
Planning with Adaptive Dimensionality for Mobile Manipulation

Kalin Gochev
University of Pennsylvania

Alla Safonova
University of Pennsylvania

Maxim Likhachev
Carnegie Mellon University

Abstract— Mobile manipulation planning is a hard problem
composed of multiple challenging sub-problems, some of which
require searching through large high-dimensional state-spaces.
The focus of this work is on computing a trajectory to safely
maneuver an object through an environment, given the start
and goal configurations. In this work we present a heuristic
search-based deterministic mobile manipulation planner, based
on our recently-developed algorithm for planning with adaptive
dimensionality. Our planner demonstrates reasonable perfor-
mance, while also providing strong guarantees on completeness
and suboptimality bounds with respect to the graph represent-
ing the problem.

Keywords: Mobile Manipulation Planning, Planning Algo-
rithms, Heuristic Search

I. INTRODUCTION

In recent years robotics research has moved from the
controlled predictable industrial environments towards the
cluttered, uncontrolled and unpredictable domestic environ-
ments, where robots need to be able to safely perform a
variety of tasks. These tasks often involve manipulating var-
ious objects. As a result, manipulation planning for mobile
robots is a popular research field, which presents many
challenges due to its inherently high-dimensional nature.
Planners for mobile manipulation are required to produce
synchronized trajectories for both the robot’s movable base
and its manipulator, both of which have multiple degrees of
freedom.

Mobile manipulation planning can be broken down into
several sub-problems such as planning how to grasp an
object or put it down, and maneuvering it safely through
the environment to a desired location. The focus of this
work is on the latter. Namely, the motion planning for the
robot’s manipulator and movable base from a given start
configuration to a given goal configuration.

Search-based planning algorithms are often used in many
areas of robotics, such as navigation planning [1], [2].
There are several reasons for the popularity of search-based
planners. First, they typically provide strong guarantees on
completeness and bounds on suboptimality. Second, a num-
ber of anytime search algorithms have been developed, that
find the best solution they can within a given time [3], [4],
[5]. Third, a number of search algorithms can re-use previous
search efforts to find new solutions faster [6], [7]. Finally,
treating the problem as a cost-minimization problem allows
one to formulate and incorporate complex cost functions and
constraints into the planning process. Although search-based

This research was sponsored by ONR grant N00014-09-1-1052, DARPA
CSSG program D11AP00275 and the Army Research Laboratory Cooper-
ative Agreement Number W911NF-10-2-0016.

planners have been shown to work well for static manipula-
tion tasks [8], they typically have not been used for mobile
manipulation planning for high-DOF robotic manipulators,
due to the high dimensionality of the planning problem.
In this paper, we present a heuristic search-based planner
utilizing our previously-developed algorithm for planning
with adaptive dimensionality, which employs dimensionality-
reduction techniques and an informative heuristic to speed
up the search process. Our planner demonstrates reasonable
performance, while also providing provable guarantees on
completeness and solution suboptimality bounds with respect
to the graph that encodes the problem.

II. RELATED WORK

The most common approaches to solving mobile manipu-
lation planning problems have been based on the probabilis-
tic sampling-based planning algorithms such as probabilistic
roadmaps [9], RRT [10] and its variants [11], [12], [13].
These planners perform extremely well in most instances and
are able to very quickly identify feasible solutions to high-
dimensional planning problems. However, their performance
can suffer significantly in very cluttered environments with
narrow solution spaces. Moreover, sampling-based planners
are focused on finding any feasible trajectory, rather than
minimizing the cost of the solution. As such, they may often
produce solutions of unpredictable length involving jerky
motions that may be hard for the manipulator to follow and
the solutions can be inconsistent from one planning episode
to another. To remedy this problem, various smoothing
techniques have been used. Although often helpful, smooth-
ing may fail in highly cluttered environments. In addition,
sampling-based planning algorithms only provide probabilis-
tic guarantees on completeness and solution suboptimality
bounds. A notable exception is the RRT* algorithm [14],
which asymptotically converges to an optimal solution.

