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Abstract—In this paper, we solve the path planning problem
for a tethered mobile robot, which is connected to a fixed
base by a cable of length L. The reachable space of the
robot is restricted by the length of the cable and obstacles.
The reachable space of the tethered robot can be computed
by considering the topology class of the cable. However, it is
computationally too expensive to compute this space a-priori.
Instead, in this paper, we show how we can plan using a
recently-developed variant of A* search, called Multi-Heuristic
A*, Normally, the Multi-Heuristic A* algorithm takes in a
fixed set of heuristic functions. In our problem, however, the
heuristics represent length of paths to the goal along different
topology classes, and there can be too many of them and not
all the topology classes are useful. To deal with this, we adapt
Multi-Heuristic A* to work with a dynamically generated set
of heuristic functions. It starts out as a normal weighted A*.
Whenever the search gets trapped in a local minimum, we find
the proper topology class of the path to escape from it and add
the corresponding new heuristic function into the set of heuristic
functions considered by the search. We present experimental
analysis comparing our approach with weighted A* on planning
for a tethered robot in simulation.

I. INTRODUCTION

In extreme environments such as disaster areas, wireless
signal may not be strong enough for an operator to commu-
nicate to a robot [16], [19]. For example, this was the case
when robots were deployed in the reactor building after the
disaster of Fukushima due to the radioactive environment [8].
In such cases, using power and communication cables to
tether the robot can effectively solve such problems [5].
Tethering also helps in deploying robot in environments with
limited accessibility. For example, Nassiraei et al. designed
a tethered sewer pipe inspection robot to work instead of
a human operator to decrease the cost and to speed-up the
inspection [17]. Also, tethered mobile robot can be used to
maintain and construct highways [12].

Tethering also used whenever size limits or actuation
power make it impossible for a robot to carry its own power
supply. For example, a number of prototypes of micro robots
use external power source to actuate the motors or sensors
as shown in Figure 1(a) [6] and Figure 1(b). These robots
are tethered.

While tethering solves communication and power problem
for mobile robots, it also causes challenges in control and
planning. In general, the cable is stiff and has finite length,
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(a) A picture of a flapping- (b) A tunnel
wing microrobot prototype inspecting robot taken from
taken from (Chirarattananon, http://www.wired.com/2011/12/robot-
Ma, and Wood 2013). tunnels/all/

Fig. 1. Examples of tethered robots

which restricts the workspace of the mobile robot around the
fixed base point. Also, due to obstacles, certain robot poses
become reachable only under specific cable configurations
(the topology class of the cable).

In this work, we consider the path planning problem for a
tethered mobile robot. The work space of the tethered robot is
restricted by the cable of maximum length L which connects
the robot to a fixed base. This workspace can be calculated
by considering the homotopy class of the cable [14], which is
computationally too expensive for online planning. Instead of
relying on this preprocessing, we consider the topology class
of the path and cable to guide a heuristic search in the form
of heuristics. Recently-developed Multi-Heuristic A* allows
to deal with numerous inadmissible heuristic functions while
guaranteeing the suboptimality bound [2]. As there could
be too many possible topology classes and corresponding
heuristic functions and not all of them are useful during the
search, we propose a Topology-based Multi-Heuristic A*,
which starts as a normal weighted A* [18] but shifts to Multi-
Heuristic A* by adding new heuristic functions to escape
from local minima.

II. RELATED WORK

There has been active research on path planning for
tethered mobile robots. Some early work has considered a
tangle-free path planning of a group of tethered mobiles
robots in obstacle-free environments [11]. In contrast, our
approach can handle arbitrary obstacles.

Finding the shortest path for a tethered mobile robot
was studied in [23], [24]. The authors triangulated the
environment by using all the edges of polygonal obstacles as



edges of triangles. Then the authors built the visibility graph
to find the shortest path. However, the suggested algorithm
suffers from the computational complexity associated with
the number of vertex of obstacles. In addition, our approach
is not constrained to polygonal obstacles.

