
Task-Oriented Planning for Manipulating Articulated Mechanisms
under Model Uncertainty

Venkatraman Narayanan† and Maxim Likhachev†

Abstract— Personal robots need to manipulate a variety of
articulated mechanisms as part of day-to-day tasks. These tasks
are often specific, goal-driven, and permit very little bootstrap
time for learning the articulation type. In this work, we ad-
dress the problem of purposefully manipulating an articulated
object, with uncertainty in the type of articulation. To this
end, we provide two primary contributions: first, an efficient
planning algorithm that, given a set of candidate articulation
models, is able to correctly identify the underlying model and
simultaneously complete a task; and second, a representation
for articulated objects called the Generalized Kinematic Graph
(GK-Graph), that allows for modeling complex mechanisms
whose articulation varies as a function of the state space. Fi-
nally, we provide a practical method to auto-generate candidate
articulation models from RGB-D data and present extensive
results on the PR2 robot to demonstrate the utility of our
representation and the efficiency of our planner.

I. INTRODUCTION

A typical domestic task such as preparing a meal would
require a robot to open cabinets in the kitchen, fetch plates
from drawers, move items on the countertop, and open
the sink tap. Many of these subtasks require the robot
to understand the kinematic structure of the object being
manipulated. Since these are commonly encountered tasks,
it is natural to expect manufacturers of personal robots to
preload them with a set of typical articulation models to
accelerate planning. For instance, when the robot is required
to open a door, it might already deduce from the instruction
that the mechanism is a revolute joint, and only needs to
reason if the door needs to be pushed or pulled, without
having to learn the articulation from scratch.

Much of the recent work on articulated objects deals exclu-
sively with learning the articulation type given observations
of the object over time [7, 14], and taking actions that enable
quick identification [2, 11]. While it would be useful to
identify the complete articulation structure by interacting
with the object, it would be inefficient for personal robots
to fully characterize a model when a specific task needs to
be accomplished. On the other hand, the planning process
would be more efficient when bootstrapped with a set of
candidate models.

This paper provides several contributions towards task-
oriented manipulation of articulated objects under uncer-
tainty in their model types. As a first contribution, we develop
an efficient planner that can reason with uncertainty over a
set of candidate models, to achieve a specific task. While the

This research was sponsored by ARL, under the Robotics CTA program
grant W911NF-10-2-0016.
†Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{venkatraman,maxim} at cs.cmu.edu

full planning problem with uncertainty in articulation model
is an intractable POMDP (also noted in [2]), we show that
we can reduce it to a manageable belief MDP under certain
assumptions. This belief MDP can then be solved in real
time using an MDP solver, making our approach practically
attractive. The particular planner we use for solving the
belief MDP is based on LAO* [4], an efficient heuristic
search technique for solving MDPs. To briefly summarize,
LAO* interleaves forward exploration of the state space
using a heuristic, such as the one used by A* search [5], and
dynamic programming backup updates, à la value iteration.
The efficiency of the algorithm arises from carefully ordering
the sequence of dynamic updates, and by ignoring parts of
the state space that would never be reached from the start
state under an optimal policy.

The second contribution of the paper is in extending the
representation of articulated objects in order to allow for
efficient planning under uncertainty in the mechanism type.
Consider again the task of opening a door. While it is
tempting to dismiss it as a simple revolute mechanism, it has
its own complexities. More often than not, the door handle,
which by itself is another revolute mechanism, controls the
articulation of the door. With the door handle unturned,
the door remains rigidly fixed, while turning the handle
immediately activates the other revolute degree of freedom.
To plan for manipulation of such objects, it is imperative
that the representation used by the planner captures such
complexities. The representation that we provide builds upon
a commonly used representation in literature, the kinematic
graph [14, 3]. The edges in the graph model the articu-
lation between rigid components of an object, which are
represented by the vertices of the graph. Consequently, it
is sufficient to learn the parameters of the kinematic graph
to understand the articulation of the object. We extend the
kinematic graph to a Generalized Kinematic Graph (GK-
Graph), which allows for state-dependent variation in the
edge parameters of the graph. Using this representation, it
now becomes possible to capture non-trivial mechanisms,
such as the kinematic relation between the door and the wall,
with dependency on the state of the handle.

