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Abstract— This paper addresses the problem of planning in
the presence of humans modeled as dynamic obstacles with
multiple hypotheses on their trajectories and actions which can
disambiguate between the hypotheses. To solve this problem, we
develop and analyze a generalization to the PPCP (Probabilistic
Planning with Clear Preferences) algorithm that allows us
to efficiently solve problems with approximate preferences on
missing information. The approach finds policies with bounded
suboptimal expected cost and scales well with the number
of people, only disambiguating between the trajectories of
people when necessary. We present simulated results as well
as experiments on two different physical robots demonstrating
the capability of this planner.

I. INTRODUCTION

Recently, the robotics community has made great progress
toward realizing capable autonomous systems. With the
Urban Challenge vehicles and Google Chauffeur autonomous
driving project, we have seen systems that can react to many
real-life situations on the road, including obeying traffic
rules and avoiding other moving vehicles. These systems are
impressive for many reasons, not the least of which is that
they can handle planning in dynamic environments. Systems
like BOSS use the structure in the environment and sensor
fusion to model the most likely trajectory of other vehicles,
and then plan around them with a margin of safety [1].

In many situations, it may not be possible to identify a
single trajectory for each human in the environment. At an
intersection, for example, people’s actions become uncertain.
State of the art tracking techniques can produce better results
by creating a probabilistic model with several possible trajec-
tories [2]. Another approach uses inverse optimal control to
model humans walking through an environment, and then
plans paths that have a high cost if they interfere with
the human [3]. Other successful approaches include using
a mixture of Gaussian Processes [4], or a Hidden Markov
Model to learn uncertain dynamic trajectories from prior
data [5].

For dynamic obstacle planners to advance further, we
need to take uncertainty in the intentions of humans into
account. Ideally, the robot would use additional sensors
or computational resources to disambiguate between each
possible trajectory for each person and make the problem
deterministic, but this is not generally possible. The next
best thing would be to optimally focus our resources to
disambiguate the hypotheses of the people that matter most
to the robot’s navigation task by planning sensing actions,
such as aiming a pan/tilt camera, or simply driving closer to
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Fig. 1. The PR2 robot traverses an environment with humans that
have multiple trajectory hypotheses. The planner decides which people are
important, and disambiguates their intentions by announcing its presence
and observing the result.

take better readings. Finally, we could directly disambiguate
intentions vocally.

This paper formulates this problem and shows how it
can be solved with a principled decision theoretic approach
called Probabilistic Planning with Clear Preferences (PPCP).
We introduce and analyze a generalization to the algorithm,
which relaxes a strict assumption of PPCP and has appli-
cations outside this domain. We present an approach that
automatically disambiguates between trajectories of people
that may impede the navigation of the robot.

In general, this type of planning problem would fall into
the category of planning with incomplete information, and
more generally falls into a broader class of planning for Par-
tially Observable Markov Decision Processes (POMDPs) [6].
Planning optimally for POMDPs, in general, and planning
with incomplete information and with sensing, in particular,
are known to be intractable [7], [8]. The original PPCP
algorithm avoids this issue by assuming that we can identify
a priori which outcomes of uncertain actions are known
to be the best [9]. This paper introduces a way to handle
cases when we do not know for certain, but have a bounded
approximation on which outcomes we think may be the best.
We analyze the modified algorithm in this new context, and
show that it is tractable both in simulation and on real robotic
platforms. In simulation, we show that this technique can
solve problems with 10 people (uncertain dynamic obstacles)
and over 20 trillion possible belief states in a matter of
seconds.

II. RELATED WORK

Recently, planning techniques have been developed
that deal with deterministic dynamic obstacles very effi-



ciently [10]. Other techniques can model static and changing
portions of a map very efficiently and globally plan with
respect to the static obstacles while dealing with dynamic
obstacles locally [11]. Another approach is to treat planning
with dynamic obstacles as a special case of multi-agent or
cooperative path-finding [12]. Another technique takes into
account uncertainty in the obstacles and can perform obstacle
avoidance by limiting the planner to computed safe zones
and velocities [13]. There has been much prior work in
optimizing sensing and active vision, where the goal of the
system is to maximize performance on a perception task such
as object classification [14].

