
PATH CLEARANCE USING MULTIPLE SCOUT ROBOTS

Maxim Likhachev* and Anthony Stentz
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, 15213

maxim+@cs.cmu.edu, axs@rec.ri.cmu.edu

ABSTRACT

This paper presents the techniques that we have been
developing recently to solve the problem of path clear-
ance. In the path clearance problem the robot needs to
reach its goal as quickly as possible without being de-
tected by enemies. The problem is complicated by the
fact that the robot does not know the precise locations
of enemies, but has a list of their possible locations.
Either the robot itself or scout robots can be used to
sense these possible enemy locations before the robot
traverses through them on the way to its goal. We
have recently developed a general and efficient algo-
rithm called PPCP (Probabilistic Planning with Clear
Preference) for planning under uncertainty in the envi-
ronment. In this paper we first describe how it can be
applied to the problem of path clearance when there
are no scout robots available and show that there are
significant benefits of planning with PPCP over com-
monly used alternatives. We then explain a strategy
for how to use the PPCP algorithm in case multiple
scout robots are available and show that this strategy
reduces the time it takes for the robot to reach its goal
even further.

1 INTRODUCTION

In the problem of path clearance, the task of the robot
is to reach its goal location as quickly as possible with-
out being detected by an enemy. We explain the prob-
lem on the example in figure 1. Figure 1(b) shows the
traversability map of the satellite image of a 3.5km by
3km area shown in figure 1(a). The traversability map
is obtained by converting the image into a discretized
2D map. Each cell in this map is of size 5 by 5 me-
ters and can either be traversable (shown in light grey
color) or not (shown in dark grey color). The robot’s
initial position is shown by the blue circle and its goal
is shown by the green circle. Red circles are possible
enemy locations and their radii represent their sensor
range. In this example, the sensor range of enemies is

100 meters for every location. In general, though, we
assume that it can vary from one location to another.

The possible enemy locations can be specified either
manually or automatically in places such as narrow
passages. Each location is associated with a proba-
bility of containing an enemy: the likelihood that the
location does actually contain an enemy. In the given
example, it is 50% for each possible enemy location.
In general, though, we allow for it to vary from one
location to another.

When navigating, the robot can come to a possi-
ble enemy location, sense it using its long range sensor
(the range is assumed to be 105 meters in the exam-
ple) and go around the area if an enemy is detected or
cut through it otherwise. When planning for its route,
though, the robot must take into account the possi-
ble enemy locations. For example, it may plan a path
under the commonly used assumption that no enemy
is present unless sensed otherwise (known as freespace
assumption (Koenig & Smirnov, 1996)). With this as-
sumption, however, it risks having to take long detours.
For example, figure 1(c) shows the path planned by the
robot that makes the freespace assumption. The path
goes through the possible enemy location A, as it is
on the shortest route to the goal. When the robot
tries to execute it though, it discovers that an enemy is
present at the location A (the red circle becomes black
after sensing). Consequently, the robot has to take a
very long detour. The actual robot’s path is shown in
figure 1(d).

A planner, therefore, needs to reason about possible
outcomes of sensing and consider the consequences of
these outcomes. In fact, such planner would generate
more than a single path, it would generate a policy
that dictates which path the robot should take as a
function of the outcome of each sensing. Ideally, this
policy should minimize the expected traversal distance
of the robot.

Path clearance is just one example of many real-
world problems where a planner needs to reason about
the uncertainty in the environment. Examples of such

(a) satellite image (b) traversability map

navigation by planning with freespace assumption

(c) planned path (d) actual robot’s path

navigation by planning with PPCP

(e) planned policy (f) actual robot’s path

Figure 1: Path clearance problem. (c,d) show the ini-
tially planned path and the actual robot’s path when
planning with freespace assumption. (e,f) show the
policy and the actual robot’s path when planning with
PPCP

problems include robot navigation in partially-known
terrains, robot navigation in office-like environments
where some doors can potentially be locked, route plan-
ning under partially-known traffic conditions, air traf-
fic management with changing weather conditions and
others. Ideally, in all of these situations, to produce
a plan, a planner needs to reason over the probability
distribution over all the possible instances of the envi-
ronment. Unfortunately though, such planning in gen-
eral corresponds to POMDP planning, which is known
to be hard (PSPACE-complete (Papadimitriou & Tsit-
siklis, 1987)). It turns out, however, that all of the
above mentioned problems and many other ones ex-
hibit a special property: one can clearly name before-
hand the best (called clearly preferred) values for the
variables that represent the unknowns in the environ-