Researchers have also developed behavior-based ap-
proaches for mobile manipulation [15], [16]. Those tech-
niques utilize state-machines and pre-scripted behaviors to
complete a given manipulation task and usually do little or
no high-dimensional planning. Such approaches are usually
targeted at completing very specific tasks, such as opening
of doors, and don’t provide a robust framework for solving
general mobile manipulation problems. These approaches
do not provide any guarantees on completeness or solution
suboptimality bounds.

Some approaches decrease the dimensionality of the prob-
lem by planning in the joint state-space of the object being
manipulated and the robot’s base, and then running an

Fig. 1: The 11-DOF of the PR2 robot used by our planner.
(1: shoulder pan; 2: shoulder lift; 3: shoulder roll; 4: elbow flex; 5:
forearm roll; 6: wrist flex; 7: wrist roll; 8,9,10: base XY position
and heading; 11: torso height)

inverse-kinematics solver to produce trajectories for the base
and the manipulator [17]. However, these approaches do
not perform well in cluttered environments, in which the
computed arm motions may not be feasible for execution by
the robot.

Our approach also reduces the dimensionality of the
problem in order to decrease planning times, but it does so by
constructing and searching a significantly smaller state-space,
consisting of both high-dimensional and low-dimensional
states. Our planner differs from other mobile manipulation
planners in that it uses a deterministic search algorithm and
provides provable deterministic guarantees on completeness
and plan suboptimality bounds with respect to the graph
representing the problem.

III. PROBLEM DEFINITION

We are assuming that the planning problem is represented
by a discretized finite state-space S of dimensionality d and
a set of transitions T = {(Xi, Xj)|Xi, Xj ∈ S}. Each pair
(Xi, Xj) ∈ T corresponds to a feasible transition between
the corresponding state vector values and is associated with a
positive cost c(Xi, Xj). We will use the notation π(Xi, Xj)
to denote a path from state Xi to state Xj , and its cost will be
denoted by c(π(Xi, Xj)). We will use π∗(Xi, Xj) to denote
a least-cost path. Thus, we have an edge-weighted graph G
with a vertex set S and edge set T . The goal of the planner
is to find a least-cost path in G from a given start state XS to
a goal state XG. Alternatively, given a desired suboptimality
bound ε ≥ 1, the goal of the planner is to find a path
π(XS , XG), such that c(π(XS , XG)) ≤ ε · c(π∗(XS , XG)).

We used Willow Garage’s PR2 robot as the testing plat-
form for our planner. The robot has two humanoid arms,
movable base, and adjustable torso height. The full arm
configuration on the PR2 is given by its seven joint angles
(shoulder pan, shoulder lift, shoulder roll, elbow flex, fore-
arm roll, wrist flex, wrist roll). We included only the right
arm in the planning process. The base and torso provided
additional 4 degrees of freedom: base XY position and

heading, and torso height. Thus, our domain had a total of
11 degrees of freedom (Fig. 1).

IV. PLANNING WITH ADAPTIVE DIMENSIONALITY

In this section we will provide a brief overview of our
algorithm for planning with adaptive dimensionality. For a
more detailed explanation of the algorithm, we refer the
reader to our previous work [18].

While planning in a high-dimensional state-space is often
necessary, large portions of the computed paths have a lower-
dimensional structure. Planning for robotic arm manipula-
tion, for example, can often be reduced to 3D planning
for the end-effector and then running an inverse kinematics
solver to find the full-dimensional path that corresponds to
the computed end-effector trajectory. At the same time, there
are relatively infrequent situations when the planner does
need to consider the full configuration of the arm in trying
to figure out the feasibility of the end-effector path. Based
on this observation, our planning algorithm iteratively con-
structs a state-space Sad and corresponding transition set T ad

consisting mainly of low-dimensional states and transitions,
and only introducing regions of high-dimensional states and
transitions into the state-space where it is necessary in order
to ensure the feasibility of the resulting path.