Recent techniques have combined object detection with
navigation, optimizing the cost of a mobile robot trajectory
that has explicit value in sensing objects [15]. Other work
has applied a modified RRT to a Gaussian Process model of
dynamic uncertain obstacles and has demonstrated effective
use on a robotic platform [4]. Another approach uses A* on
an occupancy grid and demonstrates results on a robot which
are better than using a simple linear velocity model [5].

None of these approaches, however, reason about uncer-
tainty in the intentions of humans by planning to disam-
biguate these intentions when needed, and none of them
produce plans that are optimal in expectation or have upper
bounds on suboptimality.

III. APPLICATION DOMAIN

We wish to have a robot autonomously navigate in a
dynamic environment containing humans. We model humans
as uncertain agents that are dynamic obstacles the robot must
avoid. To navigate effectively and avoid collisions with these
people, the robot needs to be able to avoid their future loca-
tions. Unfortunately, it is not possible to predict exact future
trajectories. Often, the robot can disambiguate between the
possible future trajectories by asking the involved person
which way they are going, honking a horn to get the persons
attention, or simply scheduling future sensor readings and
replanning when more information will be available. We call
these focus actions. The challenge for the planner is to decide
when and how to use these actions since they depend on
both the position of the robot and the possible positions of
the people in the environment (see section Sec. VI-A for
examples).

In our representation, each human di has a set of possible
trajectories {τ0i , . . . , τ

ni−1
i }. There is a hidden state hi which

corresponds to the actual trajectory di follows. hi can be an
integer j, in which case the robot knows that di follows
τ ji , or hi = u, in which case the trajectory is unknown to
the robot, but we have a probability distribution over its ni
possible values. In order to determine the value of the hidden
state, the robot can execute its focus action on person i if
the person is visible and within range. This will cause hi to
resolve to an integer in {0, . . . , ni − 1}.

We assume that people will follow exactly one of the
possible trajectories, and that there is no noise in sensing or
actuation, but these issues can be dealt with on real systems
by replanning and adding padding (both temporally and

spatially) to the dynamic obstacles, as explained in Section
Sec. V and demonstrated in section Sec. VI-A.

Fig. 2. An example environment with two humans. The belief state of the
robot is X = {R = C2, t = 1, H = [u, u]}.

We will be planning in the space of belief states, X =
[S(X);H(X)], which include the current deterministic state
of the robot, S(X), and a set of hidden variables, H(X),
which encode the current probability distribution over the
unknown variables. S(X) could be, for example, (R, t), the
position of the robot and current time. In the environment in
Fig. 2, both people are moving along unknown trajectories
as shown in the red and blue lines. After executing an
action such as moving to the west one cell, there is only
one resulting state, X ′ = {R = C1, t = 3, H = [u, u]}
(assuming the move took two timesteps). Notice that H does
not change. Now, assume that person 0 (the one in cell C4 in
Fig. 2) is visible from X , so the robot can focus on it. After
executing the focus action, there are two possible resulting
states:

X ′0 = {R = C2, t = 6, H = [0, u]}
X ′1 = {R = C2, t = 6, H = [1, u]}

In both states, the deterministic part is the same (the robot has
not moved and it spent 5 timesteps focusing), but the value
of h0 has changed. In X ′0, the robot knows that person 0 will
follow τ00 (the blue dashed path), while in X ′1, person 0 will
follow τ10 (the red dashed path). In general, the deterministic
part can differ as well.

IV. ALGORITHM

A. Clear Preferences

While in general, decision-theoretic planning that takes
uncertainty about the environment into account is computa-
tionally difficult, it turns out that many such problems exhibit
a special property: one can clearly identify beforehand the
best (called clearly preferred) values for the variables that
represent the unknowns in the environment [9].

Clear preferences can be defined mathematically as fol-
lows. The clearly preferred value b (“best”) of an unknown
variable h is such a value that for any belief state X and
action a that senses (directly or indirectly) the value of h,
there exists a successor belief state X ′ at which the value of
h is known to be the clearly preferred value (h = b) and:

X ′ = argmin
Y ∈succ(X,a)

c(X, a, Y ) + v∗(Y ) (1)

where c(X, a, Y ) is the cost of executing action a at state
X and ending up at state Y , and v∗(Y ) is the expected
cost of executing an optimal policy from the belief state Y .



For example, in the problem of an indoor robot navigating
with uncertainty about doors being open or closed, a state
X might represent the robot when it is about to sense if a
door is open or closed. The sensing operation will have two
outcomes, the preferred outcome, X ′, in which the door is
open and an alternate outcome in which the door is closed.
Since the actions the robot can take if the door is closed
are a subset of the actions for an open door, the open door
outcome is clearly preferred.

