Goal Directed Navigation with Uncertainty in Adversary Locations

Maxim Likhachev Anthony Stentz
The Robotics Institute The Robotics Institute
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
maxi m-@s. cmu. edu axs@ec.ri.cnu. edu

Abstract— This paper addresses the problem of planning for
goal directed navigation in the environment that contains a
number of possible adversary locations. It first shows that
commonly used approaches such as assumptive planning can
result in very long and costly robot traverses. It then showow
one can solve the same problem using a general probabilistic
planner we have recently developed called PPCP (Probabitis
Planning with Clear Preferences). The paper also introduce
two optimizations to the PPCP algorithm that make it run up A
to five times faster for our domain. The experimental results]] -
show that solving the problem with PPCP can substantially (2) 3.5 by 3.0 km satellite image (b) corresponding travelisa map
reduce the expected execution cost as compared to assumptiv
planning.

Fig. 1. Path clearance problem

I. MOTIVATION traversal distance. Unfortunately, such planning problem

This paper addresses the problem of planning for a rob§!!S into @ broad class of POMDP (Partially Observable
whose task is to reach its goal as quickly as possible witholarkov Decision Processes) problems which are intractable
being detected by an adversary. The robot does not knd® SO!Ve [9]- In fact, the path clearance problem is very much
beforehand the precise locations of adversaries, but ha€guivalent to the problem of planning for a robot navigating
list of their possible locations. When navigating, the robolln @ Partially-known (or unknown) environment: the robot
can come to a possible adversary location, sense it using f§€dS t0 reach its goal but it is initially uncertain abowt th
long range sensor and go around the area if an adversar)}rigverfsab'“ty of_ some_(or all) of the areas of the environine
detected or cut through this area otherwise. We will refer tN€ difference is thatin the path clearance problem, deggct
this problem agpath clearance an adversary blocks a large area resulting in a long detour.

The example in figure 1 demonstrates the path clearanf® adversary location has also a tendency to be placed in
problem. Figure 1(b) shows the traversability map of th&uch places that it blocks the vv_hoIe path and the robot has to
satellite image of a 3.5km by 3km area shown in figure 1(apackup and choose a totaII_y dlffere_nt route. As a resu_lt, t_he
The traversability map is obtained by converting the imaggetours can be much C(_)stller than in the case of navigation
into a discretized 2D map where each cell is of size 5 ! @ Partially-known environment, even when the amount of
5 meters and can either be traversable (shown in light gré{ncertainty is much less.
color) or not _(shown in dark grey color). The_ robot is sh_own Il USING ASSUMPTIVE PLANNING
by the blue circle and its goal by the green circle. Red circle
arepossibleadversary locations and their radii represent the To avoid the computational complexity, a robot operating
sensor range of adversaries (100 meters in this example). Tin a partially-known environment often performs assurngtiv
radii can vary from one location to another. The locationglanning [8], [4], [10]. In particular, it often just follossa
can be specified either manually or automatically in placezhortest path under the assumption that all unknown areas in
such as narrow passages. Each location also comes witltha environment are free unless the robot has already sensed
probability of containing an adversary (50% for each lamati them otherwise. This is known as a freespace assumption [4].
in the example): the likelihood that the location contains aThe robot follows such path until it either reaches its goal
adversary. The probabilities can vary from one location tor senses new information about the environment. In the
another. latter case, the robot re-computes and starts followingva ne

The path the robot follows may change any time the robathortest path under the freespace assumption.
senses a possible adversary locations (the sensor range of t The freespace assumption is also applicable to the path
robot is 105 meters in our example). A planner, thereforelearance problem. The robot can always plan a path under
needs to reason about possible outcomes of sensing ahd assumption that no adversary is present unless sensed
generate a plan (policy) that dictates which path the robotherwise. This assumption makes path clearance a determin
should take as a function of the outcome of each sensinigtic planning problem and therefore can be solved effitient
Ideally, the generated policy should minimize the expectethe fact that the robot ignores the uncertainty about the

(a) planned path (b) actual robots path

Fig. 2. Solving path clearance problem with freespace apsam

adversaries, however, means that it risks having to takg lon
detours, and the detours in the path clearance problem tent
to be longer than in the problem of navigation in a partially-
known environment as we have previously explained.

For example, figure 2(a) shows the path computed by the
robot that uses the freespace assumption. According to the
path, the robot tries to go through the possible adversary
location A (shown in figure 1(b)) as it is on the shortest route
to the goal. As the robot senses the location A, however, it
discovers that the adversary is present in there (the rebkcir
becomes black after sensing). As a result, the robot has tc
take a very long detour. Figure 2(b) shows the actual path
traversed by the robot before it reaches its goal.