Finally, even with a database of articulation models, it
may be necessary to select relevant models for a particular
task given only the sensor data. Further, once the candidate
models are selected, they need to be converted into the repre-
sentation used by the planner. For this, we present a practical
method to auto-generate the candidate representations to be
input to the planner, by extracting kinematically relevant
visual features from sensor data, and then using a graph

segmentation algorithm to build the GK-Graph.
In addition to the contributions discussed thus far, this

work, to our knowledge, is the first to formulate the problem
of manipulating unknown articulated objects as a planning
under uncertainty problem. We demonstrate the end-to-end
pipeline on the PR2 robot, a mobile manipulation platform,
and provide experimental results that validate our claims.

II. RELATED WORK

Recently, there has been widespread interest in articulated
objects in the robotics community. Katz et al. [7] identify the
kinematic structure of planar articulated objects by tracking
features on the object. They cluster feature trajectories from
a moving object into rigid components and identify joint
relationships between each pair by studying the rigid body
transform of one with respect to the other. The same group
extended their work to handle identification of 3D articulated
objects in [8]. Sturm et al. [14] presented a comprehensive
probabilistic framework for identifying the articulation of an
object from an observed data sequence. They formulate the
problem as finding the most likely kinematic graph [3] that
explains the observations. This is done by maximizing the
posterior likelihood over possible kinematic graphs, while
using Bayesian Information Criterion to restrict model com-
plexity of the fit.

In [9], Katz et al. use a relational representation for actions
and formulate a relational Markov Decision Process (MDP)
to compute a policy that would minimize the number of
actions needed to discover the degrees of freedom of an
articulated object. Barragán et al. [2] formulate the problem
of identifying the articulation of an object as that of requiring
the entropy in the belief over the possible model types to
be less than a particular value. They use a Bayesian filter
which can assimilate information from a variety of sensing
sources to maintain the belief over the articulation model
types and choose actions that reduce the entropy in the
belief. Additionally, their formulation allows for modeling
articulated objects which are not just serial mechanisms.
On a similar note, Otte et al. [11] formulate the problem
of identifying an object’s degrees of freedom as that of
minimizing entropy in the current belief about the degrees
of freedom.

Our work is fundamentally different from the two camps
of work described above in that we are interested in pur-
posefully manipulating an articulated object for a specific
task, and not in learning the kinematic graph structure, or
minimizing the number of actions required to identify the
mechanism type. The proposed formulation as a planning
problem allows the robot to learn only as much as is
required about the object’s kinematic structure to complete
a desired task, in contrast to existing learning formulations
that ignore the task at hand. However, there are similarities
in the representation we use for our planning problem with
those used in literature. While Sturm et al. [14] use the
kinematic graph as a graphical model to infer the articulation
structure and parameters, we use an extension of it as a
representation for our planner. In [2], a general formulation

v1

v2

v3

v4

v5

v6

v7

v8

v9

PRISMATIC

RIGID

REVOLUTE

nprism=(1,0,0)

nrev=(0,0,1)
crev=(0,0,0)
:

G

Fig. 1: Illustration depicting a GK-Graph containing 4 rigid
edges (solid lines), 2 revolute edges (dotted lines) and 3
prismatic edges (dashed lines). Each vertex in the model
represents the 6-DoF position and orientation of a local
coordinate frame centered at that vertex. In the figure, nprism
is the prismatic axis direction, nrev is the revolute axis
direction and crev is a point on the revolute axis.

is used that allows for mechanisms to switch parameters
over time. However, this generalization is not grounded
in the perceptual capabilities of a robot. The Generalized
Kinematic Graph that we use for our planner representation
is an extension of the kinematic graph that provides the
generalization described in [2], while at the same time, can
be grounded in the perceptual capabilities—such as by using
fiducial markers in the same vein as [14].