The planning algorithm considers two state-spaces—a
high-dimensional Shd with dimensionality h, and a low-
dimensional Sld with dimensionality l, which is a projection
of Shd onto a lower dimensional manifold (h > l, |Shd| >
|Sld|). We define a many-to-one mapping

λ : Shd → Sld

from the high-dimensional state-space Shd to the low-
dimensional state-space Sld. We also define the mapping
λ−1 : Sld → (Shd)∗ from the low-dimensional state-space
Sld to subsets of the high-dimensional state-space Shd as
follows:

λ−1(X ld) = {X ∈ Shd|λ(X) = X ld}

Each of the two state-spaces may have its own set of tran-
sitions. However, we require that the costs of the transitions
be such that for every pair of states Xi and Xj in Shd,

c (π∗ (Xi, Xj)) ≥ c (π∗ (λ(Xi), λ(Xj)))

We require that the cost of a least-cost path between any
two states in the high-dimensional state-space to be at least
the cost of a least-cost path between their images in the low-
dimensional state-space. One can choose to use any two cost
functions for Thd and T ld as long as they satisfy the above
constraint.

Let Ghd and Gld represent the corresponding graphs
defined by Shd and Sld and their respective transition sets
Thd and T ld.

In the case of 11-DOF mobile manipulation planning, Shd

consisted of 11-dimensional state vectors describing the full
configuration of the robot and Sld consisted of 3-dimensional
states representing the end-effector XYZ position.

Fig. 2: The figure illustrates how to generate the successors of a
high-dimensional state (left) and a low-dimensional state (right) in
Sad. States labeled with X are the states for which transitions are
being generated. High- and low-dimensional states are labeled with
H and L, respectively. States connected by dashed arrows represent
equivalent states or their projections in the other dimensionality.
Block arrows represent transitions between states. Transitions be-
tween two low-dim. states are low-dimensional. All other transitions
are high-dimensional.

A. Algorithm

Structure of Sad: Recall that the goal of our algorithm
is to use the faster low-dimensional planning, except for
areas of the environment where high-dimensional planning is
necessary to ensure the feasibility of the resulting path. We
want our adaptively-dimensional state-space to capture this
property—namely, we want to have largely low-dimensional
states in Sad, except for the areas where high-dimensional
planning needs to be done, represented by high-dimensional
states and transitions in Sad. In the low-dimensional areas
of Sad we can use simpler low-dimensional transitions.
However, recall that the transitions we have in Thd and
T ld connect two states of the same dimensionality, which
do not allow us to transition between states of different
dimensionalities. Therefore, we have to construct a transition
set T ad that allows for such transitions.

Construction of Sad: Our algorithm iteratively constructs
Sad, beginning with the low-dimensional-state space Sld and
introducing a set of high-dimensional regions R in it. We
will first explain how the high-dimensional regions are being
introduced into Sad and connected with the low-dimensional
regions. The algorithm that decides when and where to
introduce these regions will be explained later.

Once a high-dimensional region r ∈ R is introduced, the
following changes are made to Sad. All low-dimensional
states X ld

i that fall inside r ∈ R are replaced with their
high-dimensional projection states in λ−1(X ld

i). Notice that
if a high-dimensional state Xhd is in Sad, then its low-
dimensional projection λ(Xhd) is not in Sad, and also if
Xhd 6∈ Sad, then λ(Xhd) ∈ Sad.

Next we define the transition set T ad for the adaptively-
dimensional state-space as follows (Fig. 2). For any state
Xi ∈ Sad:

• If Xi is high-dimensional then for all high-dimensional
transitions (Xi, X

hd
j) ∈ Thd, if Xhd

j ∈ Sad then
(Xi, X

hd
j) ∈ T ad. If Xhd

j 6∈ Sad, then (Xi, λ(X
hd
j)) ∈

T ad. That is, for high-dimensional states we allow only
high-dimensional transitions to other high-dimensional
states if they fall inside Sad, or their respective low-
dimensional projections (Fig. 2 left).

• If Xi is low-dimensional then for all low-dimensional
transitions (Xi, X

ld
j) ∈ T ld, if X ld

j ∈ Sad then
(Xi, X

ld
j) ∈ T ad, and for all high-dimensional tran-

sitions (X,Xhd
j) ∈ Thd, where X ∈ λ−1(Xi), if

Xhd
j ∈ Sad then (Xi, X

hd
j) ∈ T ad. That is, for low-

dimensional states we allow low-dimensional transi-
tions if they lead to another low-dimensional state in
Sad, and high-dimensional transitions from all of their
high-dimensional projections if they lead to a high-
dimensional state in Sad (Fig. 2 right).