1. USING PPCP PLANNING

While the general decision-theoretic planning that takes
into account the uncertainty about the environment correte) after 30 secs (PPCP Converged) (f) actual robots path
sponds to POMDP planning and is therefore hard to solve,
it turns out that many such problems exhibit a special
property: one can clearly identify beforehand the bestddal
clearly preferred values for the variables that represent thé€ed to hold for the found policy to be valid, it is guaranteed
unknowns in the environment. For example, in the probleri® be optimal if the assumption holds. In the problem of
of navigation in partially-known environments, it is alvgay robot navigation in a partially-known environment, PPCP
preferred to find out that an initially unknown location iswas also shown to nearly always return an optimal policy in
traversable rather than not. In a very similar problem obtob the environments small enough to be solved with methods
navigation in office-like environments with uncertaintyoah ~guaranteed to converge to an optimal solution (such as RTDP
whether some doors are open or not, it is always preferréReal-Time Dynamic Programming) [1]) [5].
to find out that a door is open. The same property holds for Figure 3 shows the application of PPCP to the path clear-
the path clearance problem: there are also clear prefesenamce example in figure 1. Before the robot starts executing
for the values of unknowns. The unknowns arebinary any policy, PPCP plans for five seconds. Figure 3(a) shows
variables, one for each of the possible adversary locations. the very first policy produced by PPCP (in black color). It
The preference for each of these variables is to have a valisea single path to the goal, which in fact is exactly the
false: no adversary is present. PPCP (Probabilistic Pt@nnisame as the path planned by planning with the freespace
with Clear Preferences) [5] is a recently developed algorit assumption (figure 2(a)). PPCP produced this path within
that scales up to large problems with a significant amount ééw milliseconds by executing a single A*-like determirgst
uncertainty by exploiting this property. search. At the next step, PPCP refines the policy by executing

PPCP constructs and refines until converges a policy &y new search which determines the cost of the detour the
running a series of A*-like deterministic searches. By makrobot has to take if the first adversary location on the found
ing a certain approximating assumption about the problempath contains an adversary. The result is the new policy
PPCP keeps the complexity of each search low and indepdfigure 3(b)). PPCP continues in this manner and at the end
dent of the amount of the missing information. Each search o five seconds allocated for planning, it generates thecpoli
extremely fast, and running a series of fast low-dimendionahown in figure 3(c). This is the policy that is passed to the
searches turns out to be much faster than solving the futbbot for execution. Each fork in the policy is where the robo
problem at once since the memory requirements are mutties to sense an adversary and chooses the corresponding
lower. While the assumption the algorithm makes does ndéiranch.

Fig. 3. Solving path clearance problem with PPCP

As we will explain in the later section, we interleave

planning with execution. Thus, while the robot executes the v=5
plan, PPCP improves it relative to the current position ef th
robot. Figure 3(d) shows the new position of the robot (the
(a) environment (b) initial PPCP policy

robot travels at the speed of 1 meter per second) and thr=.A
current policy generated by PPCP after 15 seconds since t,
robot was given its goal. Figure 3(e) shows the position ef th
robot and the policy PPCP has generated after 30 secon
At this point, PPCP has converged and no more refinement 4 .+
necessary. Note how the generated policy makes the robot °
through the area on its left since there are a number of way®
to get to the goal and therefore there is a high chance that)x, =[r=A4;E4=u,B5=1] (d) iteration 1: PPCP policy after update
one of them will be available. Unlike the plan generated by
planning under freespace assumption, the plan generated '
PPCP avoids going through location A. Figure 3(f) shows’
the actual path traversed by the robot. It is 4,123 meterft
long while the length of the trajectory traversed by the tobo, y

that plans with freespace assumption (figure 2(b)) is 4,92 7% 7 2
meters.

B C

D

v=6

IV. PPCP ALGORITHM

1

In this section we will describe the previously developec,
PPCP algorithm [5]. To better illustrate the algorithm, we;
will use the simple example of the robot navigation problens| 1% 23 "3
in a partially-known environment in figure 4(a). The robot iss
in cell A4 and its goal is cell F4. There are two cells (shadee ;7 7 .
in grey) whose status is unknown to the robot: cell B5 andy)x,, = [r=p4;4=u,85=u] (h) iteration 3: PPCP policy after update
E4. For each, the probability of containing an obstacle is
0.5. In this example, we restrict the robot to move only in
four compass directions. (In the path clearance problem, w!
allowed the robot to move in eight directions. Our approacl?
of using PPCP is also equally applicable when the robc’ il
transitions and the discretization of the environment ameem .
complex than those in a gridworld.) Whenever the robo s«
attempts to enter an unknown cell, we assume that the robod = B
moves towards the cell, senses it and enters it if it is fre€)X» = [R=A4:E4=u,B5=u] (I) iteration 7: final PPCP policy
and returns back otherwise. The cost of each move tee Fig. 4. An example of PPCP operation. Figures (c,e,g,k) stimwstates
cost of moving towards an unknown cell, sensing it and thegpmputed by t_hg ComputePath function in each iter_ation‘. rigke column

. . shows the policies generated by PPCP after each iteration.

returning back i.