In another class of work, Jain and Kemp [6] propose the
use of shared haptic data to identify specific instances of
an object type while manipulating it. They demonstrate their
method on the task of identifying a specific door instance,
such as a cabinet door or a refrigerator door, by using a data-
driven approach. The same authors, collaborating with Sturm
et al. [15], present a feedback approach for learning the
articulation model based on a robot’s end-effector trajectory,
and then predicting the trajectory based on the most likely
model estimated by the learning framework. This approach is
adopted in works by the same group [12] for operating doors
and drawers. Again, our work differs from these methods as
our goal is not identification of articulation models, but that
of planning to complete a given task as quickly as possible
under uncertainty over model types.

III. GENERALIZED KINEMATIC GRAPH

The Generalized Kinematic Graph (GK-Graph) is a di-
rected graph that represents the kinematic relationship be-
tween features of interest or rigid components of an object.
It is based on the kinematic graph [3], but extends it in that
it allows for modeling mechanisms where the relationship
between two rigid components can change as a function of
their poses. Vertices vi in the GK-Graph correspond to 6-DoF
poses of features on the articulated object, and the edges
parameterize the kinematic relationship between a pair of
vertices. An edge e from vi to vj is a tuple 〈m,β〉, where m
is the kinematic relation type (such as prismatic or revolute),
and β is a vector of parameters needed to describe m. For
example, if v1 were a feature point on the wall and v2
a feature point on the door, then the edge from v1 to v2
has m = revolute and β = {~naxis,~cpoint, θmin, θmax}. All the
parameters specified by β, in this case the axis of rotation,
a point on the axis, and rotation limits, are in the local

G1 G2

G4G3

v1

v2

v3

v4

v5

v6

v7

v8

F = -1

F = 3F = 1

F = 1

Fig. 2: GK-Graph states for a 1-D drawer. Solid lines in
the GK-Graph represent rigid edges, while the dashed lines
represent prismatic edges. The transition forces are exerted
at vertex v7, with positive forces corresponding to opening
the drawer, and negative ones closing the drawer.

coordinate frame of v1. Fig. 1 shows another example of
a GK-Graph.

The GK-Graph differs from the kinematic graph because
we allow the edge tuple 〈m,β〉 to be a function of the
current coordinates of the vertices f(V), where V =
{v1, v2, . . . , vk}. This makes the GK-Graph a complete state
for all mechanism models whose articulation varies only as
a function of its configuration. That is, if we knew f(V),
then a future state of the object can be computed given the
current one and the action applied. This addition increases
the expressiveness of the GK-Graph, and allows it to capture
complex articulated mechanisms. For example, the positions
of the vertices that represent a door handle affect whether
the relationship between the door and the wall is a rigid or
revolute one.

Fig. 2 shows an example of how the GK-Graph represents
a state for a 1-D drawer. GK-graph G1 is the initial state of
the object, with 8 vertices and 10 edges. The edges between
v4 → v7, and v5 → v8 are prismatic, while all others are
rigid. Applying a force of −1 on v7 pushes the drawer in,
and results in the state G2, while a positive force of 1 opens
the drawer, producing the state G3. Applying a unit force on
point v7 in G3, and a force of 3 on point v7 in G2 both result
in the same configuration G4. While simplistic, this example
indicates how a GK-Graph might be useful for planning.
Additionally, the actions that affect the GK-Graph state could
be more sophisticated than simple forces applied on contact
points on the object. The degree to which we can compute
the resulting state depends on the fidelity of the simulation
used and the input action types it supports. Since the focus
of this work is on efficient planning, we will use a basic rigid
body simulator that supports articulation constraints, while
not worrying about such details as friction.