Notice, that the above definition of T ad allows for transi-
tions between states of different dimensionalities.

The adaptively-dimensional state-space Sad and the transi-
tion set T ad give us a graph Gad of adaptive dimensionality.
Adding new high-dimensional regions or increasing the sizes
of existing regions require the reconstruction of Sad and T ad,
and thus, will produce a new instance of Gad.

We also define a tunnel τ of radius w around an
adaptively-dimensional path πad as follows: τ is a subgraph
of Ghd, and thus consists entirely of high-dimensional states
and transitions. A high dimensional state Xhd ∈ τ if there
exists a state Xi ∈ πad such that the distance from λ(Xhd)
to Xi (or λ(Xi) if Xi is high-dimensional) is no larger than
w, for some pre-defined distance metric in Sld. We include
all transitions (Xj , Xk) from Thd such that both Xj and Xk

are in τ .
We continue this section with an intuitive description of

our proposed algorithm. Algorithm 1 gives the pseudo code
for our algorithm. Each iteration of the algorithm consists
of two phases—an adaptive planning phase and a path
tracking phase. In the adaptive planning phase, the current
instance of Gad is searched for a least-cost path from start to
goal. The tracking phase, then attempts to construct a high-
dimensional executable path to match (or track) the adaptive
path computed in the adaptive planning phase.

Initially, Gad is the same as Gld, with two high-
dimensional regions added around the start and goal states
(Algorithm 1, lines 1-3), which are necessary since the given
start and goal states are high-dimensional. At each iteration,
a new instance of Gad is constructed based on the set of
high-dimensional regions, and is searched for a least-cost
path π∗

ad from XS to XG. Notice that π∗
ad consists of both

low-dimensional and high-dimensional states, so it is not an
executable path. If no path is found in the adaptive planning
phase, then no feasible path exists from start to goal and
the algorithm terminates. If an adaptive path π∗

ad is found,
then the path tracking phase constructs a tunnel τ of radius
w around the adaptive path π∗

ad. Then τ is searched for
a least-cost path π∗

τ from start to goal. Note that since τ

(a) XS and XG (b) 7D spheres at XS and XG (c) πad(XS , XG) for iteration 1 (d) New sphere inserted at point
of tracking failure

(e) πad(XS , XG) for iteration 2 (f) Final 7D arm trajectory after
successful tracking

(g) Final trajectory (obstacles not
shown)

(h) Final trajectory (top view)

Fig. 3: Example environment for 7D robotic arm motion planning (robot’s base and torso remain stationary). A trajectory is computed of
how the arm can be maneuvered from the start configuration to reach through the opening to the goal arm configuration in two iterations
of our algorithm. 3(c) and 3(e) show the adaptively-dimensional paths computed at each iteration.

consists of only high-dimensional states and transitions, π∗
τ

is a fully high-dimensional path, and thus, it is executable.
If no path is found in τ , then a new high-dimensional region
is introduced in Gad or the sizes of the existing regions are
increased, and the algorithm proceeds to the next iteration.
If a path is found in τ , but its cost does not satisfy the cost
constraint (e.g. c(π∗

τ) > εtrack · c(π∗
ad)), then a new high-

dimensional region is introduced or the sizes of existing high-
dimensional regions are increased, and another iteration is
started. If c(π∗

τ) ≤ εtrack · c(π∗
ad), then the algorithm returns

π∗
τ as a feasible path from start to goal and terminates. The

returned path is guaranteed to have cost that is no more than
εtrack times the cost of an optimal path in Ghd.

Identifying the places where high-dimensional regions
need to be introduced is a non-trivial problem in itself. In
our experiments, the search within the tunnel during the path
tracking phase keeps a record of how far along the tunnel
states have been expanded. Thus, if the search in τ fails, we
are able to reconstruct a path to the point where the search
had failed, and we introduce a new high-dimensional region
there. If the algorithm successfully finds a path through the
tunnel, but the path is too costly compared to the path found
in Gad, then we take the following approach in identifying
locations where new high-dimensional regions need to be
introduced. We approximate the location, where the largest
cost discrepancy between π∗

ad and π∗
τ is observed, by going

along both paths simultaneously and comparing the cumu-
lative costs observed so far. We identify all points of large
cost discrepancy and introduce new high-dimensional regions
there. This approach tends to remedy the cost discrepancy,
and generally works well in identifying the regions that
require high-dimensional planning.

