
Goal Directed Navigation with Uncertainty in Adversary Locations

Maxim Likhachev
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
maxim+@cs.cmu.edu

Anthony Stentz
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213
axs@rec.ri.cmu.edu

Abstract— This paper addresses the problem of planning for
goal directed navigation in the environment that contains a
number of possible adversary locations. It first shows that
commonly used approaches such as assumptive planning can
result in very long and costly robot traverses. It then showshow
one can solve the same problem using a general probabilistic
planner we have recently developed called PPCP (Probabilistic
Planning with Clear Preferences). The paper also introduces
two optimizations to the PPCP algorithm that make it run up
to five times faster for our domain. The experimental results
show that solving the problem with PPCP can substantially
reduce the expected execution cost as compared to assumptive
planning.

I. MOTIVATION

This paper addresses the problem of planning for a robot
whose task is to reach its goal as quickly as possible without
being detected by an adversary. The robot does not know
beforehand the precise locations of adversaries, but has a
list of their possible locations. When navigating, the robot
can come to a possible adversary location, sense it using its
long range sensor and go around the area if an adversary is
detected or cut through this area otherwise. We will refer to
this problem aspath clearance.

The example in figure 1 demonstrates the path clearance
problem. Figure 1(b) shows the traversability map of the
satellite image of a 3.5km by 3km area shown in figure 1(a).
The traversability map is obtained by converting the image
into a discretized 2D map where each cell is of size 5 by
5 meters and can either be traversable (shown in light grey
color) or not (shown in dark grey color). The robot is shown
by the blue circle and its goal by the green circle. Red circles
arepossibleadversary locations and their radii represent the
sensor range of adversaries (100 meters in this example). The
radii can vary from one location to another. The locations
can be specified either manually or automatically in places
such as narrow passages. Each location also comes with a
probability of containing an adversary (50% for each location
in the example): the likelihood that the location contains an
adversary. The probabilities can vary from one location to
another.

The path the robot follows may change any time the robot
senses a possible adversary locations (the sensor range of the
robot is 105 meters in our example). A planner, therefore,
needs to reason about possible outcomes of sensing and
generate a plan (policy) that dictates which path the robot
should take as a function of the outcome of each sensing.
Ideally, the generated policy should minimize the expected

(a) 3.5 by 3.0 km satellite image (b) corresponding traversability map

Fig. 1. Path clearance problem

traversal distance. Unfortunately, such planning problem
falls into a broad class of POMDP (Partially Observable
Markov Decision Processes) problems which are intractable
to solve [9]. In fact, the path clearance problem is very much
equivalent to the problem of planning for a robot navigating
in a partially-known (or unknown) environment: the robot
needs to reach its goal but it is initially uncertain about the
traversability of some (or all) of the areas of the environment.
The difference is that in the path clearance problem, detecting
an adversary blocks a large area resulting in a long detour.
An adversary location has also a tendency to be placed in
such places that it blocks the whole path and the robot has to
backup and choose a totally different route. As a result, the
detours can be much costlier than in the case of navigation
in a partially-known environment, even when the amount of
uncertainty is much less.

II. USING ASSUMPTIVE PLANNING

To avoid the computational complexity, a robot operating
in a partially-known environment often performs assumptive
planning [8], [4], [10]. In particular, it often just follows a
shortest path under the assumption that all unknown areas in
the environment are free unless the robot has already sensed
them otherwise. This is known as a freespace assumption [4].
The robot follows such path until it either reaches its goal
or senses new information about the environment. In the
latter case, the robot re-computes and starts following a new
shortest path under the freespace assumption.

The freespace assumption is also applicable to the path
clearance problem. The robot can always plan a path under
the assumption that no adversary is present unless sensed
otherwise. This assumption makes path clearance a determin-
istic planning problem and therefore can be solved efficiently.
The fact that the robot ignores the uncertainty about the

(a) planned path (b) actual robot’s path

Fig. 2. Solving path clearance problem with freespace assumption

adversaries, however, means that it risks having to take long
detours, and the detours in the path clearance problem tend
to be longer than in the problem of navigation in a partially-
known environment as we have previously explained.