IV. PLANNING UNDER MODEL UNCERTAINTY

A. Problem Formulation

First, we assume that there are N candidate mechanism
models, out of which one represents the true mechanism
of the object. The planning problem then is to complete
a specific task, whose goal is expressed as a particular
configuration of the GK-Graph. This configuration could also

be partially specified—for instance, the goal might be to have
the GK-Graph vertex corresponding to the door handle to
be at a particular 6-DoF pose in the workspace. We will
use x ∈ X to denote the set of vertices in the GK-Graph.
Each candidate mechanism model θ ∈ {1, 2, . . . , N} defines
a function fθ(x) which specifies the edge tuples in the GK-
Graph as a function of the vertices x. Let A denote the space
of possible actions that can be applied on the object.

Since θ is unobserved, the planning problem as formulated
is a POMDP with states s ∈ S denoting the tuple 〈x, θ〉. Let
b ∈ B be a belief state representing a probability distribution
over s. Solving the problem as a POMDP would require us to
compute the optimal policy π∗ : B → A. A naive approach
would be inefficient since the dimensionality of B is N |X |,
in addition to b being continuous.

We make two simplifying assumptions that reduce the
problem to a tractable MDP on the belief state that can then
be solved efficiently. First, we assume that the uncertainty
lies only in θ, which is equivalent to saying that the vertices
of the GK-Graph are fully observable—i.e, the set of 6-
DoF poses on the object can be tracked without uncertainty.
Second, we assume that the GK-graph transition model is
deterministic. That is, given θ, the vertices x and action a, the
next state x′ is completely determined by x′ = SIM(x, θ, a),
where SIM is the simulator for the GK-Graph.

Since x is completely observed, the POMDP can be re-
written as a Mixed-Observability MDP, or MOMDP [10].
Specifically, we only need to keep track of beliefs over θ for
a given x. Let this be denoted as bx(θ). The dimensionality
of this new belief space is only N , the number of candidate
mechanism models. Following [10], we can factorize the
transition update for the MOMDP after executing action a
at bx(θ) as:

b′x′(θ′) = η
∑
θ

p(x′|x, θ, a)p(θ′|x, θ, a, x′)bx(θ), (1)

where η is a normalization constant. Because the transition
model for s was assumed to be deterministic, and θ does
not change over the planning horizon (i.e, θ has no motion
model), the above expression simplifies to

b′x′(θ′) = η
∑
θ

1x′(SIM(x, θ, a))1θ′(θ)bx(θ)

= η1x′(SIM(x, θ′, a))bx(θ′)

=

{
ηbx(θ′) if x′ = SIM(x, θ′, a)

0 otherwise
(2)

where 1(·) is the indicator function. A key result from the
above is that the number of successors for a belief state
bx(θ), given an action a, is finite, and bounded by the number
of mechanism models. This greatly simplifies the planning
problem. Note that we do not include observations explicitly
in updating the belief. This is because our only observation
is x, the 6-DoF poses which are already part of the state.

B. Planning on the Belief MDP
Now that we have a tractable belief MDP (b-MDP)

where the number of successors for a given belief state is

Algorithm 1 LAO* for b-MDPs
1: procedure COMPUTEPOLICY(bstart)
2: G← {bstart}
3: G∗ ← {bstart}
4: while G∗ has non-terminal states do
5: T ← DFSTRAVERSAL(G∗)
6: for all b ∈ T do
7: if b is not yet expanded then
8: [S, P,C]← GETSUCCESSORS(b)
9: b′ ← Si

10: for all i ∈ {1, 2, . . . , |S|} do
11: v(b′)← GETHEURISTIC(b′)
12: G← G ∪ {b′}
13: abest(b)← argmina∈A(b)

(
cost(b, a)

+
∑

b′∈SUCC(b,a) p(b
′|b, a)v(b′)

)
14: v(s)← cost(b, abest(b))

+
∑

b′∈SUCC(b,abesti(b))
p(b′|b, a)v(b′)