Homotopy class of the cable was considered in [13] to
solve a similar problem. However, the authors did not use
the homotopy invariant but considered the path length to the
node to distinguish paths in different homotopy classes. This
representation of homotopy class is based on the metric infor-
mation of the path and can lose some important information
about the paths. This loss of information can result in failure
to distinguish paths in different homotopy classes and may
lead to finding solutions that are infeasible. For example,
they will not be able to differentiate between two paths of
the same length even if one passes an obstacle on the right
and the other one on the left. In our work, we do consider
the homotopy invariant and build an augmented graph to
handle the topology information of path and cable. As a
result, the solutions found by our approach are guaranteed
to be feasible.

Motion planning for a tethered axel rover on steep terrain
was studied in [1]. They also consider the homotopy class
of the path of round trip path to the goal to minimize the
possibility of entanglement of the cable. This work was later
extended to an online motion planning algorithm to deal with
partially known environment [21]. Also, finding the coverage
area is another form of planning problem. In [20], the authors
solved the planning problem for a tethered mobile robot to
explore and cover the partially known environment and return
to the base point, which also works as the starting point. In
our work, we consider arbitrary starting position and cable
configurations.

The shortest path of a tethered mobile robot can be gener-
ated by relying on pre-computation of the reachable space,
which is computationally expensive [14]. We avoid this pre-
computation and propose a novel algorithm to consider the
topology class of the cable and robot path to focus the
search. This method results in fast computation of bounded
suboptimal paths.

III. THE PRELIMINARIES

In this section, we discuss the topology of curves, which
could be paths or cables. Since the notion of topology was
already introduced in various literature [7], [9], [10], [22],
[3], we will briefly discuss the topology required in our
paper. Throughout this paper, we follow the same notations
as [14].

We consider the workspace or search space, W C R? as a
simply connected and bounded region on plane. We have m
arbitrary-shaped obstacles of O = {01,0a2,...,0,,}. We
consider a path or cable in the workspace as a curve on the
plane. Two curves, connecting the same start and end points,
are homotopic if and only if one can continuously deform to
the other without intersecting any obstacles. We call the set
of curves that are homotopic homotopy class. For example,
the two curves, 71 and 75 in Figure 2(a) are homotopic and

in the same homotopy class. However, 73 is not homotopic
to these two curves as it cannot deform to 7; or 75 because
of the obstacle, O;.

Homotopy invariant is a function of curves that will return
the same value for all the curves in the same homotopy class
and the different values for pairs of curves that lie in different
homotopy classes. In general, it is not easy to find or design
such a function. In a 2-dimensional plane, however, one can
find a relatively simple and easy homotopy invariant. To do
this, we choose reference points inside of each obstacle, (; =
(Zri,Yr,i) € O;. Then we set the reference ray, r;, for each
obstacle to start from the corresponding reference point in the
direction of [0, 1]7. These reference rays serve to compute
the homotopy invariant, word, of the given curve. We can
then represent the homotopy class of the given curve, h(-),
by building a word to trace the curve while consecutively
appending a letter corresponding to the reference ray that the
curve crosses. For example, if the curve crosses the reference
ray r; from left to right, we add “r;” When the curve
crosses the reference ray from right to left, we add “r; 1r
Figure 2(b) shows an example (borrowed from [14]), the
homotopy invariant of the curve vy is h(y) = “rorsrsrg L»
Note that “7“47’;1” gets evaluated to an empty word, “”.

Homology is a similar concept to homotopy but slightly
different. Two curves, connecting the same start and end
points, are homologous if and only if they form a boundary of
a 2-dimensional region that does not contain or intersect any
obstacles. If two curves are homotopic, they are homologous.
However, the inverse is not necessarily true. Figure 2(c)
shows an example that the two curves, 7, and 7o, are ho-
mologous but not homotopic. The homology invariant of the
curves was defined as H-signature of the curve [3]. The H-
signature is not unique and can be designed in several ways
including Cauchy-Integration [3], [4]. In this work, we use
the H-signature introduced in [15] because this H-signature
is designed to count the number of crossing with reference
rays, +1 for left-to-right and —1 for right-to-left. This func-
tion can be calculated from the homotopy invariant, word,
defined above by counting the number of the corresponding
letters appearing in the word. For example, the H-signature
of the curve « in Figure 2(b) is H(y) = [0,1,1,0,1,—1]7,
where i components correspond to obstacle O;.