Algorithm 1 Planning with Approximate Preferences. v
values are initialized to an admissible estimate of v∗. Si

in COMPUTEPATH is shorthand for S(Xi), the deterministic
part of the state Xi.

1: procedure COMPUTEPATH(Xp)
2: ∀S g(S)←∞, OPEN← ∅
3: g(Sgoal)← 0, bestA(Sgoal)← null
4: insert Sgoal into OPEN
5: while g(Sp) > minS∈OPEN g(S) + heur(Sp, S) do
6: remove S with min g(S) + heur(Sp, S) from OPEN
7: for all a and S′ s.t. S = succXu

p
(S′, a)b

′
do

8: Compute Q(S′, a) according to Eq. 3
9: if g(S′) > Q(S′, a) then

10: g(S′)← Q(S′, a)
11: bestA(S′)← a
12: (re-)insert S′ into OPENwith g(S′) + heur(Sp, S

′)
13: end if
14: end for
15: end while
16: end procedure
17: procedure UPDATEMDP(Xp)
18: X ← Xp

19: while S(X) 6= Sgoal do
20: v(X)← max(v(X), g(S(X))
21: v(Xu)← max(v(Xu), g(S(Xu)) // S(X) = S(Xu)

22: π(X)← bestA(S(X))

23: X ← succ(X,π(X))b
′

24: end while
25: end procedure
26: procedure MAIN(Xstart)
27: Xp ← Xstart

28: while Xp 6= ∅ do
29: COMPUTEPATH (Xp)
30: UPDATEMDP (Xp)
31: Xp ← FINDPIVOT (Xstart) // see Sec. IV-B
32: end while
33: end procedure

B. Approximate Preferences

While many problems exhibit clear preferences, there are
many others for which it is difficult or impossible to predict
clear preferences. However, in many of these cases we can
come up with approximate preferences. In particular, for our
domain of interest, one way we could come up with these
approximate preferences would be to plan a path assuming
no unknown obstacles exist at all. If one of the hypothesized
trajectories of a human invalidates the shortest path to the
goal for the robot, chances are it is a worse trajectory than
another hypothesis. There are situations, however, where this
approach can predict the wrong outcome, such as when a

person approaching the robot actually clears a shortcut that
saves the robot time overall.

Mathematically, we define an approximate preference, b′

as follows. For all states X and available actions a, it holds
that:

c(X, a, succ(X, a)b
′
) + v∗(succ(X, a)b

′
) ≤ (2)

α
(
c(X, a, succ(X, a)d) + v∗(succ(X, a)d)

)
∀d

Here, the notation succ(X, a)d refers to the single successor
of state X after executing action a with the outcome d,
meaning h = d (we assume at most one h per stochastic
transition). This equation says that for a given state and
action, the policy’s expected cost with the approximate
preference b′ is no worse than α times what it would be for
another outcome (with α ≥ 1). If we have clear preferences,
as in the office door problem, α = 1 because we already
have the best preference and Eq. 2 reduces to Eq. 1.

To efficiently plan under approximate preferences, we
apply the generalized PPCP algorithm shown in Algorithm 1.
This algorithm is a slight modification from the main PPCP
algorithm as presented in [9]. In the case of clear preferences,
the algorithm presented here behaves equivalently to the orig-
inal PPCP algorithm, and therefore has the same properties
of completeness and optimality of the resulting policy under
the conditions given in [9].

The PPCP algorithm consists of four procedures. COM-
PUTEPATH performs a single A* like search from the pivot
state, then UPDATEMDP takes the computed path into ac-
count, updating the MDP variables. FINDPIVOT searches the
current partial policy for the next pivot. The MAIN procedure
runs each of these procedures until there is no valid pivot (the
algorithm has converged). For use on a real robotic platform,
the MAIN procedure returns partial policies for the robot to
begin to execute without reaching full convergence. Note that
the original PPCP presentation included FINDPIVOT in the
MAIN procedure, but for simplicity it is separated out and
briefly explained later in this section.