ment. In the robot navigation problem in outdoor ter-
rains, for example, it is always preferred to find out
that an initially unknown location is traversable rather
than not. In the robot navigation in office-like environ-
ments, it is always preferred to have a door unlocked
rather than locked. In the problem of route planning,
it is always preferred to have the lowest level of traffic
on the road of interest. And in the air traffic manage-
ment problem it is always preferred to have a good fly-
ing weather. PPCP (Probabilistic Planning with Clear
Preferences) (Likhachev & Stentz, 2006) is a recently
developed algorithm that scales up to large problems
with a significant amount of uncertainty by exploiting
this property. In this paper we show that the algorithm
is also applicable to the path clearance problem since
in this problem it is also always preferred to find out
that an enemy is not present at the location of interest.

Figure 1(e) shows the policy produced by the PPCP
algorithm (Likhachev & Stentz, 2006) applied to the
path clearance problem. Each fork in the policy is
where the robot tries to sense an enemy location and
chooses the corresponding branch. In contrast to plan-
ning with freespace assumption, the policy produced
by PPCP makes the robot go through the area on its
left since there are a number of ways to get to the
goal there and therefore there is a high chance that
one of them will be available. The length of the actual
path traversed by the robot (figure 1(f)) is 4,123 meters
while the length of the path traversed by the robot that
makes the freespace assumption (figure 1(d)) is 4,922
meters.

In the following section we describe the PPCP algo-
rithm. In section 3 we explain how we can apply the
PPCP algorithm to solve the problem of path clearance
when there are no scouts available. The experimental
analysis in this section shows that planning with PPCP
can result in substantial savings in execution cost in
comparison to planning with freespace assumption. In
section 4 we extend our method and present a strat-
egy that takes advantage of available scout robots. We
show that using scouts can decrease the time for the
robot to reach its goal even further.

2 PPCP ALGORITHM

In this section we briefly describe the PPCP algorithm:
what assumptions it makes and how it operates at a
high level. A more detailed description of the algorithm
can be found in (Likhachev & Stentz, 2006).

(a) environment (b) the corresponding graph if
we assume the unknown cells are free

Figure 2: Robot navigation in a partially-known ter-
rain. The numbers above graph edges represent the
costs of the corresponding actions.

2.1 The assumptions

The PPCP algorithm is well-suited to planning in the
environments that are only partially-known. The al-
gorithm assumes that the environment itself is fully
deterministic and can be modeled as a graph. Thus,
in the path clearance problem, if we knew the precise
location of the enemies, then there would be no uncer-
tainty about any robot actions: both sensing and move
actions would be deterministic actions. There is, how-
ever, uncertainty about the actual location of enemies.
As a result, there are two possible outcomes of a sens-
ing action: an enemy is detected at the possible enemy
location that was sensed and an enemy is not detected.
PPCP assumes perfect sensing. Once the robot sensed
a particular location, it then knows with full certainty
whether an enemy is present in there or not.

Figure 2 demonstrates these assumptions on a prob-
lem that is very similar to the path clearance problem:
the problem of robot navigation in a partially-known
terrain problem. Initially, the robot is in cell A4 and
its goal is cell F4. There are two cells (shaded in grey)
whose status is unknown to the robot: cell B5 and cell
E4. For each, the probability of containing an obstacle
is 0.5. In this example, we restrict the robot to move
only in four compass directions. Whenever the robot
attempts to enter an unknown cell, we assume that the
robot moves towards the cell, senses it and enters it if
it is free and returns back otherwise. The cost of each
move is 1, the cost of moving towards an unknown cell,
sensing it and then returning back is 2. Figure 2(b)
shows the graph that corresponds to the problem when
the status of cells B5 and E4 is known: both are free.
In this graph each action has only one outcome. In
reality, however, the robot does not know the status of
these cells before it actually senses them. As a result,
the action of moving east from cell D4 has two possible
outcome states: (1) the robot enters cell E4 and now

knows that cell E4 is free; (2) the robot remains in cell
D4 and now knows that cell E4 is obstructed. We use
the notation [R = E4;B5 = u, E4 = 0] to represent the
former case and [R = D4;B5 = u, E4 = 1] to represent
the latter (B5 = u denotes the fact that the status of
cell B5 is unknown). Each outcome of the action is
associated with the probability of seeing this outcome.
In this example, the probability of each outcome is 0.5
since it is the probability of cell E4 being blocked.