1) Assumptions and Notation®PCP assumes that the
environment itself is fully deterministic and can be modele In the notations used by PPCP is a full state-vector
as a graph. There are certain elements of the environme(d, belief state). It can be split into two sets of (discrete
however, whose status we are uncertain about and whielnd of finite-range) variablesS(X) and H(X): X =
affect the outcomes and possibly costs of one or moi&(X); H(X)]. S(X) is the set of variables whose values
actions. Thus, in the figure 4 example, each of the robaire always observed such as the position of the robot in
transitions is deterministic if it is known whether the targ the robot navigation problenH (X) is the set of (hidden)
cell is free or not. If, however, the robot tries to enter thevariables that represent the missing information about the
cell whose status it does not know about, then it may or magnvironment. In the figure 4 example, these correspond to
not be able to enter it, depending on its actual status. Thube status of unknown cells B5 and E#,(X) denotes an
the action of moving towards such cell needs to be treateé! variable in H (X). We will use the setting;(X) = u to
by the planner as stochastic. These assumptions are ctearlepresent the fact that the value fof is unknown atX. If
relaxation of the assumptions made when planning with thie;(X) # u, then the true value of; is known atX. Thus,
freespace assumption, which assumes that the robot alwagsthe figure 4 example, each unknown cell is represented
moves deterministically and all unknown cells are freeby its own hidden variable. Whenever the robot senses a
(Both, PPCP and planning with the freespace assumptiopreviously unobserved cell, the value of the corresponding
have to re-plan whenever the robot deviates from its plavariable h; transitions fromu to either 0 or 1 and remains
due to actuation errors.) there afterwards. (If at a later time, the status of the cell

changes, PPCP will have to re-plan.)

Xstart 1S USed to denote the start state: in the figure
example, the value of(X.,t) is the start location of the
robot, while the values of all the variables Fi(X.,) are

unknown. The goal of the planner is to construct a policy that

reaches any stat& such thatS(X) = Sgoa1, WhereSgoa; is

given, while minimizing the expected cost of execution. In

figure 4, Sg0a1 COrresponds to the robot being at cel.
The actions are associated wigfiX) rather than the full
belief stateX since the values of variables i (X) affect
purely the costs and outcomes of actions. Weuse (X, a)
to denote the set of outcomes (successors) of acti@ken
in a belief stateX. If the execution of actiorn does not
depend on any of the variablés whose values are not yet
known atX, thensucc(X,a) contains only one staté and
H(Y) is the same a$1(X). Otherwise, if the outcome of
actiona depends on the value of a variablle whose value
is not yet known atX, thensucc(X,a) may contain two or

procedure ComputePath(Xy,)
9(S(Xp)) = oco; OPEN= §;
9(Sgoa1) = 0, besta(Sgoar) = null;
insertSgoa1 into OPENwith the priority g(Sgoa1) + heur(S(Xp), Sgoal);
while(g(S(Xp)) > ming yyopENY(S(X)) + heur(S(Xp), S(X)))
removeS (X)) with smallestg(S(X)) + heur(S(Xp), S(X)) from OPEN
for eacha and S(Y) s.t. S(X) = S(suce(Y¥,a)?)
computeQ, 4 (S(Y), a) according to equation 1;
if this search hasn't seefi(Y) yet or g(S(Y)) > Qu,4(S(Y), a)
9(5(Y)) = Qu 4(S(Y), a); besta(S(Y)) = a;
insert/updateS (Y") in OPEN with the priority
9(8(Y)) + heur(S(Xp), S(Y));

asP R

6

8

11

12
13
14
15
16
17
18
19
20
21
22

procedure UpdateMDP(X pivot)

X = Xpivot;

while (S(X) # Sgoal)
v(X) = g(S(X)); v(X™) = g(S(X)); besta(X) = besta(S(X));
X = suce(X, besta(X))";

procedure Main()

Xpivot = Xstart;

while (Xpivot! = null)
ComputePatt ,ivot);
UpdateMDPX pivot);
find stateX on the current policy such thaf(X) # Sgoa1 and it has
’U(X) < EYEsucc(X,besta(X))C(S(X)7 besta(X), S(Y)) + ’U(Y);

23 if found setXpivot 10 X;

more states. The value af becomes known at these states?4
The probability distribution of these outcomes follows the
probability distribution ofh;. Thus, in figure 4, the actioa

of moving east from cell A4 has only one outcome since it

otherwise seX ot t0 null;

Fig. 5. The PPCP Algorithm

does not depend on the values of any of the hidden variablerﬁ

On the other hand, the actiom of moving east at state
X = [R = D4;B5 = u,E4 = u] (that is, robot at cell
D4 and the status of both initially unknown cells is still
unknown) has two equally probable outcomeg;-= [R =
E4;B5 =u,F4 =0] andY; = [R = D4; B5 = u, B4 = 1]
- because the probability of celt4 being blocked is 0.5.
PPCP assumes that the variablesdncan be considered
independent of each other. In other words, the status of ¢
B5 is independent of the status of cell E4. Costs need
be associated witts(X). Thus, ¢(S(X),q,S(Y)) denotes
the cost of executing action at any belief state whose
observable state is equal 8(X) and moving into a belief
state whose observable state is equab (¥').