15: update the best partial solution graph G∗ from G

16: IMPROVEVALUES(G∗)
17: return G∗

bounded by the number of candidate models, we can use
any MDP solver to obtain a policy over the b-MDP. For
notational convenience, we will represent bx(θ) as b and
assume that b has two components: b.x, the 6-DoF poses
and b.θ̄, an N -vector representing the probability distribution
over θ. Given a start state bstart = 〈xstart, θ̄start〉, the
planning problem now is to find the optimal policy π∗b :
REACHABLE(bstart) → A, where REACHABLE(b) is the
set of all belief states that can be reached starting from b,
under the optimal policy. Since the successors of a state are
determined easily for a given belief state b, LAO* (shown
in Algorithm 1) is an attractive algorithm for solving this
problem as it efficiently interleaves forward expansions and
dynamic backup updates while ensuring that we never look
at the states unreachable from the start under an optimal
policy [4]. LAO* maintains a partial solution graph G∗ that
stores all the belief states reachable from bstart under the
current policy, and the corresponding best action to take at
each belief state. Then, it iteratively performs the following
two operations until there are no non-terminal states in G∗:
first, a depth-first traversal of G∗ is obtained, and for every
state in the traversal order, it is expanded (Algorithm 2) if
not a terminal state, and then a backup update is performed
(lines 13 and 14 in Algorithm 1). The heuristic for a leaf
state (line 11) is an admissible estimate of the cost-to-go for
that state. Next, the best solution graph G∗ is updated based
on the newly computed v-values (cost-to-go), and the entire
process is repeated again. Once there are no non-terminal
states in G∗, value iteration is performed on the best solution
graph (again in the DFS traversal order), until the v-values
have converged to some ε-tolerance. The final solution graph
G∗ is returned as the policy to be executed.

C. Practical Considerations

Although we compute a full policy by solving the belief
MDP, we do so under the assumption that we will visit states
only under the optimal policy. While this is fine in general,

Algorithm 2 Successor Generation for b-MDP States
1: procedure GETSUCCESSORS(b)
2: S = {} // successors
3: P = {} // transition probabilities
4: C = {} // costs
5: x← b.x; θ̄ ← b.θ̄
6: for all a ∈ A(x) do
7: for all i ∈ {1, 2, . . . , n} do
8: x′i = SIM(x, θ, a)

9: for all i such that xi is unique do
10: θ̄′ = zeros[N]
11: p← 0
12: for all j such that xi = xj do
13: θ̄′[j] = θ̄[j]
14: p← p+ θ̄[j]

15: θ̄′ ← NORMALIZE(θ̄′)
16: b′ ← 〈x′i, θ̄′〉
17: S ← S ∪ {b′}
18: P ← P ∪ {p}
19: C ← C ∪ {cost(x, a, x′i)}

return {S, P,C}

Algorithm 3 Sense-Plan-Act Cycle
1: procedure MAIN()
2: while not SATISFIESGOAL(bstart) do
3: π ← COMPUTEPOLICY(bstart)
4: BEGINPOLICYEXECUTION(π)
5: wait for new observation z
6: bstart ← UPDATEBELIEF(z, bstart, πexecuted)

this would never be true in practice. There could be multiple
sources of error, either from the simulation (the transition
stochasticity) of the GK-Graph, or from the sensing, both
of which were assumed to be non-stochastic in the planning
phase. A practical approach to address this is to assume that
stochasticity in observations received during execution arises
in fact from the transition model, and then updating our belief
before replanning again. From Eq. 1, we write the transition
update for the belief

b′z(θ
′) = η

∑
θ

p(z|x, θ, a)p(θ′|x, θ, a, x′)bx(θ)

= η
∑
θ

p(z|x, θ, a)1θ′(θ)bx(θ)

= ηp(z|x, θ′, a)bx(θ′) (3)

where this time, we have not replaced p(x′|x, θ′, a) with
the indicator function. On the other hand, it would be
reasonable to use a stochastic transition model here to ensure
that the belief updates capture uncertainty to some extent.
For instance, the particular belief update we use in our
experiments is

b′z(θ
′) = ηN (z|SIM(x, θ′, a),Σmotion)bx(θ′) (4)

where Σmotion is a covariance matrix that captures the
transition uncertainty. Once the belief update is done, we
replan with the new start belief state b′z(θ).