It is easiest to understand this algorithm by example, so we
will consider the environment shown in Fig. 3(a). The robot
starts in cell C1 and is trying to reach B5 by moving in one
of the 4 cardinal directions, or waiting in place. Collisions
with a dynamic or static obstacle are not allowed. There are
two humans. The first starts in cell C5 and moves at the
same speed as the robot (trajectories shown in dashed lines).
There are two predicted future trajectories for this person.
The first (blue) moves north with probability 0.75, while
the other (red) moves straight west. The robot selects the
blue trajectory as approximately preferred. The other person
starts in cell A2 and moves more slowly, only one cell every
two timesteps (dotted line). It has two trajectories with equal
probability, the (approximately) preferred shown in blue that
turns south down the hallway, and the non-preferred that
moves straight east.

The first step is to run COMPUTEPATH to compute a
path from the start state to the goal with both unknown
variables set to unknown (Fig. 3(b)). The COMPUTEPATH



(a) Start state:
R = C1, t = 0, H = [u, u]

(b) First policy

(c) Next pivot state:
R = C2, t = 2, H = [1, u]

(d) COMPUTEPATH result

(e) Final COMPUTEPATH call:
R = C1, t = 0, H = [u, u]

(f) Final Policy.

Fig. 3. An example run of PPCP showing 3 iterations. The final policy is
to follow (b) in the preferred case and (d) otherwise.

procedure is very similar to a backwards A* search. Just
like A*, it maintains g values (initially set to infinity) and
an open list that is a priority queue sorted by g+heur, using
an admissible heuristic function. On Line 7, states that are
predecessors of the current state are generated. The successor
function is of the form succZ(S, a)

b′ , which corresponds to
the preferred successor of taking action a from the state
[S;H(Z)] (the deterministic state S with hidden variables
set according to Z). In Line 7, the hidden variables are
set according to Xu

p , which corresponds to H(xp) with all
hi = b replaced with hi = u. This means that we are
“forgetting” the preferred outcomes that are known in the
belief state Xp and pretending they are unknown. This allows
PPCP to find a full policy by running a series of deterministic
graph searches.

In the example in Fig. 3, most transitions are deterministic
(only one successor). During the first COMPUTEPATH search
the only non-deterministic expansion is the state shown in
Fig. 2, where the orange arcs represent a sensing action.

An important difference between COMPUTEPATH and
standard A* is the way Q is computed. The standard def-
inition of Q(Y, a) is the expected value of taking action a
from state Y and then executing the current policy from the
resulting state. As the algorithm is running, we maintain v
as an estimate of the expected value of the optimal policy.
Therefore, we could use the following equation:

Q(Y, a) =
∑

Z∈succ(Y,a)

P (Y, a, Z) · (c(S(Y ), a, S(Z)) + v(Z))

Since we have a notion of approximate preferences, we
tend to believe that the preferred outcome will have lower
cost, so we replace this equation with:

Q(Y, a) =
∑

Z∈succ(Y,a)

P (Y, a, Z)·

max

(
c(S(Y ), a, S(Y ′)) + v(Y ′),

c(S(Y ), a, S(Z)) + v(Z)

)

where Y ′ is the preferred outcome. In the case of true clear
preferences (satisfying Eq. 1), these equations are equivalent.
Under approximate preferences, however, we may now be
over-estimating the cost (by at most α for each branch).

Since COMPUTEPATH searches backwards from the goal,
it already has an estimate, g, for the preferred outcome. This
estimate is more recent than the v value that may have been
set in a previous iteration of PPCP, so the final equation is:

Q(Y, a) =
∑

Z∈succ(Y,a)

P (Y, a, Z)· (3)

max

(
c(S(Y ), a, S(Y ′)) + g(Y ′),

c(S(Y ), a, S(Z)) + v(Z)

)

When action a executed at Y is deterministic, this equation
reduces exactly to the equation used in normal A* search. In
our example, the Q value is computed at the state shown in
Fig. 2. If the person follows the blue path, we have a valid
g value already. Otherwise, we use the current estimate of v
associated with the state shown in Fig. 3(c).

We assume that there either exists a finite cost policy, or
there is no solution. This means that for any given pivot
state, COMPUTEPATH can terminate and find a valid path
from Xp to the goal, or report that there is no solution. This
path is the minimum cost path according to the Q values
defined in Eq. 3. Fig. 3(b) shows the path found in the first
COMPUTEPATH iteration. The path drives east, senses the
person, and then continues to the goal (assuming the person
moves north).