The main assumption that PPCP makes is that clear pr

It requires that for each variable;, € H we are given its
preferred value, denoted Ibyi.e., the best value). This value
must satisfy the following property. Given any stateand
any actiona whose outcomes depend on the valuépand
its value is not yet known ai (i.e., h;(X) = w), there
exists a successor stal¥ such thath,;(X’) = b and

X' = argminy ¢ . yee(x.0)C(S(X), @, S(Y)) + 07 (Y),

e
erences on the values of the hidden variables are available.

2) The algorithm: The pseudocode for the PPCP algo-
hm is given in figure 5 and a trace of the algorithm
operation is given in figure 4. The Main function of the
algorithm constructs and refines a policy in the full belief
state-space. For each state it maintains\alue, which is

an estimate of the expected cost-to-goal, aagta pointer,

a pointer to the action that should be executed at the state
according to the current policy. The initiatvalues need to

%Jﬁa smaller than or equal to the costs of least-cost trajestor

a goal under the assumption that all hidden variables are
equal tob (a simple initialization to zero suffices). Thus,
in figure 4(b) the initial policy is just stat&X.,; whose
besta(Xgtart) = null. Its initial v-value (and the initiak-
values of all other states as they get created) is set to the
I\{I_anhattan distance from the state to the goal.

The Main function of the algorithm repeatedly executes
A*-like searches by calling the ComputePath function on
states that reside on the current policy (definedbbyta
pointers) and whose-values are smaller than what they
should be according to thevalues of the successors of the
policy action (line 22). If a state hagsta = null then the
value of expectation over policy action successors is asdum
to returnoo. Thus, X.t..¢ IS the first state to be selected for
calling the ComputePath function on (figure 4(c)).

The ComputePath function is nearly identical to (back-

wherev*(Y') is the expected cost of executing an optimaivard) A* search. While the function is called on a belief stat

policy at stateY’. PPCP uses the notatieuce(X, a)’ (i.e.,
the best successor) to denote such skatelf the value of
h; is known atX (i.e., h;(X) # u), thensuce(X, a)® refers

X, it searches backwards from a single stélg,;, towards
a single state5(X,,), and the states in the search state-space
consist only of variables i¥. Thus, in the robot navigation

to the only state contained isuce(X, a), independently of example it means that the search is actually a 2D search,
the value of itsh;. The robot navigation problem in figure 4 and not a search in a much higher dimensional belief state-
clearly satisfies the property of clear preferences since fepace. Consequently, the search is fast. The search is also
each sensing action there always exist two outcomes: a cditerministic because it assumes that any acti@xecuted

is blocked or unblocked. The latter is clearly the preferredt S(X) has only one outcome. If the value of a hidden
outcome. variableh; that affects the outcomes afwas known at state

Xp, then the search uses the outcome that corresponds to thend in [6]). At the time of termination, the expected cost
value ofh;(X,). Otherwise, the search makes an optimistiof the found policy is bounded from above by the cost of
assumption and uses the preferred outcome. One way to puthie policy in which the robot always forgets the outcome of
formally is to say that the search assumes that the outcomesansing if it was a preferred outcome. If an optimal policy
actiona executed at stat§(X) is S(succ(X“,a)’), where does not require remembering preferred outcomes, then the
X" is a state whos#'(X") = S(X) andH(X") is H(X,) policy returned by PPCP is also guaranteed to be optimal. In
but with each hidden variable equal toset tou. Thus, the figure 4 example, this memoryless property would mean
when executed oX,, = [R = D4;E4 = 1,B5 = u] in that during the planning process the planner assumes that as
figure 4(e), the ComputePath function assumes cell E4 $®on as the robot successfully enters cell E4 and therefore
blocked whereas cell B5 is free. After the environment i§inds out that is free, it resets back the status of cell E4 to
set, the ComputePath function performs exactly backwah unknown cell. (The non-preferred outcomes of sensing
A* search in this environment with the only exception ofare never reset and so if the robot finds that the cell E4
how theg-values are computed. is blocked, then this information is retained forever.) e t

In the backward A* searchj-values are estimates of the example, an optimal plan does not need to remember the
cost-to-goal distances. Thus, if we were to run a normaitatus of any cell the robot has successfully entered. In the
backward A* search on the environment the ComputePatiath clearance problem, however, this is not the case and we
function sets up, then theg-value of stateS(Y) with a need to address the memoryless property of PPCP.

successor stat§(X) = S(succ(Y", a)?) according to the
search tree generated by the search is given by V. APPLICATION OF PPCP TO PATH CLEARANCE
A. Overcoming memoryless property