For example, figure 2(a) shows the path computed by the
robot that uses the freespace assumption. According to the
path, the robot tries to go through the possible adversary
location A (shown in figure 1(b)) as it is on the shortest route
to the goal. As the robot senses the location A, however, it
discovers that the adversary is present in there (the red circle
becomes black after sensing). As a result, the robot has to
take a very long detour. Figure 2(b) shows the actual path
traversed by the robot before it reaches its goal.

III. USING PPCP PLANNING

While the general decision-theoretic planning that takes
into account the uncertainty about the environment corre-
sponds to POMDP planning and is therefore hard to solve,
it turns out that many such problems exhibit a special
property: one can clearly identify beforehand the best (called
clearly preferred) values for the variables that represent the
unknowns in the environment. For example, in the problem
of navigation in partially-known environments, it is always
preferred to find out that an initially unknown location is
traversable rather than not. In a very similar problem of robot
navigation in office-like environments with uncertainty about
whether some doors are open or not, it is always preferred
to find out that a door is open. The same property holds for
the path clearance problem: there are also clear preferences
for the values of unknowns. The unknowns arem binary
variables, one for each of them possible adversary locations.
The preference for each of these variables is to have a value
false: no adversary is present. PPCP (Probabilistic Planning
with Clear Preferences) [5] is a recently developed algorithm
that scales up to large problems with a significant amount of
uncertainty by exploiting this property.

PPCP constructs and refines until converges a policy by
running a series of A*-like deterministic searches. By mak-
ing a certain approximating assumption about the problem,
PPCP keeps the complexity of each search low and indepen-
dent of the amount of the missing information. Each search is
extremely fast, and running a series of fast low-dimensional
searches turns out to be much faster than solving the full
problem at once since the memory requirements are much
lower. While the assumption the algorithm makes does not

(a) the first policy (b) the second policy

(c) after 5 secs (d) after 15 secs

(e) after 30 secs (PPCP converged) (f) actual robot’s path

Fig. 3. Solving path clearance problem with PPCP

need to hold for the found policy to be valid, it is guaranteed
to be optimal if the assumption holds. In the problem of
robot navigation in a partially-known environment, PPCP
was also shown to nearly always return an optimal policy in
the environments small enough to be solved with methods
guaranteed to converge to an optimal solution (such as RTDP
(Real-Time Dynamic Programming) [1]) [5].

Figure 3 shows the application of PPCP to the path clear-
ance example in figure 1. Before the robot starts executing
any policy, PPCP plans for five seconds. Figure 3(a) shows
the very first policy produced by PPCP (in black color). It
is a single path to the goal, which in fact is exactly the
same as the path planned by planning with the freespace
assumption (figure 2(a)). PPCP produced this path within
few milliseconds by executing a single A*-like deterministic
search. At the next step, PPCP refines the policy by executing
a new search which determines the cost of the detour the
robot has to take if the first adversary location on the found
path contains an adversary. The result is the new policy
(figure 3(b)). PPCP continues in this manner and at the end
of five seconds allocated for planning, it generates the policy
shown in figure 3(c). This is the policy that is passed to the
robot for execution. Each fork in the policy is where the robot
tries to sense an adversary and chooses the corresponding
branch.

As we will explain in the later section, we interleave
planning with execution. Thus, while the robot executes the
plan, PPCP improves it relative to the current position of the
robot. Figure 3(d) shows the new position of the robot (the
robot travels at the speed of 1 meter per second) and the
current policy generated by PPCP after 15 seconds since the
robot was given its goal. Figure 3(e) shows the position of the
robot and the policy PPCP has generated after 30 seconds.
At this point, PPCP has converged and no more refinement is
necessary. Note how the generated policy makes the robot go
through the area on its left since there are a number of ways
to get to the goal and therefore there is a high chance that
one of them will be available. Unlike the plan generated by
planning under freespace assumption, the plan generated by
PPCP avoids going through location A. Figure 3(f) shows
the actual path traversed by the robot. It is 4,123 meters
long while the length of the trajectory traversed by the robot
that plans with freespace assumption (figure 2(b)) is 4,922
meters.