B. Theoretical Properties

We have shown the following theoretical properties of our
algorithm for planning with adaptive dimensionality in [18].

Theorem 4.1: If we have a finite state-space, Algorithm
1 terminates and at the time of its termination, the cost of
the returned path π(XS , XG) is no more than εtrack times
the cost of an optimal path from state XS to state XG in
Ghd.

Theorem 4.2: If εsearch-suboptimal graph search algo-
rithm is used in line 5 of Algorithm 1, the cost of the path
returned by our algorithm is no larger than εsearch · εtrack ·
π∗
hd(XS , XG).
Figure 3 illustrates the adaptively dimensional planning

process in the case of 7-DOF robotic arm manipulation
planner, planning adaptively in 7D/3D. Low-dimensional 3D
states represent the end-effector XYZ position, while high-
dimensional 7D states represent the full arm configuration.
High-dimensional regions are represented as spheres.

V. APPLICATION OF PLANNING WITH ADAPTIVE
DIMENSIONALITY TO MOBILE MANIPULATION

In the case of the robotic arm motion planning, our goal
was to use a 11D/3D adaptive planning, where 3D states
represented the arm’s end-effector XYZ position, and 11D
states represented the full arm, torso and base configurations.
As the full arm configuration on the PR2 robot is given
by its seven joint angles, constructing a projection function
λ mapping full joint angle configuration to end effector
position presented several challenges—namely discretization
of the joint angle space could not be easily matched to a
discretization of the end-effector position space, and λ and
λ−1 would have needed to involve expensive FK and IK
computations. Instead, we decided to transform the standard
7-DOF robot arm configuration representation to one de-
scribed in [19], which converts joint angles representations

Algorithm 1 Path Planning with Adaptive Dimensionality

1: Gad = Gld

2: AddFullDimRegion(Gad, λ(XS))
3: AddFullDimRegion(Gad, λ(XG))
4: loop
5: search Gad for least-cost path π∗

ad(XS , XG)
6: if π∗

ad(XS , XG) is not found then
7: return no path from XS to XG exists
8: construct a tunnel τ around π∗

ad(XS , XG)
9: search τ for least-cost path π∗

τ (XS , XG)
10: if π∗

τ (XS , XG) is not found then
11: let π(XS , Xend) be the returned path
12: if Xend is already within FullDimRegion in Gad then
13: GrowFullDimRegion(Gad, λ(Xend))
14: else
15: AddFullDimRegion(Gad, λ(Xend))
16: else if c(π∗

τ (XS , XG)) > εtrack · c(π∗
ad(XS , XG)) then

17: identify a state Xr where a new FullDimRegion needs to
be introduced

18: if Xr is already within FullDimRegion in Gad then
19: GrowFullDimRegion(Gad, Xr)
20: else
21: AddFullDimRegion(Gad, Xr)
22: else
23: return π∗

τ (XS , XG)

Fig. 4: The 11-DOF of our planner showing the alternative 7-DOF
arm representation. (1,2,3: end-effector XYZ position; 4,5,6: end-
effector RPY orienation; 7: arm swivel angle; 8,9,10: base XY
position and heading; 11: torso height)

of a 7-DOF arm to 7-DOF representation consisting of
the following values: (end-effector x position, end-effector
y position, end-effector z position, end-effector roll, end-
effector pitch, end-effector yaw, arm swivel angle) (Fig. 4).
For more details on the representation, consult [19]. This
alternative representation of the full arm configuration did
not change the dimensionality of the high-dimensional state-
space, but provided clean and easy λ and λ−1 mappings
without any dicretization inconsistencies.