The goal of the planner is to construct a policy that
reaches any state at which R = F4 while minimiz-
ing the expected cost of execution. Figure 3(h) shows
the policy generated by PPCP. The policy specifies the
path the robot should follow after each outcome of sens-
ing operation. All branches of the policy end at a state
whose R = F4, in other words, the robot is at its goal
location.

The main assumption that PPCP makes is that for
each action that has more than one possible outcome
we can name beforehand what outcome we would pre-
fer. Thus, in the figure 2 example for each sensing
action there exist two outcomes: a cell is blocked or
unblocked. The latter is clearly the preferred outcome.
The same property holds in the path clearance prob-
lem. For each sensing action, it is clearly preferred to
find out that an enemy is not present at the sensed
location. This outcome would allow the robot to cut
through the location on its way to the goal.

2.2 The operation

The PPCP algorithm operates in anytime fashion. It
quickly constructs an initial policy and then refines it
until convergence. At the time of convergence, the
policy it obtains is guaranteed to minimize the ex-
pected execution cost under certain conditions (de-
scribed in (Likhachev & Stentz, 2006)). Figure 3
demonstrates how PPCP solves the problem of robot
navigation in a partially-known terrain given in fig-
ure 2.

PPCP repeatedly executes deterministic searches
that are very similar to the A* search (Nilsson, 1971),
an efficient and widely-known search algorithm. Dur-
ing each iteration PPCP assumes some configuration of
unknown cells and performs search in the correspond-
ing deterministic graph. Thus, the first search in fig-
ure 3 assumes that both unknown cells are free and
finds a path that goes straight to the goal (figure 3(a)).
(The shown g- and h-values are equivalent to the g- and
h-values maintained by the A* search.) PPCP takes
this path and uses it as an initial policy for the robot
(figure 3(b)). One of the actions on this policy, how-
ever, is move east from cell D4. The current policy

iteration 1

(a) search for a path from (b) PPCP policy after update

[R = A4; E4 = u, B5 = u]

iteration 2

(c) search for a path from (d) PPCP policy after update

[R = D4; E4 = 1, B5 = u]

iteration 3

(e) search for a path from (f) PPCP policy after update

[R = A4; E4 = u, B5 = u]

.
iteration 7

(g) search for a path from (h) final PPCP policy

[R = A4; E4 = u, B5 = u]

Figure 3: Example of how PPCP operates

has only computed a path from the preferred outcome
state, the one that corresponds to cell D4 being free.
The state [R = D4;E4 = 1, B5 = u], on the other
hand, has not been explored yet. The second search
executed by PPCP explores this state by finding a path
from it to the goal. This search is shown in figure 3(c).
During this search cell E4 is assumed to be blocked,
same as in the state [R = D4;E4 = 1, B5 = u]. The
found path is incorporated into the policy maintained
by PPCP (figure 3(d)).

In the third iteration, PPCP tries to find a path
from the start state to the goal again (figure 3(e)).
Now, however, it no longer generates the same path
as initially (figure 3(a)). The reason for this is that
it has learned that the cost of trying to traverse cell

E4 is higher than what it initially thought to be. The
cost of the cheapest detour in case cell E4 is blocked
(found in figure 3(c)) is rather high. Consequently, in
the current iteration PPCP finds another alternative
policy that goes through cell B5. This now becomes the
new policy in PPCP (figure 3(f)). This policy, however,
has an unexplored outcome state again, namely, state
[R = B4;E4 = u, B5 = 1]. This would become the
state to explore in the next iteration.

PPCP continues to iterate in this manner until con-
vergence. In this example, it converges on the 7th iter-
ation. The final policy is shown in figure 3(h). In this
example it is optimal: it minimizes the expected cost
of reaching the goal. In general, PPCP is guaranteed
to converge to an optimal policy if it does not require
remembering the status of any cell the robot has suc-
cessfully entered (see (Likhachev & Stentz, 2006) for
more details).

3 PATH CLEARANCE WITHOUT SCOUTS

PPCP can be used to solve the problem of path clear-
ance. In this section we explain how it can be done
and analyze the benefits of planning with PPCP. The
discussion below assumes that we use the improved ver-
sion of PPCP. This version as well as some additional
details about its application to path clearance without
scouts can be found in (Likhachev & Stentz, 2007).