IV. PPCP ALGORITHM

In this section we will describe the previously developed
PPCP algorithm [5]. To better illustrate the algorithm, we
will use the simple example of the robot navigation problem
in a partially-known environment in figure 4(a). The robot is
in cell A4 and its goal is cell F4. There are two cells (shaded
in grey) whose status is unknown to the robot: cell B5 and
E4. For each, the probability of containing an obstacle is
0.5. In this example, we restrict the robot to move only in
four compass directions. (In the path clearance problem, we
allowed the robot to move in eight directions. Our approach
of using PPCP is also equally applicable when the robot
transitions and the discretization of the environment are more
complex than those in a gridworld.) Whenever the robot
attempts to enter an unknown cell, we assume that the robot
moves towards the cell, senses it and enters it if it is free
and returns back otherwise. The cost of each move is1, the
cost of moving towards an unknown cell, sensing it and then
returning back is2.

1) Assumptions and Notations:PPCP assumes that the
environment itself is fully deterministic and can be modeled
as a graph. There are certain elements of the environment,
however, whose status we are uncertain about and which
affect the outcomes and possibly costs of one or more
actions. Thus, in the figure 4 example, each of the robot
transitions is deterministic if it is known whether the target
cell is free or not. If, however, the robot tries to enter the
cell whose status it does not know about, then it may or may
not be able to enter it, depending on its actual status. Thus,
the action of moving towards such cell needs to be treated
by the planner as stochastic. These assumptions are clearlya
relaxation of the assumptions made when planning with the
freespace assumption, which assumes that the robot always
moves deterministically and all unknown cells are free.
(Both, PPCP and planning with the freespace assumption,
have to re-plan whenever the robot deviates from its plan
due to actuation errors.)

(a) environment (b) initial PPCP policy

(c)Xp =[R=A4;E4=u,B5=u] (d) iteration 1: PPCP policy after update

(e)Xp = [R=D4;E4=1,B5=u] (f) iteration 2: PPCP policy after update

(g)Xp = [R=A4;E4=u,B5=u] (h) iteration 3: PPCP policy after update

.

(k)Xp = [R=A4;E4=u,B5=u] (l) iteration 7: final PPCP policy

Fig. 4. An example of PPCP operation. Figures (c,e,g,k) showthe states
computed by the ComputePath function in each iteration. Theright column
shows the policies generated by PPCP after each iteration.

In the notations used by PPCPX is a full state-vector
(a belief state). It can be split into two sets of (discrete
and of finite-range) variables,S(X) and H(X): X =
[S(X); H(X)]. S(X) is the set of variables whose values
are always observed such as the position of the robot in
the robot navigation problem.H(X) is the set of (hidden)
variables that represent the missing information about the
environment. In the figure 4 example, these correspond to
the status of unknown cells B5 and E4.hi(X) denotes an
ith variable inH(X). We will use the settinghi(X) = u to
represent the fact that the value ofhi is unknown atX . If
hi(X) 6= u, then the true value ofhi is known atX . Thus,
in the figure 4 example, each unknown cell is represented
by its own hidden variable. Whenever the robot senses a
previously unobserved cell, the value of the corresponding
variablehi transitions fromu to either 0 or 1 and remains
there afterwards. (If at a later time, the status of the cell

changes, PPCP will have to re-plan.)
Xstart is used to denote the start state: in the figure 4

example, the value ofS(Xstart) is the start location of the
robot, while the values of all the variables inH(Xstart) are
unknown. The goal of the planner is to construct a policy that
reaches any stateX such thatS(X) = Sgoal, whereSgoal is
given, while minimizing the expected cost of execution. In
figure 4,Sgoal corresponds to the robot being at cellF4.

The actions are associated withS(X) rather than the full
belief stateX since the values of variables inH(X) affect
purely the costs and outcomes of actions. We usesucc(X, a)
to denote the set of outcomes (successors) of actiona taken
in a belief stateX . If the execution of actiona does not
depend on any of the variableshi whose values are not yet
known atX , thensucc(X, a) contains only one stateY and
H(Y) is the same asH(X). Otherwise, if the outcome of
actiona depends on the value of a variablehi whose value
is not yet known atX , thensucc(X, a) may contain two or
more states. The value ofhi becomes known at these states.
The probability distribution of these outcomes follows the
probability distribution ofhi. Thus, in figure 4, the actiona
of moving east from cell A4 has only one outcome since it
does not depend on the values of any of the hidden variables.
On the other hand, the actiona of moving east at state
X = [R = D4; B5 = u, E4 = u] (that is, robot at cell
D4 and the status of both initially unknown cells is still
unknown) has two equally probable outcomes -Y1 = [R =
E4; B5 = u, E4 = 0] andY2 = [R = D4; B5 = u, E4 = 1]
- because the probability of cellE4 being blocked is 0.5.
PPCP assumes that the variables inH can be considered
independent of each other. In other words, the status of cell
B5 is independent of the status of cell E4. Costs need to
be associated withS(X). Thus, c(S(X), a, S(Y)) denotes
the cost of executing actiona at any belief state whose
observable state is equal toS(X) and moving into a belief
state whose observable state is equal toS(Y).