Using this alternative representation, our 11-dimensional
states were represented by the following state vector:

(eeposition, eeorientation, swivel, base, torsoheight),

where eepos, eeori and base consist of 3 values each—end-
effector XYZ, end-effector RPY, and base XY and heading,

Fig. 5: Example environments used in our simulations

respectively. We used the following mapping functions:

λ(eepos., eeori., swivel, base, torsoht) = (eepos)

λ−1(eepos) = {(eepos, eeori, swivel, base, torsoht)|

for all feasible values of eeori, swivel, base and torsoht}

The end-effector was allowed to move in a 3m×3m×2m
3D uniform grid with resolution of 2cm, centered around
the robot. We used 6cm resolution for the base position and
torso height. We uniformly discretized the values for the end-
effector roll, pitch and yaw angles, the arm swivel angle,
and the base heading angle into 16 on the interval (−π, π].
This discretization produced a 3D grid for the end-effector of
size 150×150×100, or roughly 2.25× 106 low-dimensional
states. Our high-dimensional state-space consisted of about
1.8× 1015 states.

We used very simple motion primitives for graph transi-
tions for the motion planning—namely we allow ±1 change
in each of the eleven discretized state-vector values. This
produces 22 possible transitions for 11D states and 6 possible
transitions for 3D states. Due to the simplicity of the motion
primitives, the resulting arm trajectory is not very smooth,
but experimenting with a more complex set of motion
primitives is one of our future work goals.

The cost of each low-dimensional motion primitive was
representative of the distance traveled by the end-effector
when executing that primitive. The costs of high-dimensional
motion primitives included the distance traveled by the base
and penalties for changes in any of the angular values of the
state, as well as the distance traveled by the end-effector.

Obstacles in the environment are obtained through a
collision map produced by the tilting laser scanner of the
PR2. Very basic collision-checking is performed on low-
dimensional states, treating them as point-robots and check-
ing them against the obstace map. Full collision checking
is performed on high-dimensional states, checking the full
robot configuration (arm, torso, and base) against the obstacle
map, while also enforcing joint-limits on the arm configu-
ration. States that are found to be in collision during the

Fig. 6: PR2 manipulating 80cm stick trough a 40cm×50cm window.

Fig. 7: PR2 reaching from a high shelf to a low shelf of a bookcase

search are discarded from Gad. Recall that the path returned
by our algorithm consists of only high-dimensional states, on
which full collision-checking has been performed, and thus
are collision-free.

The graph search algorithm we used for both the adaptive
planning and the path tracking phases was Anytime Repair-
ing A* (ARA*) [3], which provides provable completeness
and suboptimality guarantees, and as such, satisfies Theorem
4.2.

VI. RESULTS

A. Simulation

We ran the 11D/3D adaptive dimensionality planning
algorithm, a full 11D planning algorithm (using weighted
A* without re-expansions as desribed in [3] to search the full

11D state-space), and an 11D bi-directional RRT algorithm
[11] on 30 environments in simulation and compared the
results. Environments ranged in degree of difficulty—some
required very simple motions to navigate from start to goal,
while others were more cluttered and required a set of
complex maneuvers to navigate around the obstacles. Some
of the types of environments we used included various
table tops, bookshelves, and random cuboid obstacles (Fig.
5). Both the adaptively-dimensional and the 11D planners
utilized a 3D Dijkstra heuristic to guide the planners to the
position constraint. We treated the end-effector as a point
robot of radius equal to the radius of the smallest link of the
arm. More sophisticated collision checking and enforcing of
joint limits were done on high-dimensional states.

We observed that inserting new spheres of radius of
about 10cm allowed sufficient arm maneuvering without
introducing too many unnecessary high-dimensional states.
Also a tunnel radius of 10-20cm provides a good balance
between the success rate of the tracking phase and the time
needed for tracking a path at each iteration. Since we have
a large number of high-dimensional states, we imposed time
limits on both the adaptive planning phase and the tracking
phase. The time limit we used for the adaptive planning
phase was 180 seconds per iteration. If the limit was reached
the adaptive planning failed and the algorithm terminated,
reporting that no path from start to goal could be found in
the given time limit. Due to the number of states inside the
tunnel τ even with a small tunnel radius, the tracking search
might take a long time to find a path through the tunnel or
fail. Since we require the tracking search to complete before
we begin a new iteration, it becomes impractical to wait long
for tracking to fail before starting a new iteration. Thus, we
limited the time for the tracking phase to 20 seconds, which
allowed us to proceed to the next itration more quickly. Both
the full 11D planner and the 11D/3D adaptive planner were
limited to 600 seconds to produce a path.