(a) Planar segmentation (b) Rectangle detection

(c) Generating candidate revolute
and prismatic axes

(d) Assigning edge tuples to the
GK-Graph

Fig. 3: The perception pipeline for auto-generating candidate
articulation models.

The main loop for replanning and updating the belief is
shown in Algorithm 3.

V. EXPERIMENTS

We tested our planner on Willow Garage’s PR2 robot for
manipulating commonly encountered articulated objects. For
these experiments, we used our perception system to auto-
generate candidate mechanisms for each object, to provide
an input to the planner. We first describe the details of our
perception pipeline.

A. Perception Pipeline for Auto-generating Models

Since the focus of this work is on planning, we use fiducial
markers on the objects to track the vertices of the GK-Graph.
These fiducial markers are placed randomly on the object,
with no attention to articulation details. The only requirement
is that there is at least one pair of fiducial markers that can
explain the underlying articulation. The tracked 6-DoF poses
of the fiducial markers directly serve as the vertices of the
GK-Graph. To compute the edges in the graph, we use a
nearest neighbor method to connect every vertex with those
within a radius of 50cm.

The next step is to generate candidate edge tuples for the
GK-Graph. This is done as a two step process:

Estimating articulation axes: We use the Point Cloud
Library [1] to segment out planes in the RGB-D sensor
data. Next, for each plane segmentation, we run a RANSAC
method for detecting rectangles in the contours of the plane.
For each rectangle generated, we compute 5 articulation axes:
4 revolute axes, one for each edge of the rectangle, and 1
prismatic axis normal to the rectangle. These steps are shown
in Fig. 3.
Mincut for GK-graph segmentation: Once the articulation
axes are estimated, they need to be translated into edge tuples
for the GK-Graph, given the arbitrary positions of the fiducial

markers. This is done using a mincut operation on the GK-
Graph [13], with edge weights computed as follows: Let xi
and xj be the cartesian 3D locations of the vertices vi and vj .
Let dij = ‖xi−xj‖ and wij be the weight assigned for edge
eij to compute the mincut. We define a model specific angle
θ, which for prismatic models is the angle between xi− xj ,
the edge and the prismatic axis. For revolute models, θ is
the angle between the lever arms of x1 to the revolute axis,
and x2 to the revolute axis.

The weights for the prismatic and revolute cases are
assigned as follows:

wij =

{
exp(−(α · dij + β · cos(θ))) if prismatic
exp(−(α · dij + β · sin(θ))) if revolute

where α and β are weight factors controlling the tradeoff
between spatial and kinematic components. The edges in
the computed mincut are then assigned the corresponding
kinematic model parameters (obtained from the rectangle
segmentation), and the rest are assigned rigid model param-
eters. Intuitively, the spatial component encourages edges
between vertices close to each other to have rigid model
assignments, while the kinematic component encourages
edges on a plane surface to have prismatic assignments for
the prismatic case, and edges on a plane surface to have rigid
assignments for the revolute case.

B. PR2 Experiments

We tested our closed loop perception-planning system on
Willow Garage’s PR2 robot, for manipulating a variety of
objects such as drawers and cabinets in offices, and shelves,
drawers and a refrigerator in the kitchen. Fig. 4 shows some
of the snapshots from these experiments. The GK-Graph was
setup using fiducial markers on the object, and candidate
kinematic mechanisms were auto-generated as discussed in
Sec. V-A. Grasp locations on the objects were specified
using a simple virtual fixture, as done in the recent Darpa
Robotics Challenge. Once a grasp location is provided, a
new vertex is automatically added to the GK-Graph and
connected to the nearest existing vertex with rigid model
parameters. The initial belief state of the robot was set as
a uniform prior over the candidate models. Since the task
was to open these objects, the goal state was defined as a
GK-Graph state in which the end-effector of the robot (or
the grasp vertex in the GK-Graph) had moved a particular
distance dgoal away from its initial position. While this seems
to be an atypical way of specifying the goal, it approximates
well a real-life task goal such as ‘open the object until an
item of interest inside is visible or reachable’. Our action set
consisted of a set of 20 forces sampled uniformly on a unit
sphere. The heuristic used for LAO* encouraged states with
grasp vertices far from the start state to be expanded first.
Specifically, for a belief state b, the heuristic was computed
as h(b) = min (0, dgoal − ‖b.x[vgrasp]− bstart.x[vgrasp]‖).
Finally, to execute an action returned by the policy, we use
an inverse kinematics controller to move the end-effector of
the robot from the grasp vertex of the current belief state, to
that of the next.