The main assumption that PPCP makes is that clear pref-
erences on the values of the hidden variables are available.
It requires that for each variablehi ∈ H we are given its
preferred value, denoted byb (i.e., the best value). This value
must satisfy the following property. Given any stateX and
any actiona whose outcomes depend on the value ofhj and
its value is not yet known atX (i.e., hj(X) = u), there
exists a successor stateX ′ such thathj(X

′) = b and

X
′ = argminY ∈succ(X,a)c(S(X), a, S(Y)) + v

∗(Y),

wherev∗(Y) is the expected cost of executing an optimal
policy at stateY . PPCP uses the notationsucc(X, a)b (i.e.,
the best successor) to denote such stateX ′. If the value of
hj is known atX (i.e.,hj(X) 6= u), thensucc(X, a)b refers
to the only state contained insucc(X, a), independently of
the value of itshj . The robot navigation problem in figure 4
clearly satisfies the property of clear preferences since for
each sensing action there always exist two outcomes: a cell
is blocked or unblocked. The latter is clearly the preferred
outcome.

1 procedure ComputePath(Xp)

2 g(S(Xp)) = ∞; OPEN= ∅;
3 g(Sgoal) = 0, besta(Sgoal) = null;
4 insertSgoal into OPEN with the priority g(Sgoal) + heur(S(Xp), Sgoal);
5 while(g(S(Xp)) > min

S(X)∈OPENg(S(X)) + heur(S(Xp), S(X)))
6 removeS(X) with smallestg(S(X)) + heur(S(Xp), S(X)) from OPEN;
7 for eacha andS(Y) s.t. S(X) = S(succ(Y u, a)b)

8 computeQ̃v,g(S(Y), a) according to equation 1;
9 if this search hasn’t seenS(Y) yet or g(S(Y)) > Q̃v,g(S(Y), a)

10 g(S(Y)) = Q̃v,g(S(Y), a); besta(S(Y)) = a;
11 insert/updateS(Y) in OPEN with the priority

g(S(Y)) + heur(S(Xp), S(Y));
12 procedure UpdateMDP(Xpivot)

13 X = Xpivot;
14 while (S(X) 6= Sgoal)
15 v(X) = g(S(X)); v(Xu) = g(S(X)); besta(X) = besta(S(X));
16 X = succ(X, besta(X))b ;
17 procedure Main()
18 Xpivot = Xstart ;
19 while (Xpivot! = null)

20 ComputePath(Xpivot);
21 UpdateMDP(Xpivot);
22 find stateX on the current policy such thatS(X) 6= Sgoal and it has

v(X) < EY ∈succ(X,besta(X))c(S(X), besta(X), S(Y)) + v(Y);
23 if found setXpivot to X;
24 otherwise setXpivot to null;

Fig. 5. The PPCP Algorithm

2) The algorithm: The pseudocode for the PPCP algo-
rithm is given in figure 5 and a trace of the algorithm
operation is given in figure 4. The Main function of the
algorithm constructs and refines a policy in the full belief
state-space. For each state it maintains av-value, which is
an estimate of the expected cost-to-goal, andbesta pointer,
a pointer to the action that should be executed at the state
according to the current policy. The initialv-values need to
be smaller than or equal to the costs of least-cost trajectories
to a goal under the assumption that all hidden variables are
equal to b (a simple initialization to zero suffices). Thus,
in figure 4(b) the initial policy is just stateXstart whose
besta(Xstart) = null. Its initial v-value (and the initialv-
values of all other states as they get created) is set to the
Manhattan distance from the state to the goal.

