable inH(X)
whose value is different from the same variable inH(Xp)
can only be equal tob, and these are replaced byu. Thus,
each search can be done in the actual underlying environ-
ment rather than the exponentially larger belief state-space.
The search no longer needs to keep track ofH(·) part of the
states, it operates directly onS(·) states.

The ComputePath function, shown in figure 3 performs
this search. While the function is called on a belief stateXp,

1 procedure ComputePath(Xp)

2 g(S(Xp)) = ∞; OPEN= ∅;
3 g(Sgoal) = 0, besta(Sgoal) = null;
4 insertSgoal into OPENwith g(Sgoal) + heur(S(Xp), Sgoal);
5 while(g(S(Xp)) > minS(X)∈OPENg(S(X)) + heur(S(Xp), S(X)))
6 removeS(X) with smallestg(S(X)) + heur(S(Xp), S(X)) from OPEN;
7 for each actiona andS(X′) s.t.S(X) = S(succ([S(X′); Hu(Xp)], a)b)

8 computeQ̃v,g(S(X′), a) according to formula 3;
9 if this search hasn’t seenS(X′) yet org(S(X′)) > Q̃v,g(S(X′), a)

10 g(S(X′)) = Q̃v,g(S(X′), a); besta(S(X′)) = a;
11 insert/updateS(X′) in OPENwith the priority

g(S(X′))+heur(S(Xp), S(X′));

12 procedure UpdateMDP(Xpivot)

13 X = Xpivot;
14 while (S(X) 6= Sgoal)
15 v(X) = g(S(X)); v(Xu) = g(S(X)); besta(X) = besta(S(X));
16 X = succ(X, besta(X))b;

17 procedure Main()

18 Xpivot = Xstart;
19 while(Xpivot! = null)

20 ComputePath(Xpivot);
21 UpdateMDP(Xpivot);
22 find stateX on the current policy such thatS(X) 6= Sgoal and it has

v(X) < EX′∈succ(X,besta(X))c(S(X), besta(X), S(X′)) + v(X′);
23 if found setXpivot to X;
24 otherwise setXpivot to null;

Figure 3: PPCP: Planning via repeated efficient searches

it searches backwards from a single state,Sgoal, towards a
single stateS(Xp), and the states in the search state-space
consist only of variables inS. The search assumes that
each actiona has only one outcome. It assumes thatS(X)
is an outcome of actiona executed atS(X ′) if and only
if S(X) = S(succ([S(X ′);Hu(Xp)], a)b) (line 7), where
Hu(Xp) is defined asH(Xp) but with each hidden variable
equal tob set tou. This corresponds to setting up a determin-
istic environment in which each actiona executed atS(X ′)
has a single outcome corresponding to the value of the hid-
den variablehS(X′),a in H(Xp) if it is known there and to
the preferred value ofhS(X′),a if it is unknown inH(Xp).
The heuristics need to satisfy normal consistency require-
ments (Nilsson 1971) with respect to this environment we
have just set up. The ComputePath function performs back-
ward A* search in this state-space with the exception of how
g-values are computed.

To implement the assumption that the agent has no mem-
ory for the preferred values of the hidden variables that were
previously observed we need to computeQv,g-values appro-
priately. For any state-action pair(S(X), a), a ∈ A(S(X))
the ComputePath function now computesg-values based
on Q̃v,g(S(X), a) instead. LetXu denote a belief state
[S(X);Hu(Xp)]. We then definẽQv,g(S(X), a) as:

Q̃v,g(S(X), a) = Qv,g(Xu, a),

whereg(succ(Xu, a)b) = g(S(succ(Xu, a)b))
(3)

According to this formula during the computation of the
Q-value of actiona we assume that we execute this ac-
tion at a belief stateXu, at which we are unaware of any
hidden variables with preferred values. In the calculation
of Qv,g(Xu, a) (eq. 1) we then usev-values of the cor-
responding belief states. The calculation ofQv,g(Xu, a)
also requires theg-value of succ(Xu, a)b. The search
does not computeg-values for full belief states. Instead,
g(succ(Xu, a)b) is substituted withg(S(succ(Xu, a)b)).

This computation ofQ̃v,g implements the assumption that
the agent does not remember the values of the hidden vari-
ables whenever they are detected asb.

In the robot navigation problem this ComputePath func-
tion corresponds to searching from the robot’s goal location
towards the cell whosex, y position is given byS(Xp). The
search is done in a 2D gridworld that corresponds to the envi-
ronment, where each unknown cell is assumed to be blocked
if it is known to be such inH(Xp) and is assumed to be free
otherwise. This search differs from the backward version of
A* search only in howg-values are computed.