PPCP assumes that the robot does not need to remember
We'll denote the right hand side of this equation aghe outcomes of sensing if they are preferred outcomeseln th
Qv_’g(g(y),a), The ComputePath function, on the otheffigure 4 example, for instance, the robot senses a cell when

hand, computes thgvalue of stateS(Y") differently, namely trying to enter it. If it is free then the robot enters it and
as: does not really need to remember that it is free afterwards,

. its projected path is unlikely to involve entering the same
Qug (81, 0) = ZZEWCW“@) Pru,o(2). cell again. It only needs to remember if some cells turn out
max(c(S(Y),a,S(Z)) +v(2), 1) X .
e(S(Y),a,8(2%) + g(S(2°))) to be blocked, and plans generated by PPCP do retain this
information.
where Z* = succ(Y*,a)". In case when action executed This is different, however, when the robot has a long range
at Y is deterministic, this equation reduces exactly to theensor such as in the path clearance problem. The robot
equation used in normal A* search. Otherwise, this equatiafay sense whether an adversary is present before actually
incorporates the values of other outcomes of actitresides reaching the area covered by the adversary. It thus needs
the one that is preferred. For example, in figure 4(g)¢he to remember the preferred outcomes if it wants to sense
value of cell C4 is 8, which ig +g(D4). Theg-value of cell adversaries from a long distance.
D4, on the other hand, is 7, despite the fact tid4) = 1, The solution to this problem is to augment each state
and the reason is that thevalue of the stat¢R = D4; E4 = §(X) with the lastk preferred outcomes of sensing. Thus,
1, B5 = u] that corresponds to the "bad” outcome of goings(X) now consists of the location of the robot plus the last
east at cell D4 is 10. The-value of this state has just beeng |ocations that were sensed to be free of adversaties.
updated in the previous iteration (figure 4(f)). can be set to a small number such as two or three to keep
Apart from the computation of-values, the ComputePath the complexity of each search low. This amount of memory

function is fully equivalent to the A* search. It also uses th gpout the preferred outcomes of sensing is enough for the
heuristics that estimate distance $§X,,). The heuristics path clearance problem.

need to satisfy normal consistency requirements [7]. In _))
figure 4 they are shown as-values and are Manhattan B- Interleaving planning and execution
distances. In the pseudocode they are referred theas In many cases we would like to be able to interleave
variables. planning with execution. The robot can then start executing
After each search, the UpdateMDP function updates thghatever current plan it has and while executing it, a planne
v-values of the states that belong to the path found bgan work on improving the plan. This way the robot does
the search by setting them to theivalues. This increases not need to wait until the planner fully converges.
v-values and is guaranteed to correct the error betweeninterleaving planning with PPCP with execution can be
the v-values of the states on the path and thealues of done as follows. The robot first executes PPCP for several
their successors in the policy. The iterations continudl untseconds. The loop in the Main function of PPCP is then
there are no states left on the current policy whose valussispended (right after the UpdateMDP function returns on
are smaller than what they should be according to theline 21), and the robot starts following the policy currgntl
successors. The algorithm is guaranteed to terminate (tfmund by PPCP as given biesta pointers. During each
proof of this and other properties of the algorithm can beobot move, X, state maintained by PPCP is updated to

9(5(Y)) = c(S(Y), a, S(X)) + 9(S(X))

the current state of the robot and the main loop of PPCP
is resumed for another few seconds. After it is suspended
again, the policy that the robot currently follows is congzhr
against the policy that PPCP currently has and is updated to
it only if the latter has a higher probability of reaching aafjo
location. If the policy the robot currently follows has a héy
probability of reaching the goal then the robot continues
to follow it. This way we avoid changing policies every
time PPCP decides to explore a different policy but has not
explored much of the outcomes on it yet. The probabilities
of reaching a goal for an acyclic policy can be computed in
a single pass over the states on the policy in their topoébgic
order.

Once PPCP converges to a final policy, the robot can (b) search by original PPCP (c) search by optimized PPCP
follow the policy without re-executing PPCP again unlessig. 6. The comparison of a search by the original PPCP (b)RPGP
the robot deviates from its path due to actuation errors. Hith the optimization described in section V-C.1
the robot does deviate significantly from the plan generated : .
by PPCP, then PPCP cangbe used);o re-plan. 'FI)'hergis no néverbe” computing th?-vaIL.Je Offe” €5, EPCP will query the

. v-Value of stateflR = C5;C4 = 1,C6 = 1] as needed by
to re-plan from scratch. Insteaf;., is updated to the new h tion 1. If the-value of this state has never been
state of the robot, the old policy is discarded, and the maltne equa . L : -
loop of PPCP is resumed. Note that the values of all Stagé)r_nputed previously, PPCP |n|t!aI|zes it to some admissibl

' :) . stimate such as Manhattan distance from C5 to the goal
variables in P_PCP are pre;erved. It will then automatlcraH.y_ cell, which is 4 (figure 6(b)). After evaluating equation 1,
use them to find a new policy from the current robot positio