The Main function of the algorithm repeatedly executes
A*-like searches by calling the ComputePath function on
states that reside on the current policy (defined bybesta

pointers) and whosev-values are smaller than what they
should be according to thev-values of the successors of the
policy action (line 22). If a state hasbesta = null then the
value of expectation over policy action successors is assumed
to return∞. Thus,Xstart is the first state to be selected for
calling the ComputePath function on (figure 4(c)).

The ComputePath function is nearly identical to (back-
ward) A* search. While the function is called on a belief state
Xp, it searches backwards from a single state,Sgoal, towards
a single stateS(Xp), and the states in the search state-space
consist only of variables inS. Thus, in the robot navigation
example it means that the search is actually a 2D search,
and not a search in a much higher dimensional belief state-
space. Consequently, the search is fast. The search is also
deterministic because it assumes that any actiona executed
at S(X) has only one outcome. If the value of a hidden
variablehj that affects the outcomes ofa was known at state

Xp, then the search uses the outcome that corresponds to the
value ofhj(Xp). Otherwise, the search makes an optimistic
assumption and uses the preferred outcome. One way to put it
formally is to say that the search assumes that the outcome of
actiona executed at stateS(X) is S(succ(Xu, a)b), where
Xu is a state whoseS(Xu) = S(X) andH(Xu) is H(Xp)
but with each hidden variable equal tob set to u. Thus,
when executed onXp = [R = D4; E4 = 1, B5 = u] in
figure 4(e), the ComputePath function assumes cell E4 is
blocked whereas cell B5 is free. After the environment is
set, the ComputePath function performs exactly backward
A* search in this environment with the only exception of
how theg-values are computed.

In the backward A* search,g-values are estimates of the
cost-to-goal distances. Thus, if we were to run a normal
backward A* search on the environment the ComputePath
function sets up, then theg-value of stateS(Y) with a
successor stateS(X) = S(succ(Y u, a)b) according to the
search tree generated by the search is given by

g(S(Y)) = c(S(Y), a, S(X)) + g(S(X))

We’ll denote the right hand side of this equation as
Q̃v,g(S(Y), a). The ComputePath function, on the other
hand, computes theg-value of stateS(Y) differently, namely
as:

Q̃v,g(S(Y), a) =
∑

Z∈succ(Y u,a)
PY u,a(Z)·

max(c(S(Y), a, S(Z)) + v(Z),

c(S(Y), a, S(Zb)) + g(S(Zb)))

(1)

whereZb = succ(Y u, a)b. In case when actiona executed
at Y u is deterministic, this equation reduces exactly to the
equation used in normal A* search. Otherwise, this equation
incorporates the values of other outcomes of actiona besides
the one that is preferred. For example, in figure 4(g) theg-
value of cell C4 is 8, which is1+g(D4). Theg-value of cell
D4, on the other hand, is 7, despite the fact thatg(E4) = 1,
and the reason is that thev-value of the state[R = D4; E4 =
1, B5 = u] that corresponds to the ”bad” outcome of going
east at cell D4 is 10. Thev-value of this state has just been
updated in the previous iteration (figure 4(f)).

Apart from the computation ofg-values, the ComputePath
function is fully equivalent to the A* search. It also uses the
heuristics that estimate distance toS(Xp). The heuristics
need to satisfy normal consistency requirements [7]. In
figure 4 they are shown ash-values and are Manhattan
distances. In the pseudocode they are referred to asheur

variables.
After each search, the UpdateMDP function updates the

v-values of the states that belong to the path found by
the search by setting them to theirg-values. This increases
v-values and is guaranteed to correct the error between
the v-values of the states on the path and thev-values of
their successors in the policy. The iterations continue until
there are no states left on the current policy whose values
are smaller than what they should be according to their
successors. The algorithm is guaranteed to terminate (the
proof of this and other properties of the algorithm can be

found in [6]). At the time of termination, the expected cost
of the found policy is bounded from above by the cost of
the policy in which the robot always forgets the outcome of
sensing if it was a preferred outcome. If an optimal policy
does not require remembering preferred outcomes, then the
policy returned by PPCP is also guaranteed to be optimal. In
the figure 4 example, this memoryless property would mean
that during the planning process the planner assumes that as
soon as the robot successfully enters cell E4 and therefore
finds out that is free, it resets back the status of cell E4 to
an unknown cell. (The non-preferred outcomes of sensing
are never reset and so if the robot finds that the cell E4
is blocked, then this information is retained forever.) In the
example, an optimal plan does not need to remember the
status of any cell the robot has successfully entered. In the
path clearance problem, however, this is not the case and we
need to address the memoryless property of PPCP.