The Main and UpdateMDP functions (figure 3) operate in
the exact same way as before with the exception that for each
stateX the UpdateMDP function updates, it also needs to
update the corresponding belief stateXu (line 15). Note that
the UpdateMDP function updates an actual policy that can
be executed. Therefore, the successors ofbesta(X) depend
on the value of the hidden variablehS(X),a in H(X), which
is not necessarily equal to the one used to set up the search
environment or the value ofhS(X),a in H(Xu).

Theoretical PropertiesWe now present several theorems
about the algorithm. First, let us definevu-values which are
somewhat similar tov∗-values.

v
u
(X) =

{
0 if S(X) = Sgoal
mina∈A(S(X)) Qvu,vu (Xu, a) otherwise

vu(X) is the minimum expected cost of a policy under
which the preferred values of hidden variables are forgot-
ten as soon as they are observed with a small caveat. The
preferred values of hidden variables must remain the same
independently of whether we forget the preferred values of
hidden variables or not.

The first two theorems show several basic properties of
the algorithm.
Theorem 2 Every time UpdateMDP exits, for each stateX
whosev-value was just updated by UpdateMDP function
it holds that v(X) = 0 if S(X) = Sgoal and v(X) ≥
EX′∈succ(X,besta(X))(c(S(X), besta(X), S(X ′)) + v(X ′))
otherwise.

Theorem 3 v-values of states are monotonically non-
decreasing but are bounded from above by the correspond-
ing vu-values.

After each iteration of the algorithm the value of state
Xp (and possibly others) is corrected by either changing
its besta pointer or making an increase in itsv-value. The
number of possible actions is finite. The increases, on the
other hand, are bounded from below by a positive constant
because the belief state-space is finite (since we assumed
perfect sensing and a finite number of possible values for
each hidden variable). Therefore, the algorithm terminates.
Moreover, at the time of terminationv-value of every state
on the policy is no smaller than the expectation over the im-
mediate cost plusv-value of the successors. Therefore, the
expected cost of the policy can not be larger thanv(Xstart).
This is summarized in the following theorem.
Theorem 4 PPCP terminates and at that time the cost of
the policy defined bybesta pointers is bounded from above
byv(Xstart) which in turn is no larger thanvu(Xstart).

(a) environment (b) initial PPCP policy

(c) Xp = [R = A4; (d) PPCP policy after update
E4 = u, B5 = u]

(e)Xp = [R = D4; (f) PPCP policy after update
E4 = 1, B5 = u]

(g) Xp = [R = A4; (h) PPCP policy after update
E4 = u, B5 = u]

Figure 4:An example of PPCP operation

The final theorem states that the found policy is optimal
if the memory about preferred outcomes is not required in
an optimal policy. We useπ(X) to denote a pointer to the
action dictated by policyπ at the belief stateX.
Theorem 5 Suppose there exists a minimum expected cost
policy π∗ that satisfies the following condition: for every
pair of statesX1 ∈ π∗ andX2 ∈ π∗ such thatX2 can be
reached with a non-zero probability fromX1 when following
policy π∗ it holds that the hidden variablehS(X1),π

∗(X1) is
not the same ashS(X2),π

∗(X2) or both actions are indepen-
dent of the values of the hidden variables. Then the policy
defined bybesta pointers at the time PPCP terminates is
also a minimum expected cost policy.

Example
Figures 4 and 5 demonstrate the operation of the presented
PPCP algorithm on a simple instance of the robot navigation
in partially-known terrain problem. The robot is in the cell
A4 and its goal is the cellF4. There are two cells (shaded
in grey) whose status is unknown to the robot: cellB5 and
E4. For each, the probability of containing an obstacle is
0.5. In this example, we restrict the robot to move only in
four compass directions. Whenever the robot attempts to en-
ter an unknown cell, we assume the robot moves towards
the cell, senses it and enters it if it is free and returns back
otherwise. The cost of each move is1, the cost of moving to-
wards an unknown cell, sensing it and then returning back is
2. With this setup of costs, a clear preference is for each un-
known cell to be traversable. These preferences satisfy def.