. the g-value of cell C5 becomes 6=(0.5 max(2 + 4,1 +
much faster than if PPCP was re-executed from scratch. 5)+0.5 max(1+5, 1 +5)). Consequently, the search returns

C. Optimizations the path shown in figure 6(b) that goes through cells C5 and

We now describe two general optimizations of the PPCSG'

. . The optimization that we propose in this section is to use
algorithm that prove to be very effective for the path clear: . : . . .
tthev—values of neighboring states to obtain more informative

ance problem. The first one reduces the number of searc X
) . . Lo -values of states that have not been explored yet. Thus, in
iterations PPCP makes, while the second optimization suf-

e example, we can deduce that thealue of statgR =

stantlal!y speeds up each search. Both optimizations libeve C'5:C4 = 1,06 — 1] can be at least 10 - thevalue of state
theoretical properties of the algorithm such as convergen S .
S . " R = B6;C4 = 1,06 = 1], which is 12, minus an upper
and optimality under certain conditions unchanged and can ;
) R ound on the cost of getting frofik = B6;C4 =1,C6 =
be considered general optimizations of PPCP. . .
)) 1] to state[R = C5;C4 = 1,C6 = 1], which we can easily
1) Reducing the Number of Search Iterationss men-) .
. . . compute as 2. More formally, suppose we are interested in
tioned previously, during each search whenever the Com-_. "~ .
; . estimating thev-value of some stat&X'. We can then take
putePath function encounters actioexecuted at staté(X) some (small) regiorR? of states around whoseH (-) part
and the outcome is not definite according A X,,), then g b

in evaluating the equation 1, the ComputePath function the same as irH (X). Using each stat¢” € R and an

" .
uses thev-values of non-preferred outcomes. Thevalues Upper bound:(Y, X) on getting from statd” to state.,

. : we can then estimate(X) as:
are estimates of the goal distances. If these non-preferreg 2 X)

outcomes have never been explored by PPCP, then-the v(X) = maxycrv(Y) —c*(Y, X) @
values are initial estimates of the cost-to-goal from them .]
and are likely to be much lower than what they should really The upper boun_ds:“(-, X) can be computed via a single
be. This means that the ComputePath function will return éackward Depth-First Search froi. In some problems they
path that uses the state-action péf(X),a) and only in can alsq be obtained a priori. To see that th_e equation 2
the future iterations PPCP will find out that thevalue of S @ valid update foro(X) consider the following trivial
these non-preferred outcomes should really be higher aRéeof thatu(X) remains admissible (does not overestimate
this state-action pair should be avoided. the minimum expected cost of getting to goal) provided an
Figure 6 gives such example for the robot navigation iRdmissible value)(Y') for eachY € R. Let v*(Y) denote
a partially-known environment problem. When solving théhe® minimum expected cost of getting to the goal frdm
environment in figure 6(a), PPCP at some point invokes the€n-

gbo
h=5 h=0 | hli
gto g-1i] g=10

h=0| h-1
g9 | g=8
Wi =2 h-3
28 27T ¢k ‘
h=2 | h-3 | W4 h=5_] h=6.| ht7 h=3

g9 | g8 g5 g4 g3 g2

O S

=)
I
1
;
I
I
=)

ComputePath function on stat¥, = [R = A4;C4 = o(Y) < 0™ (Y) < (Y, X) +v* (X)
1,C6 = u]. Suppose that by this time PPCP has already
computed thev-value of statelR = B6;C4 = 1,06 = 1] Thus,v*(X) is bounded from below by(Y) — c*(Y, X)

as 12. This is the cost of getting to the goal from cell B6 ifand by settingy(X) to it we guarantee the admissibility of
both cells C4 and C6 are blocked. During the current search(X).

The only change to the algorithm is that on line 15 the
v-value update is now a maximum between the eidalue
and theg-value. In other words, the new line 15 is now as

follows: | %3
15 w(X) = max(v(X), g(S(X))); v(X™) = max(v(X"), g(S(X))); &
besta(X) = besta(S(X)); &

ﬁr @ gnn
el s

’ o

Figure 6(C) shows the Operation of the CompUtePath (a)“AAtypicaIgroIenvironment Zb)AtypicaI grou[.J Il eneitment
function that uses our optimization. Thﬁvalue of cell Fig. 7. The example of environments used in testing and tuesgienerated
C5 now is computed as 9=(0.5 max(2 + 10,1 +5) + ,’ppcPp for each.
0.5 max(1 + 5,1 4 5)) because it uses thevalue of state
[R = B6;C4 =1,C6 = 1] to better estimate the-value of
[R = C5;C4 = 1,C6 = 1] — the non-preferred outcome jcur(s(x)) = max(heur(S(X)),
of moving from C5 towards C6. Consequently, the search heur™ (S(Xstart), S(X)) — heur™(S(Xstart), S(Xp)))
returns a very different path and PPCP never has to explore(Note thatS(X) does not retain the value atur(S(X))
the path through cells CS and C6 that would have been rpm one search to another.) For the same reasoning as in [3]
turned without our optimization. The proposed optimizatio the updatedheur(S(X)) is guaranteed not to overestimate

can substantially cut down on the overall number of searGfe actual distance frons(X,) to S(X) and to remain a
iterations PPCP has to do. This significantly overcomes thnsistent function.