IV. PROBLEM FORMULATION

In this paper, we solve the problem of planning a path
for a tethered mobile robot from the given initial position
and cable configuration to the goal while satisfying the
cable length constraint. We set the maximum cable length
as L. We represent the problem as searching for a path
in a homotopy invariant augmented graph. The vertex of
the augmented graph, (q,tvo), includes the position of the
robot and homotopy class of the cable, respectively. Also,
to decrease the computation load, we add a variable, called
cable length [, which is initialized as the length of initial
cable configuration at the start vertex and is updated at
every generated state based on its predecessor’s [ and the
transition. Each vertex is feasible if the position of the robot
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(a) Example where 71 and 72 are homotopic. 71 (b) (; are representative points inside the obsta- (c) Example where two curves (71 and 72 ) are

and 73 are not homotopic because of obstacle cles, O1,O2,- -+
O1.

, Om, (in that order), and r; are homologous but not homotopic.
rays emanating from the respective points. The

homotopy invariant of this curve v is h(y) =

“ror3rsTe Lo,

Fig. 2. We consider two topology classes of curves, homotopy class and homology class.

is obstacle free and if this configuration is reachable [14].
In other words, the given position is reachable if there is at
least one feasible cable configuration, satisfying cable length
constraint and is obstacle free, under the given homotopy
class, 1. It is a sufficient condition of the reachability that the
dependent variable [ is less than the maximum cable length,
I < L. So, whenever [ is longer than the cable length, we run
the | = curveShorten(s, ©), described below, which returns
the length of the shorten path connecting the given state s and
the fixed base from the given state s and a set of obstacles
O. Then we update the value of [. If the updated value of [
is smaller than the maximum cable length L, this vertex is
feasible. Even when the updated value of [ is greater than
L, there can be a curve that is homotopic to the extracted
path and its length is shorter than L. So this method is a
conservative way to find or build a feasible and reachable
space of the tethered mobile robot. The following is the brief
algorithm for the CurveShorten function that was also used
in [14]. (Here, we keep track of which obstacles, O., are
blocking the visibility to remove unnecessary computation
in the later part of the planner.)

Algorithm CurveShorten:
1) curveShorten(s,O = {01,03,...,0,})
2) P=[vg=qp,01,-...,0, =8| = extractPathTo(s);
3)1=0,0.=0;
4)i=0, j=0;
5) while j <n
6) if j<n AND qqiNO =10
7) J=J+1L

8) else
9 =1+ ||q@ql;
10) 1=7;

11) add Vk into O, s.t. q;q;11 N Ok # 0
12) I =1+ [|[qq;l;
13) return (I,0.)

In the above algorithm extractPathTo(s) generates the
sequence of vertices from the state to the initial configuration

by backtracking the path from the given vertex, s, to the
initial configuration of the robot and appending the initial
cable configuration as a sequence of connected states. Then
this sequence lies in the same homotopy class with the
cable configuration of the given vertex s. To speed up
and improve the performance of the curveShorten(), we
trace all the vertices on this sequence to find a pair of
vertices that have the same x value and the same homotopy
invariants. If the path segment connecting these vertices
is not a straight vertical line and if such vertical straight
line segment is feasible, we can replace the path segment
with this vertical straight line because the process does not
change the homotopy class of the path and the replaced
segment is definitely shorter than the original segment. The
green vertical line of the Figure 3(a) shows an example of
such replacement. However, the red vertical line is obstacle
free but cannot replace the original path as it will change
the topology class of the path. By doing so, we run the
curveShorten() with slightly different and shorter initial
path than the one in [14]. This additional procedure helps
to avoid finding locally optimal solutions. The red curve in
Figure 3(b) shows an example of the shortened path achieved
by the above curveShorten() from the given initial path of
the blue curve.

V. TOPOLOGY-BASED MULTI-HEURISTIC A*
A. Heuristic functions considering topology

To search the graph we use a heuristic search. As such,
it relies heavily on having a good heuristic function that for
any state s estimates the cost of reaching a goal state from
s.