3.1 The application of PPCP

As mentioned before, PPCP is guaranteed to find an
optimal plan only if it does not require the robot to re-
member the outcomes of sensing if they were preferred.
In the figure 3 example, for instance, the robot senses
an unknown cell whenever it tries to enter it. If it is
free then the robot enters it and does not really need to
remember that it is free afterwards, its projected path
is unlikely to involve entering the same cell again. It
only needs to remember if some cells turn out to be
blocked, and plans generated by PPCP do retain this
information. This is different, however, when the robot
has a long range sensor such as in the path clearance
problem. The robot may sense whether an enemy is
present before actually reaching the area covered by
the enemy. It thus needs to remember the preferred
outcomes if it wants to sense enemies from a long dis-
tance.

The solution to this problem is simple. Each state is
augmented with the last k preferred outcomes of sens-
ing. Thus, a state now consists of the location of the
robot plus the last k locations that were sensed to be
free of enemies. k can be set to a small number such

as two or three to keep the complexity of each search
iteration in PPCP low. This adds a sufficient for our
problem amount of memory about the preferred out-
comes of sensing.

We also would like to be able to interleave plan-
ning with execution. Rather than wait until PPCP
converges, the robot should start executing whatever
current plan PPCP has and while executing it, PPCP
should work on improving the plan. The interleaving
in PPCP can be done pretty trivially. The robot first
executes PPCP for few seconds. PPCP is then sus-
pended and the robot starts following the policy cur-
rently found by PPCP. After each robot move, the state
of the robot maintained by PPCP is updated. During
each robot move, PPCP is resumed for the duration of
the move. It automatically re-plans a policy so that
its start corresponds to the current state of the robot.
After it is suspended again, the policy that the robot
currently follows is compared against the policy that
PPCP currently has. The robot’s policy is updated
to the latter one only if it has a higher probability
of reaching a goal location. If the robot’s policy has
a higher probability of reaching goal then the robot
continues to follow its old policy. This way we avoid
changing policies every time PPCP decides to explore
a different policy and has not explored much of the
outcomes on it. The probabilities of reaching a goal
for a policy can be computed in a single pass over the
states on the policy (starting with the robot’s state
and proceeding in the topological order) because the
policies are acyclic. Once the algorithm converges to
a final policy, the robot can follow the policy without
re-executing PPCP again.

Figure 4 shows the application of PPCP to the path
clearance example from figure 1. Before the robot
starts executing any policy, PPCP plans for five sec-
onds. Figures 4(a), (b) and (c) show the first, the
second and the last policy generated by PPCP within
these five seconds, respectively. The robot then starts
executing the last policy. (The robot travels at the
speed of 1 meter per second.) In the meantime, PPCP
continues to refine its policy. After every five seconds
the robot updates its state in PPCP and switches to
executing the latest policy in PPCP if it has the same
or higher probability of reaching the goal. Thus, fig-
ures 4(d) and (e) show the position of the robot and
its current policy after ten and fifteen seconds of ex-
ecution, respectively. After 30 seconds of execution,
PPCP converges. Figure 4(f) shows the position of the
robot at that time and the policy PPCP converged to.

(a) the first policy (b) the second policy

(c) after 5 secs (d) after 10 secs

(e) after 15 secs (f) after 30 secs

(PPCP converged)

Figure 4: Path clearance using PPCP and no scouts

3.2 Experimental analysis

In this section we evaluate the benefits of solving the
path clearance problem by planning with PPCP. In all
of the experiments we used randomly generated frac-
tal environments that are often used to model outdoor
environments (Stentz, 1996). On top of these fractal
environments we superimposed a number of randomly
generated paths in between randomly generated pairs
of points. The paths were meant to simulate roads
through forests and valleys and that are usually present
in outdoor terrains. Figures 5(a,b) show typical en-
vironments that were used in our experiments. The
lighter colors represent more easily traversable areas.
All environments were of size 500 by 500 cells, with
the size of each cell being 5 by 5 meters.

The test environments were split into two groups.
Each group contained 25 environments. For each en-
vironment in the group I we set up 30 possible enemy
locations at randomly chosen coordinates but in the ar-

(a) typical group I environment (b) typical group II environment

Figure 5: The example of environments used in testing
and the plans generated by PPCP for each.