In the UPDATEMDP function, PPCP takes this new path
into account and updates the v values and the policies along
it. Because the successor function in Line 7 uses Xu

p , we can
also update the v(Xu) value on Line 21. Line 20 and Line 21
are modified from the original PPCP algorithm to handle ap-
proximate preferences. Under clear preferences, the addition
of the max operator does not change the behavior because
the v values are guaranteed to increase monotonically [16].
However, under approximate preferences, a previous iteration
of COMPUTEPATH could have used a Q value that was too
high and could potentially have found a lower value during
this iteration. To assure constant progress of the algorithm,
we do not allow the v values to decrease, which guarantees
termination because v is upper bounded and grows by an
amount lower bounded by a small positive constant. This
turns out to be the same update rule as listed in Section 6.3
of [9] where an optimization to improve the estimates of v-
values is explained, although the analysis of the algorithm



presented here (under the new assumption of approximate
preferences) and the domain are novel.

Fig. 3(b) shows the policy after the first iteration of
COMPUTEPATH . It is incomplete because it does not define
a policy where the sensing action arrives at the non-preferred
outcome where person 0 continues to move west.

The last section of the MAIN procedure calls FINDPIVOT
to find the next pivot state. The FINDPIVOT procedure re-
turns any non-goal state X that can be reached by following
the policy π starting from Xstart and is either a state for
which no policy is defined or satisfies:

v(X) <
∑

Y ∈succ(X,π(X))

P (X,π(X), Y )· (4)

(
c(S(X), π(X), S(Y )) + v(Y )

)
This equation says that the v value of the state must be

less than what it should be according to the expected value
over all outcomes reachable by following the policy actions.
To correct the v value of this state, we need to run another
COMPUTEPATH iteration. If no such state X can be found,
FINDPIVOT must return ∅, which will trigger termination
of the PPCP algorithm, and ensure that all states along
the policy have consistent v values. In our implementation,
FINDPIVOT returns a state that has the maximum probability
of being reached among all valid states to return.

In our example, the state shown in Fig. 3(c) is selected
as the pivot because it does not have a defined policy, but
is reachable along the current policy from the start. In the
next iteration of PPCP, we run COMPUTEPATH to find a path
from the new pivot to the robot’s goal. According to the pivot
shown in Fig. 3(c), the robot knows that person 0 is mov-
ing along the red trajectory straight west. COMPUTEPATH
computes the path shown in Fig. 3(d) which backs up to
get out of the way of person 0 and then takes the northern
path to the goal. During UPDATEMDP the algorithm makes
the v-value of X = {R = C2, t = 1, H = [u, u]} smaller
than what it should be according to the expected value of
its policy successors. Therefore, Eq. 4 is satisfied and this
state can be selected as the next pivot. PPCP now explores
alternative paths and updates the v-values and policy as it
goes (Fig. 3(e)). After 3 iterations, PPCP converges to a final
policy shown in Fig. 3(f), where the robot drives east and
senses person 0, following the blue path if the person takes
the preferred trajectory. Otherwise, if the robot senses the
person continuing west along the non-preferred trajectory,
the robot follows the red path shown in Fig. 3(f).

C. Bounded Approximate Preferences

In this section, we derive a bound on the sub-optimality
of the computed policy as a function of α, the bound on
the approximately preferred outcome. First we derive α for
the approximate preferences used in our domain, then we
show how this leads to a general sub-optimality bound on
the policy itself. We define the following notation:

V d(X, a) = c(X, a, succ(X, a)d) + v∗(succ(X, a)d)

Starting with Eq. 2 using this notation:

V b
′
(X, a)

V d(X, a)
≤ α ∀X, a, d

α = max
X,a,d

V b
′
(X, a)

V d(X, a)
(5)

In our problem of navigation in dynamic environments
with uncertain human intentions, we can derive a bound on
α by looking at the ratio between the cost of the navigation
in a pessimistic world to that of an optimistic world. Because
Eq. 2 is defined over all states X , we need to check this ratio
at every state. However, only some states have stochastic
transitions, and for deterministic transitions, preferences do
not matter. To compute this bound, we run a deterministic
Dijkstra’s search from the goal assuming all humans follow
all of their possible trajectories simultaneously, giving us the
cost A(X) (the search is run only over the deterministic part
S(X)). We also run a search from the goal assuming there
are no people (no dynamic obstacles) at all, giving us a cost
B(X). We then run Dijkstra’s from the starting position of
the robot, giving us R(X). We use R(X) to determine the
places where a stochastic transition can happen. A state X
with timestep t can have a stochastic transition only if a
person is visible from X and R(X) ≤ t. This means that
any state the robot can get to within t timesteps that has a
visible person at that time is a state where the focus action
could be performed and the policy could branch. We call this
set of possible stochastic transitions T . Our bound is then:

α̃ = max
X∈T

A(X)

B(X)
(6)

This bound holds because any X /∈ T has no stochastic
transitions, so preferences do not matter (α = 1 for those
states). A(X) ≥ V b′(X, a) since policies in the world where
all trajectories are simultaneously followed can be no better
than policies with any single set of preferences. Similarly,
B(X) ≤ mind V

d(X, a) because B represents an empty
world that must be at least as good or better than any valid
preference. Thus, α̃ ≥ α (α is the minimum bound; α̃ is our
upper bound on α).

Given the bound for each preference, the policy found
by PPCP will be at most αk times the optimal expected
cost, where k is the maximum number of stochastic actions
along any branch of the policy, and is known. This can be
thought of as the depth of a tree where each node in the tree
represents a state in the policy where a focus action takes
place, and its children represent outcomes.

If there are no stochastic transitions, PPCP returns the
optimal policy since there can be no errors in preference
(k = 0). Otherwise, let vj(X) be the v value of any state X
that has exactly j stochastic actions on the policy π between
Xstart and X where 0 ≤ j ≤ k.

We proceed by induction on j. For j = k, there are no
stochastic actions left, so vk(X) ≤ αk−k · v∗(X) = v∗(X) ,



the expected cost of the optimal policy from state X . Assume
vj(X) ≤ αk−j · v∗(X) for some j. Since v is set according
to Q values along the COMPUTEPATH paths, according to
Eq. 3, for a state at depth j − 1:

vj−1(X) =
∑

Z∈succ(X,a)

P (Y, a, Z)·

max

(
c(S(Y ), a, S(Y ′)) + gold(Y

′),

c(S(Y ), a, S(Z)) + vold(Z)

)
≤

∑
Z∈succ(X,a)

P (Y, a, Z)· (7)

max

(
c(S(Y ), a, S(Y ′)) + gold(Y

′),

c(S(Y ), a, S(Z)) + vj(Z)

)
(8)

vj−1(X) ≤
∑

Z∈succ(X,a)

P (Y, a, Z)· (9)

max

(
c(S(Y ), a, S(Y ′)) + gold(Y

′),

α ·
(
c(S(Y ), a, S(Z∗)) + vj(Z

∗)
) )

≤α ·
(
c(S(Y ), a, S(Z∗)) + vj(Z

∗)
)

(10)

≤α ·
(
c(S(Y ), a, S(Z∗)) + αk−j · v∗(Z∗)

)
≤αk−(j−1) ·

(
c(S(Y ), a, S(Z∗)) + v∗(Z∗)

)
≤αk−(j−1) · v∗(X)

Eq. 7 holds because v values are monotonically increasing,
so the older v value must be less than or equal to the newer
one. Eq. 9 holds by Eq. 2, where Z∗ is the best possible
outcome. Eq. 10 follows because the second term of the
max is always larger than (or equal to) the first. We have
proven that the factor on α can increase by at most one per
level and vj(X) ≤ αk−jv∗(X) for all 0 ≤ j ≤ k. By taking
j = 0, we prove that v(Xstart) ≤ αkv∗(Xstart). Proofs that
the expected cost of π(Xstart) is v(Xstart) and that the
policy is sound follow the same proof as presented for the
original PPCP algorithm [16].

V. IMPLEMENTATION

To implement this planner in our domain, we define the de-
terministic state space of the problem as S(X) = (x, y, t, f)
where f ∈ {∅, 0, 1, ...} represents the robot’s current focus,
with ∅ meaning there is no focus. The policy may have many
focus actions targeting many different people, but only one
person is in focus at any given time corresponding to the
setting of f , with f = ∅ meaning no person is in focus. The
goal for the robot is only specified as a position (x, y), so
we create a window of possible ending times that covers the
minimum and maximum time it could take for the robot to
reach the goal. The heuristic is a 2D Dijkstra’s search in a
world with no people.