expense of computing better estimatesvefalues for non-
preferred outcomes. VI. EXPERIMENTAL RESULTS

2) Speeding Up SearcheBPCP repeatedly executes A*- In all of our experiments we used randomly generated
like searches. As a result, much of the search efforts afctal environments that are often used to model outdoor
repeated and it should be beneficial to employ the techniquesvironments [11]. On top of these fractal environments
such as D* [10], D* Lite [2] or Adaptive A* [3] that are we superimposed a number of randomly generated paths in
known to significantly speed up repeated A* searches. Weetween randomly generated pairs of points. The paths were
use the last method because it guarantees not to perfomeant to simulate roads through forests and valleys and that
more work than A* search itself and also requires littleare usually present in outdoor terrains. Figures 7(a,bjvsho
changes to our ComputePath function. typical environments that were used in our experiments. The

The idea is simple and is as follows. This optimizatiorlighter colors represent more easily traversable areals. Al
computes more informed heuristic valuésur(S(X)), that environments were of size 500 by 500 cells, with the size of
are used to focus each seardleur(S(X)) is a heuristic each cell being 5 by 5 meters.
value that (under) estimates a distance fraiX,) to The test environments were split into two groups. Each
S(X) under the assumption that all hidden variables whosgroup contained 25 environments. For each environment in
values are unknown are set to The heuristics need to the group | we set up 30 possible adversary locations at
be consistent [7]. Initially, before any search iteratian irandomly chosen coordinates but in the areas that were
done, we compute the start distance (the cost of a leastaversable. Figure 7(a) shows a plan the PPCP algorithm
cost path fromS(X.,¢) to the state in question) of every with our improvements has generated after full convergence
state in.S(-) assuming that execution of every stochastiéor one of the environments in group I. For each environment
action results in a preferred outcome (in other words, thia the group Il we set up 10 possible adversary locations.
search is done on the deterministic environment where tiée coordinates of these locations, however, were chosen
value of each hidden variable is set &p In the figure 4 such as to maximize the length of detours. This was meant
example, it means that we compute the distance from cath simulate the fact that an adversary may often be set at a
A4 to every other cell assuming cells E4 and B5 are fregaoint that would make the robot take a long detour. In other
We can do this computation via a single Dijkstra’s searchwords, an adversary is often set at a place that the robot
Let us denote the computed value for each stt&) by is likely to traverse. Thus, the environments in group Il are
heur*(S(Xstart), S(X)). more challenging. Figure 7(b) shows a typical environment

The computed valuéeur*(S(Xstart), S(X)) is a perfect from the group Il together with the plan generated by PPCP.
estimate of the start distance in the environment whefEhe shown plan has about 95% probability of reaching the
every hidden variable is set tb. Therefore it is a good goal (in other words, the robot executing the policy has at
heuristic value to use when the ComputePath function imost 5% chance of encountering an outcome for which the
invoked with X, = Xga:. The problem, however, is that plan had not been generated yet). In contrast to the plan in
the ComputePath function is most of the time called to findigure 7(a), the plan for the environment in group Il is more
a path from some other staf€, # Xg..c. We employ the complex - the detours are much longer - and it is therefore
same principle as in [3] that allows us to use dumr*- harder to compute. For each possible adversary location the
values anyway: for every stat§(X) its heuristic value probability of containing an adversary was set at random to
heur(S(X)) can be improved as follows a value in between 0.1 and 0.9.

of Time to Convergence| Converged Overhead in Execution Cost
Expansions‘ (secs) ‘ within 15 minutes Group | Group 1l Group | Group I
PPCP 59,759,717 281.83 64% no penalty | no penalty | with penalty | with penalty
optimized PPCP‘ 11,911,585‘ 60.81 ‘ 92% freespace 5.4% 5.2% 35.4% 21.6%
freespace2 0.5% 4.9% 4.8% 17.0%
TABLE | freespace3 2.1% 4.3% 0.0% 12.7%
THE COMPARISON OFPPCPAND OPTIMIZED PPCP. HE CONVERGENCE TIMES TABLE II

ARE GIVEN FOR THE ENVIRONMENTS ON WHICHDOthALGORITHMS CONVERGED
THE OVERHEAD IN EXECUTION COST OF NAVIGATING USING PLANNING WTH

WITHIN 15 MINUTES.
FREESPACE ASSUMPTION OVER NAVIGATING USING PLANNING WITHPPCP

We have run tv_vo sets of experiments on _these €MVhas now shifted to 3 indicating that it does depend on the
ronments. In the first set we compared the original PPC