Fig. 4: The PR2 robot opening a variety of articulated objects in an office space and a kitchen.

Fig. 5: Illustration of the end-to-end pipeline for manipulating articulated objects. The robot first encounters an unknown
articulated object, a kitchen cabinet in this case. The perception system described in Sec. V-A generates candidate articulation
models, which the planner then uses to generate a policy. After executing the first action, the robot observes the GK-Graph
vertices (the fiducial markers) and updates its belief over the candidate models. In particular for this example, the robot
believes that the revolute axis on the right is more likely than the one on the left after taking the first action. The planner
again computes a new policy using this updated belief, and the process repeats until the task is completed

.

Using the approach described above, the PR2 robot could
open every object shown in Fig. 4. While the system was
successful in most of the trials, we observed two common
failure modes. First, the planning does not include the
kinematics of the robot manipulator. This leads to partial
plans (cartesian trajectory of 6-DoF end-effector poses) that
are infeasible for execution, thereby causing a standstill. The
correct solution to this would be to plan in the combined
belief space and configuration space of the robot. However,
this increases the dimensionality of the problem dramatically
and is perhaps unnecessarily complicated. Instead, a practical
solution would be to obtain the cartesian end-effector trajec-
tory in the usual way, and then use a full-body planner for
the robot (joint planning in arm and base motions) to find a
plan for the robot that is feasible for execution. The second
failure mode arises when the fiducial markers on the object
go out of the field of view, or are occluded by the robot
during execution of a plan. Once again, while the correct
solution would be to model the GK-Graph state as partially
observable, a more practical solution would be to run an
independent state estimator on the tracked GK-Graph.

The associated video contains trials of the PR2 opening
a variety of articulated objects, including those in Fig. 4. In

Fig. 5, we show the end-to-end pipeline for manipulating an
unknown articulated object.

C. Planner Efficiency Tests

To test the robustness of our method and quantify the
planner’s efficiency, we ran 25 trials each on an office cabinet
and drawer, with the task being to open the object starting
from a closed state. For the efficiency tests, the goals were
specified as a particular end-effector locations that must be
attained by the robot. The heuristic for LAO* is then simply
the Euclidean distance between the 3D coordinates of the
grasp vertex at the current state and the goal state. The
success rate was 100% on these efficiency test trials. Fig. 6
shows the average planning time and expansions for the trials
on opening drawers and cabinets, as a function of the replan
number. In our trials, the robot had to replan up to 4 times
during execution based on its observations. The statistics are
computed over trials that had the same number of replans,
and ‘expansions’ refers to the number of times the LAO*
planner called for a simulation of a GK-Graph state. While
the average number of expansions decreases monotonically
with the replan number, the planning time does not. This
is a consequence of the fact that although the underlying
GK-Graph state may be the same, the time taken for value

Replan Number Replan Number
31 2 31 2

5

0

10

15

20

0

20

40

60

80

100

120

140

Avg. Planning Time (s)

Avg. Expansions

(a) Statistics for opening drawers

Replan Number Replan Number

1

2

3 4 1 2 3 4
0

1 2

3

4

5

6

7

8

9

0

20

40

60

80

100

120

(b) Statistics for opening cabinets

Fig. 6: Planning statistics for trials on opening drawers and
cabinets.

iteration to converge on the partial solution graph depends
on the initial belief state over the models. Since there is
stochasticity in our observations over the trials, it is expected
that the time taken for the v-values to converge will differ
in each trial. This can also be seen from the error bars on
the planning times.