V. APPLICATION OF PPCP TO PATH CLEARANCE

A. Overcoming memoryless property

PPCP assumes that the robot does not need to remember
the outcomes of sensing if they are preferred outcomes. In the
figure 4 example, for instance, the robot senses a cell when
trying to enter it. If it is free then the robot enters it and
does not really need to remember that it is free afterwards,
its projected path is unlikely to involve entering the same
cell again. It only needs to remember if some cells turn out
to be blocked, and plans generated by PPCP do retain this
information.

This is different, however, when the robot has a long range
sensor such as in the path clearance problem. The robot
may sense whether an adversary is present before actually
reaching the area covered by the adversary. It thus needs
to remember the preferred outcomes if it wants to sense
adversaries from a long distance.

The solution to this problem is to augment each state
S(X) with the lastk preferred outcomes of sensing. Thus,
S(X) now consists of the location of the robot plus the last
k locations that were sensed to be free of adversaries.k

can be set to a small number such as two or three to keep
the complexity of each search low. This amount of memory
about the preferred outcomes of sensing is enough for the
path clearance problem.

B. Interleaving planning and execution

In many cases we would like to be able to interleave
planning with execution. The robot can then start executing
whatever current plan it has and while executing it, a planner
can work on improving the plan. This way the robot does
not need to wait until the planner fully converges.

Interleaving planning with PPCP with execution can be
done as follows. The robot first executes PPCP for several
seconds. The loop in the Main function of PPCP is then
suspended (right after the UpdateMDP function returns on
line 21), and the robot starts following the policy currently
found by PPCP as given bybesta pointers. During each
robot move,Xstart state maintained by PPCP is updated to

the current state of the robot and the main loop of PPCP
is resumed for another few seconds. After it is suspended
again, the policy that the robot currently follows is compared
against the policy that PPCP currently has and is updated to
it only if the latter has a higher probability of reaching a goal
location. If the policy the robot currently follows has a higher
probability of reaching the goal then the robot continues
to follow it. This way we avoid changing policies every
time PPCP decides to explore a different policy but has not
explored much of the outcomes on it yet. The probabilities
of reaching a goal for an acyclic policy can be computed in
a single pass over the states on the policy in their topological
order.

Once PPCP converges to a final policy, the robot can
follow the policy without re-executing PPCP again unless
the robot deviates from its path due to actuation errors. If
the robot does deviate significantly from the plan generated
by PPCP, then PPCP can be used to re-plan. There is no need
to re-plan from scratch. Instead,Xstart is updated to the new
state of the robot, the old policy is discarded, and the main
loop of PPCP is resumed. Note that the values of all state
variables in PPCP are preserved. It will then automaticallyre-
use them to find a new policy from the current robot position
much faster than if PPCP was re-executed from scratch.

C. Optimizations

We now describe two general optimizations of the PPCP
algorithm that prove to be very effective for the path clear-
ance problem. The first one reduces the number of search
iterations PPCP makes, while the second optimization sub-
stantially speeds up each search. Both optimizations leavethe
theoretical properties of the algorithm such as convergence
and optimality under certain conditions unchanged and can
be considered general optimizations of PPCP.

1) Reducing the Number of Search Iterations:As men-
tioned previously, during each search whenever the Com-
putePath function encounters actiona executed at stateS(X)
and the outcome is not definite according toH(Xp), then
in evaluating the equation 1, the ComputePath function
uses thev-values of non-preferred outcomes. Thev-values
are estimates of the goal distances. If these non-preferred
outcomes have never been explored by PPCP, then thev-
values are initial estimates of the cost-to-goal from them
and are likely to be much lower than what they should really
be. This means that the ComputePath function will return a
path that uses the state-action pair(S(X), a) and only in
the future iterations PPCP will find out that thev-value of
these non-preferred outcomes should really be higher and
this state-action pair should be avoided.