In this work, we minimize the travelling distance of the
robot on a plane. The most common admissible heuristic
in 2D search is the Euclidean distance to the goal. In this
work, we choose the Euclidean distance as the admissible
heuristic of the search. However, the search could be trapped
in local minima, which are usually caused by obstacles that
block the movement of the cable while exploring the search
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(a) Example of (b) Example of curveShorten.
extractPathTo(s). The blue The blue curve is the initial se-
curve is the path extracted by quence of states achieved from
backtracking form s to the base. extractPathTo(s). The red curve
The vertical green curve can replace is the line segments, q;q;, in
the dashed part of the blue curve line 9 and 12 of the Algorithm
because this replacement does not CurveShorten. So the length of
change the topology class of the this red curve is the value of
path. However, the vertical red curveShorten(), which is shorter
curve is not acceptable as it will than the length of the blue curve.
change the topology class of the

path.

Fig. 3. Example of Algorithm curveShorten.

space guided by a heuristic function which does not consider
the cable length constraint and obstacles. If there are some
additional heuristic functions to help escaping from these
local minima, they can decrease the computation. To this end,
we consider the topology-based additional heuristic functions
to calculate the length of the shortest path under specific
homology classes. In the following section, we explain how
these heuristic functions are being used.

The heuristic function we design calculates the length of
the shortest path from the given position, q., to the goal
position, qg, while considering the change of the H-signature
value corresponding to the given obstacle, O;. There are
three different types of heuristic functions: not changing the
value of H-signature, increasing the value of H-signature
and decreasing the value of H-signature. However, it is not
trivial to compute such functions as they also depend on
the size and shape of the obstacles. We therefore designed
a heuristic function which finds the under-estimated length
of the path by considering the corresponding obstacle as a
vertical line segment and ignoring other obstacles. For each
obstacle, we define Ymin,i = Min(gyeo, ¥ St T = Tp;
and Ymaz,i = MAT(zy)c0; Y St T = T, ;. We then consider
O; and a vertical line segment connecting (. ;, Ymin,;) and
(@r,i, Ymaa,i ), Which is the longest vertical line inside of O;
containing (;. Then we can calculate the length of the path
from given position to the goal to change or maintain the
homology class corresponding to obstacle. The following
algorithm shows how to calculate such distance by using
symmetry of the problem.

Algorithm heuristic function
considering homology class:
1) procedure distNotToChange(q. = (z., y.),
qg = (l‘g, yg)7 Ol)

2) if z.> x4

3)  return distNotToChange(qg, qc, O;)

4) if z. <z; and z; < 74

5) if (yg —Ye) (@i — 2c) > Ymin,i — yC)(xg —Tc)

6) return dist(Z¢, Ye, Tis Ymin,i)

+dist(x;, Ymin,is Lg, yq)
7) return dist(x., Y, Tg, Yq)
8) procedure distIncrease(q. = (2, y.),
dg = (%g,Yg), Oi)

9 if z. > x4

10)  return distDecrease(qg, qc, O;)

1) if z; <,

12)  return dist(Zc, Ye, Ti, Ymin,i)+(Ymaz,i —

+di5t(xi» Ymazx,is xga yg)
13) if 2; < g
14) if (yg - yc>($z - .’Ec) > (yma:p,i - yc)(xg - 330)

ymzn,?)

15) return dist(x¢, Ye, Tg, Yq)
16) else
17) return dist(xc, Ye, Ti; Ymazw,s)

+dist(z;, Ymaz,is Tgs Yg)

18) return dist(zc, Y, Ti, Ymaz,i)+ Ymaz,i — Ymin,i)
+dist(z;, Ymin,i> Tgs Yg)

19) procedure distDecrease(q. = (z¢, Yc),

dg = (g, Yg), Oi)

20) if x. >z,

21)  return distIncrease(qg, qc, O;)

22) if x; <z,

23) return diSt(mw Ye, Ty yTnax,i)+(y7naw,i - ymin,i)
+diSt(IEi, Ymin,ir, Lg, yg)

24) if x; < g

25) return diSt(CEC, Ye, Tgy ymin,i)+2(yma:r,i - ymzn,z)
+di5t($i7 Ymazx,ir) Lg, yg)

26) return dist(z., yc, T, ymin,i)+(ymaw,i - ymznz)
+di3t(zi7 Ymazx,is Lg, yg)

27) procedure dist(zy,y1, X2, y2)

28) return /(z1 — 22)2 + (y1 — y2)2

In our algorithm, we will be adding new heuristic functions
whenever the search is trapped in the local minimum. As
part of this process, we will be figuring out which heuristic
function helps to escape from this local minimum. We start
with the empty set of additional heuristic functions, H,4q =
(). Whenever we expand vertices in a local minimum, we
find a critical obstacle by assuming that this local minimum
is caused by the cable length constraint. The following
description of the algorithm shown in incHeuristics(s) shows
how it works for a vertex s. First, we find the obstacles
that block the visibility, which causes the cable to detour.
Then, we find the most dominant obstacle by running and
comparing the result of curveShorten() with different sets
of obstacles. Then we add the desired homology class of the
path to pass the chosen obstacle in opposite direction.