. i . N Ectual problem. Overall, the results indicate that plagnin
algorithm and the PPCP algorithm with the two optimizationg i, ppCP can have significant benefits and do not require
we have described in section V-C. Table | shows the resul(tﬁ_Iy tuning

for the group | averaged over all of the environments in it.
The algorithms were run until full convergence in order to VII. CONCLUSIONS
obtain the comparison results. According to them the number | this paper we have shown how to apply the PPCP
of states expanded by the original PPCP is about five timeggorithm to the problem of robot navigation with possible
more and its run-time is also close to five times longeadversary locations and have demonstrated that it is bene-
than for the optimized PPCP. The original PPCP has alsjal. The experiments have shown that the algorithm can
converged on less environments within 15 minutes. scale up to large real-world size environments with large
In the second set of experiments we compared the eXgumber of possible adversary locations, each having long
cution cost of the robot planning with our optimized PPCRange sensors. We are also currently porting the system onto
versus the execution cost of the robot planning with freespag real outdoor terrain vehicle. The paper also presents two
assumption [4]. In these experiments, unlike in the presiouyeneral optimizations to the PPCP algorithm that can be

experiments, the robot was moving and was given 5 secongseful by PPCP when used to solve other planning under
to plan while traversing 5 meter distance. This amounjncertainty problems.

of time was always sufficient for planning with freespace

assumption to generate a path. The PPCP planning, on VIIl. ACKNOWLEDGMENTS

the other hand, was interleaved with execution as we haveThis work was sponsored by the U.S. Army Research Labo-
explained in section V ratory, under contract Robotics Collaborative Technolédjjance

bl h h head in th . . ontract number DAAD19-01-2-0012). The views and coriolus
Table Il shows the overhead in the execution cost INCUrTeq,iained in this document are those of the authors and cmal

by the robot that plans with the freespace assumption oV interpreted as representing the official policies, eiéxpressed
the execution cost incurred by the robot that uses PPCP farimplied, of the Army Research Laboratory or the U.S. Gover

planning. The rows freespace2 and freespace3 correspdight-

to making a cost of going through a cell that belongs to
a possible adversary location twice and three times higher
than what it really is, respectively. One may scale costs ir{ll
this way in order to bias the paths generated by the planngg]
with freespace assumption away from going through possible
adversary locations. The results are averaged over 8 runs 51
each of the 25 environments in each group. For each run
the true status of each adversary location was generated &t
random according to the probability having an adversary in
there. [5]
The figure shows that planning with PPCP results in
considerable execution cost savings. The savings for groug;
| environments were small only if biasing the freespace
planner was set to 2. The problem, however, is that thé’]
biasing factor is dependent on the actual environment, th%]
way the adversaries are set up and the sensor range of an
adversary. Thus, the overhead of planning with freespace
for the group Il environments is considerable across aII[
bias factors. In the last two columns we have introduced
penalty for discovering an adversary. It simulated the fadt®l
that the robot runs the risk of being detected by an adversary
when it tries to sense it. In these experiments, the overhepd,)
of planning with freespace assumption becomes very large.
Also, note that the best bias factor for freespace assumptio

REFERENCES

A. Barto, S. Bradtke, and S. Singh. Learning to act usiegl-time
dynamic programmingArtificial Intelligence 72:81-138, 1995.

S. Koenig and M. Likhachev. D* lite. IfProceedings of the Eighteenth
National Conference on Atrtificial Intelligence (AAAB002.

S. Koenig and M. Likhachev. Adaptive A*. IfProceedings of the
International Joint Conference on Autonomous Agents antfidgent
Systems (AAMAS2005. Poster abstract.

S. Koenig and Y. Smirnov. Sensor-based planning withfteespace
assumption. IrProceedings of the IEEE International Conference on
Robotics and Automation (ICRA}996.

M. Likhachev and A. Stentz. PPCP: Efficient probabitisplanning
with clear preferences in partially-known environments. Proceed-
ings of the National Conference on Artificial Intelligen@edAl), 2006.
M. Likhachev and A. Stentz. PPCP algorithm with formabbysis.
Tech. Rep., Carnegie Mellon University, Pittsburgh, PAQ20

N. Nilsson. Problem-Solving Methods in Artificial Intelligence
McGraw-Hill, 1971.

I. Nourbakhsh and M. Genesereth. Assumptive planning exe-
cution: a simple, working robot architectureAutonomous Robots
Journal 3(1):49-67, 1996.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexi§ Markov
decision processseMathematics of Operations Researd2(3):441—
450, 1987.

A. Stentz. The focussed D* algorithm for real-time @mhing.
In Proceedings of the International Joint Conference on Aiéfi
Intelligence (IJCAI) 1995.

A. Stentz. Map-based strategies for robot navigatiomriknown en-
vironments. INAAAI Spring Symposium on Planning with Incomplete
Information for Robot Problemsl996.