We implemented this planner on both the segway RMP
based differential-drive robot shown in Fig. 4 and the Willow
Garage PR2 robot in Fig. 1. Both robots are equipped
with a lidar scanner for static obstacle detection and human
tracking. For our experiments, we also equipped the robots to

play sound so they could vocally interact with humans. Both
run ROS, Willow Garage’s Robot Operating System, which
allows us to integrate a number of off-the-shelf components
written by people across the robotics community, including a
local planner that can follow the rough trajectories generated
by this algorithm.

In order to run this planner, we need a multi-hypothesis
tracking system. This paper focuses on the planner, so the
tracking systems we used will not be explained in detail. We
implemented a simple tracker that clusters lidar points and
tracks clusters that may be moving. We use a pre-defined
static map that is annotated with intersections. Alternatively,
the paths and probabilities could be learned automatically
from recorded data, such as in [5]. For the segbot experi-
ments, we assume the people are moving in a straight line
and may or may not pause before entering an intersection.
For the PR2 experiments, we also annotate the map with a set
of possible goals and a probability that a random person is
traveling to that goal. Using this information, we plan a path
from the person to each goal and rule out any goals that the
person is moving away from. This tracker limited the speeds
the people in the experiments could move towards the robot,
but it still allowed us to verify our approach experimentally.

In order to make the system run online, it was not
possible to always allow PPCP run to full convergence. Full
convergence is rarely needed, as after the first few iterations
on a problem with one or two humans, the policy tends to
be the same as after the algorithm converges (see Sec. VI-
B). As long as at least one iteration of MAIN procedure has
completed, there will be a policy at least up to the goal or
first branch. This is sufficient, since the robot can improve
its plan as it drives, or replan from scratch when it reaches
the focus point and more information is available.

For this paper we focus on indoor environments with
humans navigating the hallways. In our implementation, the
robot approximates that trajectories that pause or duck out
of the way of a main hallway are preferred, although this
preference could be estimated online if needed.

VI. EXPERIMENTAL RESULTS

Fig. 4. The segbot plans to collect additional sensor data to determine if
the person will continue walking or pause to allow the robot to pass.



A. Robot Results

There are two experiments presented, each with a different
focusing method. Each experiment has two cases correspond-
ing to different outcomes of a focus action, each of which
can be seen in the attached video. Both methods of focusing
have their own visibility function, which determines at which
states they can differentiate between possible hypotheses. In
this work, the focus actions were separately tested, but both
actions could be included and the planner could be allowed
to chose between them as appropriate.

Speech-based focus: The first focus method is for the
robot to speak to the person in an attempt to resolve
uncertainty in the intention. In our example (Fig. 1), the PR2
is trying to navigate to a position behind two walking people.
By saying “excuse me” out loud, the robot gets the attention
of the person it is speaking to, and that person either moves
out of the way for the robot (toward the temporary goal just
off the corridor), or continues to one of his original goals.
With the PR2’s sensors, we were able to detect and predict
trajectories for two moving people. One person is walking
towards the robot and may collide with it, while the other
person is walking away from the robot. The planner is given
1.5 seconds to plan and automatically ignores the person
who is moving away while it focuses to disambiguate the
intention of the person approaching the robot.

Sensing-based focus: The second focus method is a simple
operation where the robot stops and waits while it gathers
more sensor information to determine which trajectory the
person is actually following. At this point, additional ob-
stacles or trajectories may be introduced, but the uncertainty
present in the initial policy with respect to the person focused
on will be gone. The visibility function for this focus action
requires the robot to be within a sensing range and the
hypotheses about the person to have diverged (the trajectories
do not all occupy nearby (x, y) positions).

In the corresponding segbot experiment (Fig. 4), the robot
is at a T–intersection and the person is approaching. The
person will either pause before the intersection, or continue
to walk straight towards the robot. If the person walks
straight, the robot must back up to the area near the doors
and move to the side to get out of the way, while if the
person pauses, the robot can go in front of the person.
The robot moves forward slightly to get into the “visible”
range of the person, then the robot replans and at this
time the person has either moved past the intersection, in
which case the robot turns to get out of the way, or it
has stopped before the intersection, in which case the robot
moves in front of the person and proceeds along the hallway.
This experiment demonstrates that the robot has successfully
taken this uncertainty into account. In this experiment, the
planner was given 2 seconds.