Figure 6 gives such example for the robot navigation in
a partially-known environment problem. When solving the
environment in figure 6(a), PPCP at some point invokes the
ComputePath function on stateXp = [R = A4; C4 =
1, C6 = u]. Suppose that by this time PPCP has already
computed thev-value of state[R = B6; C4 = 1, C6 = 1]
as 12. This is the cost of getting to the goal from cell B6 if
both cells C4 and C6 are blocked. During the current search,

(a) environment

(b) search by original PPCP (c) search by optimized PPCP

Fig. 6. The comparison of a search by the original PPCP (b) andPPCP
with the optimization described in section V-C.1

when computing theg-value of cell C5, PPCP will query the
v-value of state[R = C5; C4 = 1, C6 = 1] as needed by
the equation 1. If thev-value of this state has never been
computed previously, PPCP initializes it to some admissible
estimate such as Manhattan distance from C5 to the goal
cell, which is 4 (figure 6(b)). After evaluating equation 1,
the g-value of cell C5 becomes 6 (= 0.5 max(2 + 4, 1 +
5)+0.5 max(1+5, 1+5)). Consequently, the search returns
the path shown in figure 6(b) that goes through cells C5 and
C6.

The optimization that we propose in this section is to use
thev-values of neighboring states to obtain more informative
v-values of states that have not been explored yet. Thus, in
the example, we can deduce that thev-value of state[R =
C5; C4 = 1, C6 = 1] can be at least 10 - thev-value of state
[R = B6; C4 = 1, C6 = 1], which is 12, minus an upper
bound on the cost of getting from[R = B6; C4 = 1, C6 =
1] to state[R = C5; C4 = 1, C6 = 1], which we can easily
compute as 2. More formally, suppose we are interested in
estimating thev-value of some stateX . We can then take
some (small) regionR of states aroundX whoseH(·) part
is the same as inH(X). Using each stateY ∈ R and an
upper boundcu(Y, X) on getting from stateY to stateX ,
we can then estimatev(X) as:

v(X) = maxY ∈R v(Y) − cu(Y, X) (2)

The upper bounds,cu(·, X) can be computed via a single
backward Depth-First Search fromX . In some problems they
can also be obtained a priori. To see that the equation 2
is a valid update forv(X) consider the following trivial
proof thatv(X) remains admissible (does not overestimate
the minimum expected cost of getting to goal) provided an
admissible valuev(Y) for eachY ∈ R. Let v∗(Y) denote
the minimum expected cost of getting to the goal fromY .
Then:

v(Y) ≤ v
∗(Y) ≤ c

u(Y, X) + v
∗(X)

Thus,v∗(X) is bounded from below byv(Y)− cu(Y, X)
and by settingv(X) to it we guarantee the admissibility of
v(X).

The only change to the algorithm is that on line 15 the
v-value update is now a maximum between the oldv-value
and theg-value. In other words, the new line 15 is now as
follows:

15 v(X) = max(v(X), g(S(X))); v(Xu) = max(v(Xu), g(S(X)));
besta(X) = besta(S(X));

Figure 6(c) shows the operation of the ComputePath
function that uses our optimization. Theg-value of cell
C5 now is computed as 9 (= 0.5 max(2 + 10, 1 + 5) +
0.5 max(1 + 5, 1 + 5)) because it uses thev-value of state
[R = B6; C4 = 1, C6 = 1] to better estimate thev-value of
[R = C5; C4 = 1, C6 = 1] — the non-preferred outcome
of moving from C5 towards C6. Consequently, the search
returns a very different path and PPCP never has to explore
the path through cells C5 and C6 that would have been re-
turned without our optimization. The proposed optimization
can substantially cut down on the overall number of search
iterations PPCP has to do. This significantly overcomes the
expense of computing better estimates ofv-values for non-
preferred outcomes.

2) Speeding Up Searches:PPCP repeatedly executes A*-
like searches. As a result, much of the search efforts are
repeated and it should be beneficial to employ the techniques
such as D* [10], D* Lite [2] or Adaptive A* [3] that are
known to significantly speed up repeated A* searches. We
use the last method because it guarantees not to perform
more work than A* search itself and also requires little
changes to our ComputePath function.