(a)Xp = [R = B4; (b) PPCP policy after update
E4 = u, B5 = 1]

(c) Xp = [R = D4; (d) PPCP policy after update
E4 = 1, B5 = 1]

(e)Xp = [R = B4; (f) PPCP policy after update
E4 = u, B5 = 1]

(g) Xp = [R = A4; (h) final PPCP policy
E4 = u, B5 = u]

Figure 5:An example of PPCP operation (cont’d)

1 required by PPCP algorithm. In the left column of each
figure we show the environment each ComputePath function
sets up when executed onXp (shown underneath the fig-
ure). We also show the heuristics (shown ash-values), the
g-values and the path fromS(Xp) to Sgoal (shown in grey
dotted line) computed by the search. In the right column of
each figure we show the current policy found by PPCP af-
ter the UpdateMDP function incorporates the results of the
most recent search (the search shown in the left column in
the same row). The states whosev-values are smaller than
what they are supposed to be according to their successors
are outlined in bold. These states are candidates for being
Xpivot in the next search iterations. We exercise the follow-
ing simple optimization in this example and all experiments:
whenever a stateX is chosen as the nextXpivot, we back-
track fromX up along the policy until the first stochastic
transition (orXstart, whichever comes first), at which point

of Percent Solved Time to Solution

unknowns Convergence (in secs) Cost

VI RTDP PPCP VI RTDP PPCP Same for All

6 92% 100% 100% 7.7 0.4 0.1 112,284

10 — 92% 100% — 19.7 0.2 117,221

14 — 80% 100% — 25.8 0.2 113,918

18 — 48% 100% — 52.3 0.7 112,884

(a) runs on small environments
of unknowns Traversal Cost

PPCP Freespace

1,000 (0.4%) 1,368,388 1,394,455

2,500 (1.0%) 1,824,853 1,865,935

5,000 (2.0%) 1,521,572 1,616,697

10,000 (4.0%) 1,626,413 1,685,717

25,000 (10.0%) 1,393,694 1,484,018

v
(X

st
a
rt

)

planning time in secs (log-scale)

(b) rate of convergence (c) runs on large environments

Figure 6:Experimental Results

Xpivot is chosen to be the outcome of this transition that re-
sides on the same branch asX. For example, in figure 5(d)
Xpivot is chosen to be state[R = B4;E4 = u, B5 = 1]
(robot is atB4, cell E4 is unknown and cellB5 is known
to contain an obstacle) as a result of backtracking from state
[R = D4;E4 = u, B5 = 1]. In computingQ̃v,g, the v-
values of belief states that do not yet exist are assumed to
be equal to the Manhattan distances to the goal. These dis-
tances are also used to initialize thev-values of new belief
states. Figure 5(h) shows the policy that PPCP returns after it
converges. While it is optimal in this case, it is possible to set
up an environment when it will be sub-optimal. An optimal
policy for such case would require the robot to sense a cell
but then come back from it, and use the fact that the cell is
free at a later time. Another example, where the robot needs
to remember the status of sensed cells is when it has a long
range sensor. A simple solution for this scenario is to in-
corporate intoS(·) the information about the last few sensed
cells. While it certainly increases the size of the state-space
that each search needs to handle, based on our recent exper-
iments PPCP can still scale up to very large environments
with large number of unknowns.

Experimental Study
We have used the problem of robot navigation in unknown
terrain to evaluate the performance of our algorithm. In all
of the experiments we used randomly generated fractal en-
vironments that are often used to model outdoor environ-
ments (Stentz 1996). In the first set of experiments we com-
pared the performance of our algorithm with two optimal
algorithms: VI (value iteration) with a simple reachability
analysis and RTDP (Barto, Bradtke, & Singh 1995), both
planning in the belief state-space. Figure 6(a) shows the time
it takes to converge, the percent of solved environments (the
environments were declared to be unsolved when an algo-
rithm ran out of memory) and the solution cost for the three
algorithms for the environments of size 17 by 17 cells. The
number of unknown locations increases from 6 to 18 and for
each number the results are averaged over 25 environments.
The figure shows that PPCP converges faster than the other

algorithms and the differences in speeds grow large pretty
fast with the increase in the number of unknown locations.
More importantly, PPCP was able to solve all environments
in all cases. (We don’t give numbers for VI for more than
6 unknowns because it was running out of memory on al-
most all environments.) Figure 6(a) also shows that in all
the cases the solution returned by PPCP turned out to be the
same as the one returned by RTDP and VI, an optimal so-
lution. Finally, Figure 6(b) shows the rate of convergence
(v-value of start state) of the algorithms for one of the envi-
ronments with 6 unknowns (note the log scale of the time).
Besides RTDP there are other efficient algorithms such as
LAO* (Hansen & Zilberstein 2001), HDP (Bonet & Geffner
2003) and MCP (Likhachev, Gordon, & Thrun 2004) that
can be used to plan in finite belief state-spaces. While we
have not compared their performance we believe they would
show the performance similar to the one exhibited by RTDP
since they allhaveto perform planning in the belief state-
spaces that are exponential in the number of unknowns.