Algorithm add new heuristic function:
1) procedure incHeuristic(s)
2) (I, 0.) = curveShorten(s, O);
3) find Oy, minimizes I, = curveShorten(s, O\ {Ox})
4 if I <.

5)  w= Hy(w,k);

6) Case based on w

7) case w > 0

8) wg =w — 1;

9) case w < 0
10) wg = w + 1;
11) case w =0

12) if s is on left side of goal
13) wg = 1;

14) else

15) wg = —1;
16) add (Ok,wd) into H,qq

17) procedure Hy (v, k)
18) return (# of 7 in 1o - # of 7, in )

Here Hj() calculates the H-signature of the given vertex
corresponding to the given obstacle and wy is the desired
H-signature to avoid the local minimum due to the corre-
sponding obstacle. By doing so, the corresponding heuristic
function for each desired homology class is calculated for the
given vertex. If there is a heuristic function corresponding
to desired homology class of (O, wy) and a given vertex
s = (q, ), the heuristic function to the goal, q, is

h(s) = distNotToChange(q,qq,0r) if ws = wq
distIncrease(q, qq, Ok) if wy < wy
distDecrease(q, qg, Ok) if wg > wy

where ws = H (10, k) is the value of H-signature of the
given vertex, g, corresponding to the obstacle Oy.

B. Algorithm

The Topology-based Multi-Heuristic A* is a variation
of Shared Multi-Heuristic A* in [2], which explores the
search space guided by fixed number of heuristic functions.
The difference between the proposed Topology-based Multi-
Heuristic A* and Shared Multi-Heuristic A* is that the
former starts out by following the normal weighted A*
search with a single admissible heuristic function, which
is the Euclidean distance to the goal in this work, and
whenever the search is trapped in a local minimum, it adds
additional heuristic functions, which are not required to
be admissible, to escape from this local minimum. These
additional heuristic functions are achieved by considering
the topology class of the path to the goal and current cable
configuration as described in the previous section. If we
have more than one heuristic function, the search switches to
Shared Multi-Heuristic A* [2]. Given m obstacles, there are
3m + 1 candidate heuristic functions, one for the admissible
heuristic function and three heuristic functions per obstacle
considering three different homology classes. However, it is
not clear which functions are the best in guiding the search.
Therefore, as described in the previous section, we only

add necessary heuristic functions whenever we need them
to solve the given path planning problem.

The following is the pseudo-code of the suggested
Topology-based Multi-Heuristic A*. This search algorithm
is fundamentally the same as Shared Multi-Heuristic A*.
However, the search shifts from weighted A* to Shared
Multi-Heuristic A* when it first adds additional heuristic
function; when n becomes bigger than 0 (line 49). Whenever
expanding the selected vertex, we check if it is a local
minimum (line 42). This check basically compares if the
priorities of all successor states are larger than the priority
of state in question. Then we find and add a proper heuristic
function by using incH euristic(s) function as described in
the previous section. By doing so, we add and consider only
few heuristic functions during the search on as-needed basis.

Topology-based Multi-Heuristic A* guarantees bounded
optimality. If the algorithm terminates at line 10 while
running as a weighted A*, the solution will be the same as
in weighted A* and bounded by w;. If the algorithm shifted
to Shared Multi-Heuristic A* and the search terminates at
line 17 or 22, then the optimality of the solution is bounded
by wjws same as in Shared Multi-Heuristic A*.