The results we observed are summarized in Table I. As
seen in the table, our adaptively dimensional planner was
able to achieve much faster planning times than the full 11D
planner and was able to successfully produce a solution in
all 30 instances. The 11D planner, on the other hand, was
much slower and was unable to find a solution within the
allowed limit in 13 of the 30 instances. We observed an
average speedup of x17.87. The minimal observed speedup
was x1.12 on a very simple scenario that required only
about 6 seconds to solve by both planners. In several cases,
however, the adaptive planner was able to produce a solution
within 5-10 seconds, while the 11D planner ran out of the
allowed 10 minutes to produce a plan, giving us very high
speedup values of over two orders of magnitude. On average,
the sampling-based bi-directional RRT planner significantly
outperformed both search-based planners. However, on the
more cluttered environments, we observed that the adaptive
planner was only marginally outperformed by the RRT
planner, and in a few situations the RRT planner was actually
slower than the adaptive planner.

We chose the task of manipulating sticks of varying

Algorithm Suboptimality Time (secs) # Iterations # 11D Expands # 3D Expands Total Expands Successful
Bound mean std dev min max mean max mean std dev mean std dev mean std dev Plans

11D 5.0 340.80 243.57 6.81 600.00 n/a 214K 159K n/a 214K 159K 17 of 30
adaptive 5.0 19.07 16.65 5.35 55.44 1.30 3 10.2K 12.3K 67.1 30.79 10.2K 12.3K 30 of 30
RRT n/a 4.15 6.25 0.02 25.69 n/a n/a n/a n/a 600 of 600

TABLE I: Experimental results on 30 environments for 11D mobile manipulation planning (full 11D planner vs. adaptive planner vs.
bi-directional RRT planner). The deterministic 11D and adaptive planners were run only once on each environment. RRT results are
averaged over 20 runs on each of the 30 environments (600 runs total).

Algorithm
20cm stick 50cm stick 80cm stick

Time (sec.) Success Time (sec.) Success Time (sec.) Success
mean std dev min max rate mean std dev min max rate mean std dev min max rate

RRT (20 runs) 0.981 0.640 0.080 1.990 100% 33.885 36.474 0.320 130.270 100% 751.458 405.371 351.150 1176.66 20%
adaptive (ε = 5.0) (1 run) 1.520 0.00 1.520 1.520 100% 3.540 0.00 3.540 3.540 100% 9.890 0.00 9.890 9.890 100%

TABLE II: Bi-directional RRT planner [11] vs. adaptive planner. The task was to manupulate a stick of varying length through a
40cm×50cm window similar to Fig. 6. RRT results are averaged over 20 runs with the same start and goal configurations. A time limit
of 20min. was imposed on each run.

length trough a 40cm×50cm window as a basis for further
comparison between our adaptive planner and the RRT
planner. This task is challenging for sampling-based planners
as it has a narrow solution space. The RRT planner needs
to produce sufficently many valid samples within a narrow
“tunnel”, defined by the window, in order to successfully
compute a feasible trajectory. From the results shown Table
II we observe that increasing the length of the stick being
manipulated causes a significant increase in the time required
for RRT to produce a solution. On the other hand, our adap-
tive planner does not suffer such a significant performance
decrease and it is able to significantly outperform the RRT
planner on this scenario for large stick length values.

B. Experiments on PR2

We ran several real-world experiments on an actual PR2
robot using our adaptive planner. The experiments included
tasks such as manipulating an 80cm stick through a window
of size 40cm×50cm (Fig. 6), and reaching to and from shelfs
of various heights (Fig. 7). All of the tasks required torso
or base movement in order to complete successfully. The
planner was able to successfully navigate from start to goal
in all instances, and the planning times ranged from 4 to
20 seconds. Examples of the experiments are shown in the
accompanying video.