VI. CONCLUSIONS
As a primary contribution, we have presented an efficient

planner for manipulating articulated objects under uncer-
tainty in the true mechanism of the object. The efficiency
arises from assuming a deterministic transition model for
the object given the true mechanism type, and a completely
observable object state, which then reduce the original in-
tractable POMDP planning problem to a belief MDP with a
finite number of successor states. By using a heuristic MDP
solver (LAO*) that discards extraneous parts of the belief
space, we can run a real-time planning and execution loop.
We also provide an expressive representation of articulated
objects, namely the Generalized Kinematic Graph, for mod-
eling complex kinematic mechanisms, and a heuristic method
based on graph segmentation for auto-generating candidate
articulation models from RGB-D data. Extensive trials and
demonstrations on the PR2 robot showcase the capability of
our planner, and its real-time applicability in personal robot
manipulation tasks.

A natural extension and future work is to handle stochastic
transition models for the object and sensing uncertainty.
While this would be expected to improve planner perfor-
mance and success rates, it is unclear if there is structure in

the problem that can be exploited for solving the complete
POMDP. Also, an interesting direction for future work would
be to handle candidate models that are only approximate or
under-specified. This now introduces a transition model for
the unobserved part of the state. Although this would increase
the planning complexity, there is still structure in the problem
since the object state is completely observed.

REFERENCES

[1] Aitor Aldoma, Zoltan-Csaba Marton, Federico Tombari, Wal-
ter Wohlkinger, Christian Potthast, Bernhard Zeisl, Radu Bog-
dan Rusu, Suat Gedikli, and Markus Vincze. Point
cloud library. IEEE Robotics & Automation Magazine,
1070(9932/12), 2012.

[2] Patrick R Barragán, Leslie Pack Kaelbling, and Tomás
Lozano-Pérez. Interactive bayesian identification of kinematic
mechanisms.

[3] Roy Featherstone and David Orin. Dynamics. siciliano, bruno
and khatib, oussama (eds.), handbook of robotics. 2008.

[4] Eric A Hansen and Shlomo Zilberstein. Lao: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence, 129(1):35–62, 2001.

[5] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A
formal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100–107, 1968.

[6] Advait Jain and Charles C Kemp. Improving robot manipula-
tion with data-driven object-centric models of everyday forces.
Autonomous Robots, 35(2-3):143–159, 2013.

[7] Dov Katz and Oliver Brock. Manipulating articulated objects
with interactive perception. In Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on, pages 272–
277. IEEE, 2008.

[8] Dov Katz, Moslem Kazemi, J Andrew Bagnell, and Anthony
Stentz. Interactive segmentation, tracking, and kinematic
modeling of unknown 3d articulated objects. 2013.

[9] Dov Katz, Yuri Pyuro, and Oliver Brock. Learning to
manipulate articulated objects in unstructured environments
using a grounded relational representation. In In Robotics:
Science and Systems. Citeseer, 2008.

[10] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun
Lee. Planning under uncertainty for robotic tasks with mixed
observability. The International Journal of Robotics Research,
29(8):1053–1068, 2010.

[11] Stefan Otte, Johannes Kulick, Marc Toussaint, and Oliver
Brock. Entropy-based strategies for physical exploration of
the environments degrees of freedom.

[12] Thomas Ruhr, Jürgen Sturm, Dejan Pangercic, Michael Beetz,
and Daniel Cremers. A generalized framework for opening
doors and drawers in kitchen environments. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on,
pages 3852–3858. IEEE, 2012.

[13] Mechthild Stoer and Frank Wagner. A simple min-cut algo-
rithm. Journal of the ACM (JACM), 44(4):585–591, 1997.

[14] Jürgen Sturm. Learning kinematic models of articulated
objects. In Approaches to Probabilistic Model Learning for
Mobile Manipulation Robots, pages 65–111. Springer, 2013.

[15] Jürgen Sturm, Advait Jain, Cyrill Stachniss, Charles C Kemp,
and Wolfram Burgard. Operating articulated objects based
on experience. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 2739–
2744. IEEE, 2010.