Algorithm Topology-based Multi-Heuristic A*:
1) procedure ThMHA*()
2) 9(8goal) = 00, bp(sstart) = bp(sgoar) = null
3) g(sstart) =05
4) OPEN, = 0;
5) OPENy.insert(Sstart, key(Sgoat, 0));

6) n=0
7) while OPENg not empty
8) if n=0

9) if bp(sgoal)
10) terminate and return path pointed by bp(sgoar);
11) s = OPENy.Top();

12) expand(s,0);

13) else

14) for i=1 to n

15) if OPEN;.Minkey() < w2OPENy.Minkey()
16) if g(sgoat) < OPEN;.Minkey()

17) terminate and return path pointed by bp(sgoat);
18) s = OPEN;.Top();

19) expand(s,1);

20) else

21) if g(sgoat) < OPENy.Minkey()

22) terminate and return path pointed by bp(sgoa1);
23) s = OPENy.Top();

24) expand(s,0);

25) procedure key(s,i)

26) return g(s) + wih;(s);

27) procedure expand(s,i)

28) fori=0,...,n

29) OPEN,.remove(s);

30) if s is goal and g(s) < g(Sgoat)

31 Sgoal = §;

32) for each s’ € Succ(s)

33) if s’ was never visited

34) g(s’) = oo; bf(s’) = null;

35) i g(s') > g(s) +c(s,s")

36) if s’ has not been expanded in the anchor search

37) insert/update s’ in OPENg with key(s’, 0)

38) if s’ has not been expanded in any inadmissible search
39) for i=1 to n

40) if key(s',i) < wakey(s’,0)

41) insert/update s’ in OPEN; with key(s’, 1)
42) if key(s,0) > key(s’,0) for each s’ € Succ(s)

43)  m = incHeuristic(s);

44) for i=1 to m

45) OPENp4; = 0;

46) for each s’ € OPEN,

47) if key(s',n+ i) < wakey(s’,0)

48) OPEN,,4;.insert(s’, key(s',n +1));

49) n=n+m;
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Fig. 4. Example paths of the simulations. The blue curves are the initial
cable configurations and the green curves are the paths. The fixed base point
is the end of blue curve at the bottom center of the map.

VI. SIMULATION RESULT

To demonstrate the performance of the suggested
Topology-based Multi-Heuristic A*(TbMHA*) for path plan-
ning for a tethered mobile robot, we performed various simu-
lations and compared the performance with weighted A*. (As
the suggested TbOMHA* guarantees bounded suboptimality,
we choose weighted A*, instead of A*, to compare the
performance, which also guarantees bounded suboptimality)
Since the simulation result depends on the weighting param-
eters for both algorithms, we used the weighting value of
w = 10 for the weighted A* and we chose w; = % and
wy = 3 for the Topology-based Multi-Heuristic A*. Then,
both algorithms had the optimality bound of wjwy = 10.
Both planning algorithm adapt travelling distance as cost, and
weighted A* uses Euclidean distance to the goal as heuristic
function, h. TOMHA* adapts the heuristic function consid-
ering homology class described in the previous section.

We built two simple 100 x 100 grid maps with 12 and
11 obstacles (Figure 4(a) and 4(b) respectively). And we
choose the geometric center of each obstacle as its reference
point. Using those, we ran several simulations with different
cable length constraints and goal positions. The plots in
Figure 4 show example paths generated by ToOMHA*. We ran
18(three different cable lengths and three different goals for
each two maps) simulations and compared the computation
time and the number of expansions during the search. We
compared evaluation parameters as the ratios of expansion
and computation time of TbOMHA* with respect to those of
weighted A*.

_ # of expansions by TbOMHA*

- # of expansions by weighted A*
_computation time of TbOMHA*

Tt = . - -
K computation time of weighted A*

Te

We plot these evaluation parameters in Figure 5. The z-
axis represents the r. and y-axis represents r;. The X marks
are the evaluation of each simulation and the circle is the
mean of r. and r; for all 18 simulations. The inside of the
dotted lines is the region where both parameters are less
than 1, in other words, where the suggested Topology-based
Multi-Heuristic A* works faster than weighted A* with less

expansions. The plot in Figure 5(a) shows all 18 simulations.
The mean values of the evaluation parameters are 7. = 1.4
and 7y = 0.76. According to these results, TbOMHA* can find
the path faster but needs more expansions. However, there
are only four simulations, lying outside of the dotted line,
where the weighted A* works better. All these simulations
are the cases where we set the largest value of maximum
cable length. So the cable is long enough that the cable
constraint does not effect the resulting paths. All those four
cases correspond to cases where the shortest path for the
robot without the tether is the same as the path for tethered
robot.