VII. DISCUSSION AND FUTURE WORK

In the case of 11-DOF mobile manipulation planning
we observed similar behavior of our adaptively dimensional
planner as we did when applying it to other domains [18].
There are two cases in which our planner significantly
outperforms full-dimensional weighted-A* planners: the case
when the given scenario has no feasible solutions, and
the case when the heuristic is misleading and leads the
search into a wrong direction. Since our planner is working
in a significantly smaller state-space, it is able to detect
that no solution exists or that the search is going in the
wrong direction by expanding significantly fewer states than
the full-dimensional planner, despite the fact that it has to
perform multiple iterations of searches. Our algorithm is
also able to outperform sampling-based planners when the
planning tasks require manipulating bulky objects through

cluttered environments. A drawback of our algorithm is that
its performance is highly dependent on the parameter values
for the tunnel width and the size of newly inserted high-
dimensional regions. These parameters affect the number of
iterations performed by the algorithm and its running time.
Narrow tunnels contain fewer states and can be searched
quickly, but are more likely not to have a feasible path from
start to goal. Introducing small high-dimensional regions
keeps the size of Sad small, and thus it can be searched
quickly. However, the algorithm might have to grow them in
subsequent iterations in order to meet the required solution
suboptimality bound.

There are several key areas which we would like to
explore further in order to improve the algorithm efficiency.
Firstly, we would like to experiment with more informative
heuristics, other than 3D Dijkstra heuristic for the end-
effector, in attempting to speed up searching through the
high-dimensional regions of Gad and the tunnel τ . Another
future goal is to investigate the possibility of re-using search
information between subsequent iterations, in order to mini-
mize the redundant state expansions, while still maintaining
the completeness and suboptimality bound guarantees of our
algorithm.

VIII. CONCLUSION

In this work we presented a heuristic search-based mobile
manipulation planner, based on our recently-developed al-
gorithm for planning with adaptive dimensionality. We have
shown that by using dimensionality-reduction techniques our
planner can effectively deal with the high dimensionality
of the problem and demonstrate reasonable performance.
Although our planner does not match the efficiency of
sampling-based methods, our experimental results, coupled
with strong guarantees on completeness and suboptimality
bounds, make it an appealing alternative for solving mobile
manipulation planning problems.

REFERENCES

[1] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible
maneuvers for autonomous vehicles,” in Proceedings of Robotics:
Science and Systems (RSS), 2008.

[2] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
International Journal of Robotics Research, vol. 29, pp. 485–501,
April 2010.

[3] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with
provable bounds on sub-optimality,” in Advances in Neural Informa-
tion Processing Systems (NIPS). Cambridge, MA: MIT Press, 2003.

[4] R. Zhou and E. A. Hansen, “Multiple sequence alignment using A*,”
in Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2002, student abstract.

[5] ——, “Beam-stack search: Integrating backtracking with beam
search,” in Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2005, pp. 90–98.

[6] A. Stentz, “The focussed D* algorithm for real-time replanning,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1995, pp. 1652–1659.

[7] S. Koenig and M. Likhachev, “Incremental A*,” in Advances in Neural
Information Processing Systems (NIPS) 14, T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002.

[8] B. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2010,
pp. 2902–2908.

[9] L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[10] S. LaValle and J. Kuffner, “Rapidly-exploring random trees progress
and prospects,” Algorithmic and Computational Robotics New Direc-
tions, pp. 293–308, 2001.

[11] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2000, pp. 995–1001.

[12] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
“Manipulation planning with workspace goal regions,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2009, pp. 618–624.

[13] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” International
Journal of Robotics Research (IJRR), March 2011.

[14] Karaman and Frazzoli, “Incremental sampling-based algorithms for
optimal motion planning,” in Robotics: Science and Systems (RSS),
June 2010.

[15] B. J. W. Waarsing, M. Nuttin, and H. V. Brussel, “Behavior-based
mobile manipulation inspired by the human example,” in Proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2003, pp. 268–273.

[16] ——, “Behaviour-based mobile manipulation: The opening of a door,”
in International Workshop on Advances in Service Robotics (ASER),
2003, pp. 168–175.

[17] S. Chitta, B. Cohen, and M. Likhachev, “Planning for autonomous
door opening with a mobile manipulator,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2010.

[18] K. Gochev, B. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path planning with adaptive dimensionality,” in Proceedings of the
Symposium on Combinatorial Search (SoCS), 2011.

[19] D. Tolani, A. Goswami, and N. Badler, “Real-time inverse kinematics
techniques for anthropomorphic limbs,” Graphical Models, vol. 62,
pp. 353–388, Sep. 2000.