B. Simulation Results

We created random 100 x 100 cell (1/3 m cell width)
indoor maps with randomly generated hallways and rooms,
like the one shown in Fig. 5. In these experiments, people
were randomly inserted at a point in the free space of the

Fig. 5. A sample random 100 x 100 cell map with 10 humans.

Fig. 6. Mean planning times for maps like Fig. 5. 4 trajectories per person.

map, and 4 goals were randomly chosen which the person
would plan a path to with a time resolution of 0.5 seconds.
We experimented with 1 through 10 people and generated
450 random dynamic environments for each. We check each
environment to ensure that a finite policy exists prior to
running the planner.

People Size People Size

1 2.0 · 106 6 2.2 · 1010

2 1.5 · 107 7 1.3 · 1011

3 1.0 · 108 8 7.0 · 1011

4 6.3 · 108 9 3.9 · 1012

5 3.8 · 109 10 2.1 · 1013

TABLE I
SIZE OF THE BELIEF STATE SPACE FOR EACH NUMBER OF PEOPLE IN

OUR EXPERIMENTS.

The belief state space for these problems is huge. For the
10 person problem, there are 100× 100 cells, 11 settings of
f , at least 20 timesteps (usually many more), and 510 settings
of H (4 trajectories plus one for h = u), which multiplies to
a total of 21, 484, 375, 000, 000 possible belief states. Table I
shows the size for each number of people considered. This
is clearly too large to represent as a generic POMDP and
solve using an exact or an approximate POMDP solver, yet
we can find full policies on these problems in an average of
about 5 seconds as shown in the top green line in Fig. 6.

We have seen that this algorithm tends to very quickly
converge to a good approximation after only a few itera-
tions. There are an average of only 15 policy changes for
an average of 41 iterations with policies that are around
200 actions long. A policy change is counted each time a



previously defined entry is updated. The majority of these
changes are the algorithm trying out different focus points.
Therefore, if a robot started following the partial policy after
a few iterations, almost all of its actions would be optimal up
until the focus point. The partial policy may be incomplete
because it may not yet define actions for every outcome of
a stochastic transition. In these cases, it is useful to talk
about the probability of success of the policy. This is defined
as the probability that the policy will contain a complete
path to the goal. Since each branch has some probability of
being reached, we compute the probability of success as the
probability given each unknown variable that the policy has
a defined branch for that setting (this is computed efficiently
by iterating over the policy only once). In Fig. 6, we show
results that terminate when the probability of success reaches
the stated convergence level. By planning to 50% probability
of success (red line) we can save time and start executing
a policy. The 5% probability of success curve shows how
quickly we can get a partial solution. This is the minimum
time at which the robot could start executing the policy. As
it executes, planning can continue and a new policy can be
followed once it is computed and has a higher probability of
success than the current policy.

VII. CONCLUSION AND FUTURE WORK

We have presented a generalization to the PPCP algorithm
that allowed it to be used in cases with approximate rather
than clear preferences. We explained the algorithm and a
bound on the sub-optimality of the policies it produces.

We also applied this algorithm to the domain of navigation
in dynamic environments with uncertain human intentions.
The main contribution to this problem is the fact that we
can reason about uncertainty in the trajectories of dynamic
obstacles and automatically take focus actions (when avail-
able) to disambiguate between the possible future trajectory
hypotheses as necessary. Our algorithm allows us to solve
this planning under uncertainty problem efficiently.

To better solve this problem, one of the most important
steps for the future is integrating a sophisticated multi-
hypothesis dynamic obstacle tracker. We are also investi-
gating other ways to speed up the planner by removing
redundant and irrelevant states.

Another limitation of this work is that it does not model
interaction between the people and the robot. When people
move through an environment, they are also trying to avoid
collisions, and ideally this would be included in the model.
Previous work has addressed this issue, but had a much more
limited model of uncertainty and is not capable of dealing
with indoor environments [17].

We noticed that there appears to be a direct trade-off
between the quality of the preferences (and thus the bound
on optimality of the result) and the planning time. Having
preferences that are “more wrong” tends to mean we ignore
more people (and thus ignore more branches), and thus
converge more quickly. This suggests that it may be desirable
to purposely choose worse preferences if faster planning time
is required.

Finally, the suboptimality bound presented in this paper
is not believed to be tight, so finding a tighter bound, both
on the preferences in this domain, and the PPCP algorithm
overall, are promising directions of future work.
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