Overhead in Execution Cost
Group I Group II Group I Group II

no penalty no penalty penalty penalty
PPCP 0% 0% 0% 0%

freespace 5.4% 5.2% 35.4% 21.6%
freespace2 0.5% 4.9% 4.8% 17.0%
freespace3 2.1% 4.3% 0.0% 12.7%

Figure 6: The overhead in execution cost when plan-
ning with freespace assumption over the execution cost
when planning with PPCP

eas that were traversable. Figure 5(a) shows a plan the
PPCP algorithm has generated after full convergence
for one of the environments in group I. For each envi-
ronment in the group II we set up 10 possible enemy
locations. The coordinates of these locations, however,
were chosen such as to maximize the length of the de-
tours that avoid these locations. This was meant to
simulate the fact that an enemy may often be set at a
point that would make the robot take a long detour.
In other words, an enemy is often set at a place that
the robot is likely to traverse in order to avoid tak-
ing a long detour. Thus, the environments in group
II are more challenging. Figure 5(b) shows a typical
environment from the group II together with the plan
generated by PPCP. The shown plan has about 95%
probability of reaching the goal (in other words, the
policy has at most 5% chance of robot encountering
an outcome for which the plan had not been generated
yet). In contrast to the plan in figure 5(a), the plan
for the environment in group II is more complex - the
detours are much longer - and it is therefore harder to
compute. For each possible enemy location the proba-
bility of containing an enemy was set at random to a
value in between 0.1 and 0.9.

Figure 6 compares the execution cost of the robot
planning with PPCP versus the execution cost of the
robot planning with freespace assumption (Koenig &
Smirnov, 1996), a commonly used approach to plan-
ning under uncertainty in the environment. The plan-

ner operating under the freespace assumption always
assumes that an enemy is not present unless it has al-
ready been detected. Under this assumption the plan-
ner plans a shortest route to the goal which the robot
follows unless it detects an enemy on the way. In case
it does, the planner re-plans its path. Figure 6 shows
the overhead in the execution cost incurred by the ro-
bot that planned with the freespace assumption. The
overhead is relative to the execution cost incurred by
the robot that used PPCP for planning. (Hence, the
first row shows zero percents.) The rows freespace2
and freespace3 correspond to making the cost of going
through a cell that belongs to a possible enemy loca-
tion twice and three times higher than what it really
is, respectively. One may scale costs in this way in or-
der to bias the paths generated by the planner with
freespace assumption away from going through possi-
ble enemy locations. The results are averaged over 8
runs for each of the 25 environments in each group.
For each run the true status of each enemy location
was generated at random according to the probability
having an enemy in there.

The figure shows that planning with PPCP results
in considerable execution cost savings. The savings for
group I environments were small only if biasing the
freespace planner was set to 2. The problem, however,
is that the biasing factor is dependent on the actual en-
vironment, the way the enemies are set up and the sen-
sor range of an enemy. Thus, the overhead of planning
with freespace for the group II environments is consid-
erable across all bias factors. In the last two columns
we have introduced penalty for discovering an enemy.
It simulates the fact that the robot runs the risk of
being detected by an enemy when it tries to sense it.
In these experiments, the overhead of planning with
freespace assumption becomes very large. Also, note
that the best bias factor for freespace assumption has
now shifted to 3 indicating that it does depend on the
actual problem. Overall, the results indicate that plan-
ning with PPCP can have significant benefits, without
requiring to tune any parameters.

4 PATH CLEARANCE WITH SCOUTS

In this section we present a simple strategy for em-
ploying scout robot when available to reduce the time
it takes for the non-scout robot to reach its goal. We
demonstrate the approach on an example and evaluate
the effectiveness of the approach on a large number of
runs.

4.1 Algorithm

Suppose there are K scout robots available. We first
run PPCP to produce a policy for the non-scout ro-
bot as if there are no scout robots available, only the
non-scout robot can detect enemies. Once we have the
policy, we find K possible enemy locations that have
the highest probability of being visited by one or more
paths on the robot’s policy. In other words, these are
the locations that PPCP assumes the robot will sense
on one of its branches in the policy. To select the ones
that have the highest probabilities of being visited by
the robot, we perform a single pass over all the states in
the policy in topological order starting with the robot’s
state. During this pass we can propagate the probabil-
ity of the robot visiting the state when following the
policy according to the probability distribution of the
policy action outcomes.