The Figure 5(b) is zoom-in on the lower left portion of Fig-
ure 5(a). The cases shown in Figure 5(b) are the simulations
where cable length constraint did make the problem harder. If
we consider only these 14 cases in Figure 5(b), the average
evaluation parameters are 7. = 0.3116 and 7, = 0.2643.
According to this result, TbOMHA* finds the paths faster with
less expansions than weighted A*.

To show the performance of TOMHA* on large problem,
we considered an example of 300 x 300 grid map with
53 obstacles. (As the computational complexity increases
exponentially with the number of obstacles, we increase the
number of obstacles instead of increasing the size of the
grid.) The Figure 6 shows the resulting path to the goal.
Figure 7 shows the snapshots of the path. The blue curves
are one of candidates of cable configurations at each instance
which is achieved by curveShorten() with path history
appending initial cable configuration. At each instant the
length of the blue curve is less than the maximum cable
length. So all the configurations on this path are feasible
and reachable. To find a path of this example, the weighted
A* took 55240ses > 15hr while expanding about five mil-
lion vertices. However, the Topology-based Multi-Heuristic
A* solves the same problem in 3100sec < 52min while
expanding only 580, 000 vertices. The evaluation parameter
for this example was r; = 0.056 and r, = 0.117.

The above simulation result shows that the proposed
Topology-based Multi-Heuristic A* works much more ef-
ficiently and faster than weighted A* to find the path of
a tethered mobile robot in large and more complex envi-
ronments. Also, the suggested TOMHA* has more benefits
in computation time compared to number of expansions.
The reason is that the proportion of nodes that require a
call to curveShorten(), which is by far the most expensive
procedure, is much higher in weighted A* than in TOMHA*.
The reason for this is curveShorten() runs when the value
of [ of the expanded node is greater than the cable length
constraint L. This happens when nodes are around the local
minima caused by cable length constraints. TbOMHA* avoids
or escapes these local minima by adapting proper heuristic
function based on the topology class of cable and paths. So,
the simulation results show that TOMHA* tends to expand
less nodes around local minima or escapes from local minima
faster than weighted A*.

We can achieve this result by considering the topology
class of the cable and path to add proper heuristic functions
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Fig. 5. Comparing the computation load of the suggested Topology-based Multi-Heuristic A* to weighted A*. The x-axis is the ratio of expanded vertices,
and y-axis is the ratio of computation time. Each X represents the evaluation parameters of each simulation and the circle is the average.
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Fig. 7. Snapshots of the path in the example of Figure 6 from left to right, top to bottom. The blue curves are the expected cable configuration achieved
by curveShorten(). At each instant, the length of the blue curve is shorter than the maximum cable length. The green curve is the path history of the
robot.

to guide the search in the right direction to the goal. There the suboptimality bound on the solution while decreasing

are some exceptional examples where TbOMHA* does not the computation time dramatically. In our approach, we

work better than weighted A*. If the cable is long enough, considered the topology class of the path and cable to find

the problem is a simple path planning problem that doesn’t  proper heuristic functions that help the search escape local

require reasoning over tether. minima. We demonstrated the performance of the proposed

algorithm in simulations. One of the future directions is to

find other constraints that cause local minima in planning for
In this paper we described the algorithm to solve the a tethered robot and design proper heuristic functions.

path planning problem for a tethered mobile robot, which

is connected to the fixed base by a flexible fixed-length ACKNOWLEDGMENT

cable. We formulate this path planning as a graph-search This research was sponsored by the ONR DR-IRIS MURI

and propose Topology-based Multi-Heuristic A* which is a  grant N0O0014-09-1-1052 and ONR ANTIDOTE MURI grant

variation of Multi-Heuristic A*. The algorithm guarantees = N00014-09-1-1031.

VII. CONCLUSION



Fig. 6.

Example path of the simulation in 300 x 300 grid map with 53

obstacles. The blue curves are the initial cable configuration and the green
curve is the path. The fixed base point is the end of blue curve at the bottom
center of the map.
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