The second set of experiments shows that PPCP can be ap-
plied to the problem of robot navigation in environments of
large size and with large number of unknown locations. Fig-
ure 6(c) compares the performance of PPCP against a strat-
egy of planning with freespace assumption. The comparison
is done on the environments of size 500 by 500 cells with the
number of unknown locations ranging from 1,000 (0.4% of
overall size) to 25,000 (10%). Unlike in the previous exper-
iments, in these ones the robot was moving and was given
only 1 second to plan during each of its moves. This amount
of time was always sufficient for planning with freespace as-
sumption to generate a path. The PPCP planning, however,
was interleaved with execution in the following way. The
robot executed PPCP for 1 second. After 1 second, the loop
in the Main function of PPCP was suspended (right after the
UpdateMDP function returns) and the robot started follow-
ing the policy currently found by PPCP. During each robot
move, theXstart state maintained by PPCP was updated to
the robot’s current state and the main loop of PPCP was re-
sumed for 1 second. After it was suspended again, the pol-
icy that the robot follows was updated based on the results
of PPCP planning. After a number of robot moves, PPCP
algorithm usually converged to a final policy, at which point
PPCP was no longer executed by the robot. Figure 6(c) sum-
marizes the execution costs of two approaches averaged over
25 randomly generated fractal environments for each row in
the table. The results show that the cost of the trajectory
traversed by the robot with PPCP planning is consistently
smaller than the one traversed by the robot with freespace
assumption planning.

Related Work
In general, planning under uncertainty about the environ-
ment corresponds to the problem of planning for partially
observable Markov Decision Processes (POMDPs). Plan-
ning optimally for POMDPs is known to be hard (PSPACE-
complete (Papadimitriou & Tsitsiklis 1987)), and various
approximations techniques have been recently proposed in-
stead (Roy & Gordon 2002; Pineau, Gordon, & Thrun 2003;
Spaan & Vlassis 2004). The problem we are addressing in

this paper is a narrower one as we assume that the under-
lying problem is deterministic and there is only uncertainty
about some actions due to missing information about the en-
vironment. We also assume sensing is perfect which entails
a finite size belief state-space. This type of problem was
formalized well in (Ferguson, Stentz, & Thrun 2004) in the
framework of robot navigation in unknown terrain. In fact,
their work is most relevant to ours since their planner has
also taken advantage of the idea that the value of the plan
with a free unknown cell can not be larger than the value of
the plan without it. They proposed a clever planner that is
capable of finding optimal policies several orders of mag-
nitude faster than other optimal approaches. The goal of the
present work, however, is to avoid dealing with the exponen-
tially large belief state-spaces altogether, which is required
to guarantee the optimality of the solution. Our aim was to
develop an anytime algorithm that can handle very large en-
vironments with the substantial amount of uncertainty at the
expense of the solution optimality guarantee.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming.Artificial Intelligence72:81–
138.
Bonet, B., and Geffner, H. 2003. Faster heuristic search algo-
rithms for planning with uncertainty and full feedback. InPro-
ceedings of the 18th International Joint Conference on Artificial
Intelligence, 1233–1238.
Ferguson, D.; Stentz, A.; and Thrun, S. 2004. PAO* for planning
with hidden state. InProceedings of the 2004 IEEE International
Conference on Robotics and Automation.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops.Artificial Intelligence
129:35–62.
Koenig, S., and Smirnov, Y. 1996. Sensor-based planning with the
freespace assumption. InProceedings of the IEEE International
Conference on Robotics and Automation (ICRA).
Likhachev, M., and Stentz, A. 2003. PPCP algorithm with formal
analysis. Tech. Rep., Carnegie Mellon University, Pittsburgh, PA.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. Planning for
markov decision processes with sparse stochasticity. InAdvances
in Neural Information Processing Systems (NIPS) 17. Cambridge,
MA: MIT Press.
Nilsson, N. 1971.Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The complex-
ity of Markov decision processses.Mathematics of Operations
Research12(3):441–450.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for pomdps. InProceedings of the
International Joint Conference on Artificial Intelligence (IJCAI).
Roy, N., and Gordon, G. 2002. Exponential family pca for be-
lief compression in pomdps. InAdvances in Neural Information
Processing Systems.
Spaan, M., and Vlassis, N. 2004. A point-based POMDP algo-
rithm for robot planning. InProceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 2399–2404.
Stentz, A. 1996. Map-based strategies for robot navigation in
unknown environments. InAAAI Spring Symposium on Planning
with Incomplete Information for Robot Problems.