Once we compute these K possible enemy locations,
we assign them to the nearest scout robots. Each scout
robot starts traveling towards its assigned enemy loca-
tion and performs sensing when it reaches the loca-
tion. While each scout robot travels, the non-scout
robot starts executing its policy. PPCP is also being
executed to improve its policy as we have described
in section 3.1. Every time the robot changes its pol-
icy onto the policy generated by PPCP, it re-computes
the K possible enemy locations that scout robots need
to sense and re-assigns them to the scout robots. Also,
every time one of the scouts performs sensing, the robot
updates the state of the robot that PPCP maintains
with the outcome of sensing, so that all the subsequent
planning done by PPCP takes this information into
account. We then re-compute the K possible enemy
locations that the scouts should sense.

Figure 7 shows the operation of our strategy. There
are ten scouts available, shown by small blue dots in a
two-row formation in figure 7(a). In this example the
scouts are assumed to be aerial vehicles moving with
the same speed as the robot. As the figures show, at
any point in time at most four scout robots are used
because this is the maximum number of enemy loca-
tions involved in the policy generated by PPCP. The
total distance traversed by the robot is 3795 meters
which is 328 meters shorter than in case of no scouts
(figure 1(f)).

The presented strategy is greedy. For example, it
was clearly worthwhile to send a scout to sense the
location A (shown in figure 1(b)). If it turned out to
be empty, then the path to the goal via this location
would have been the shortest possible route for the non-
scout robot. The advantages of the presented strategy,
on the other hand, are that it is simple, very fast, scales
well with a number of scouts and works well even if the

(a) initial configuration (b) at timestep 1

(c) at timestep 2 (d) at timestep 3

(e) at timestep 4 (f) robot’s path

Figure 7: Path clearance using PPCP and 10 scouts

scouts are heterogeneous (for example, a mix of aerial
and ground robots).

4.2 Experimental analysis

Figure 8 compares the execution cost of the robot that
uses scouts according to the strategy we have just de-
scribed over the robot that does not. In both cases
the robot was planning with PPCP. Just as before, the
shown results are averaged over 8 trials for each of the
25 environments for each group. Thus, each entry in
the table is an average over 200 runs. The table shows
the average of the actual execution cost incurred by
the robot. In all the runs with scouts, the number
of scouts was limited to 10. All scouts were assumed
to be aerial vehicles moving at the same speed as the
non-scout robot. According to the results, the robot
that employs scouts can expect to incur a considerably
smaller execution cost than the robot that does not.

Execution Cost
Group I Group II Group I Group II

no penalty no penalty penalty penalty
no scouts 5,352 4,405 5,630 4,938
10 scouts 5,168 4,055 5,472 4,859

Figure 8: Average execution cost of using up to 10
scouts versus not using scouts. In both cases, PPCP
was used for planning.

CONCLUSIONS

The goal of this paper was to explain at a high level the
PPCP algorithm and to show its applicability to the
problem of path clearance. We have shown that it can
be quite beneficial to plan with PPCP when navigating
in the environment with possible enemies. We have
also presented a simple extension that allows to use
scout robots, if available, to sense for enemies. This
was shown to reduce the execution cost incurred by the
non-scout robot even further. We believe that PPCP is
a widely applicable algorithm that can be used to solve
many planning problems that involve uncertainty in
the environment. Its application to the path clearance
problem is just one example.

ACKNOWLEDGEMENTS

This work was sponsored by the U.S. Army Re-
search Laboratory, under contract Robotics Collabora-
tive Technology Alliance (contract number DAAD19-
01-2-0012). The views and conclusions contained in
this document are those of the authors and should not
be interpreted as representing the official policies, ei-
ther expressed or implied, of the Army Research Lab-
oratory or the U.S. Government.

References
Koenig, S., & Smirnov, Y. 1996. Sensor-based planning with

the freespace assumption. In: Proceedings of the ieee inter-
national conference on robotics and automation (ICRA).

Likhachev, M., & Stentz, A. 2006. PPCP: Efficient probabilis-
tic planning with clear preferences in partially-known environ-
ments. In: Proceedings of the national conference on artificial
intelligence (AAAI).

Likhachev, M., & Stentz, A. 2007. Faster PPCP and its appli-
cation to navigation with uncertainty in adversary locations.
In submission.

Nilsson, N. 1971. Problem-solving methods in artificial intelli-
gence. McGraw-Hill.

Papadimitriou, C. H., & Tsitsiklis, J. N. 1987. The complex-
ity of Markov decision processses. Mathematics of operations
research, 12(3), 441–450.

Stentz, A. 1996. Map-based strategies for robot navigation in un-
known environments. In: AAAI spring symposium on plan-
ning with incomplete information for robot problems.