The idea is simple and is as follows. This optimization
computes more informed heuristic values,heur(S(X)), that
are used to focus each search.heur(S(X)) is a heuristic
value that (under) estimates a distance fromS(Xp) to
S(X) under the assumption that all hidden variables whose
values are unknown are set tob. The heuristics need to
be consistent [7]. Initially, before any search iteration is
done, we compute the start distance (the cost of a least-
cost path fromS(Xstart) to the state in question) of every
state in S(·) assuming that execution of every stochastic
action results in a preferred outcome (in other words, the
search is done on the deterministic environment where the
value of each hidden variable is set tob). In the figure 4
example, it means that we compute the distance from cell
A4 to every other cell assuming cells E4 and B5 are free.
We can do this computation via a single Dijkstra’s search.
Let us denote the computed value for each stateS(X) by
heur∗(S(Xstart), S(X)).

The computed valueheur∗(S(Xstart), S(X)) is a perfect
estimate of the start distance in the environment where
every hidden variable is set tob. Therefore it is a good
heuristic value to use when the ComputePath function is
invoked with Xp = Xstart. The problem, however, is that
the ComputePath function is most of the time called to find
a path from some other stateXp 6= Xstart. We employ the
same principle as in [3] that allows us to use ourheur∗-
values anyway: for every stateS(X) its heuristic value
heur(S(X)) can be improved as follows

(a) A typical group I environment (b) A typical group II environment

Fig. 7. The example of environments used in testing and the plans generated
by PPCP for each.

heur(S(X)) = max(heur(S(X)),
heur∗(S(Xstart), S(X)) − heur∗(S(Xstart), S(Xp)))

(Note thatS(X) does not retain the value ofheur(S(X))
from one search to another.) For the same reasoning as in [3]
the updatedheur(S(X)) is guaranteed not to overestimate
the actual distance fromS(Xp) to S(X) and to remain a
consistent function.

VI. EXPERIMENTAL RESULTS

In all of our experiments we used randomly generated
fractal environments that are often used to model outdoor
environments [11]. On top of these fractal environments
we superimposed a number of randomly generated paths in
between randomly generated pairs of points. The paths were
meant to simulate roads through forests and valleys and that
are usually present in outdoor terrains. Figures 7(a,b) show
typical environments that were used in our experiments. The
lighter colors represent more easily traversable areas. All
environments were of size 500 by 500 cells, with the size of
each cell being 5 by 5 meters.

The test environments were split into two groups. Each
group contained 25 environments. For each environment in
the group I we set up 30 possible adversary locations at
randomly chosen coordinates but in the areas that were
traversable. Figure 7(a) shows a plan the PPCP algorithm
with our improvements has generated after full convergence
for one of the environments in group I. For each environment
in the group II we set up 10 possible adversary locations.
The coordinates of these locations, however, were chosen
such as to maximize the length of detours. This was meant
to simulate the fact that an adversary may often be set at a
point that would make the robot take a long detour. In other
words, an adversary is often set at a place that the robot
is likely to traverse. Thus, the environments in group II are
more challenging. Figure 7(b) shows a typical environment
from the group II together with the plan generated by PPCP.
The shown plan has about 95% probability of reaching the
goal (in other words, the robot executing the policy has at
most 5% chance of encountering an outcome for which the
plan had not been generated yet). In contrast to the plan in
figure 7(a), the plan for the environment in group II is more
complex - the detours are much longer - and it is therefore
harder to compute. For each possible adversary location the
probability of containing an adversary was set at random to
a value in between 0.1 and 0.9.

of Time to Convergence Converged
Expansions (secs) within 15 minutes

PPCP 59,759,717 281.83 64%
optimized PPCP 11,911,585 60.81 92%

TABLE I

THE COMPARISON OFPPCPAND OPTIMIZED PPCP. THE CONVERGENCE TIMES

ARE GIVEN FOR THE ENVIRONMENTS ON WHICHbothALGORITHMS CONVERGED

WITHIN 15 MINUTES.

We have run two sets of experiments on these envi-
ronments. In the first set we compared the original PPCP
algorithm and the PPCP algorithm with the two optimizations
we have described in section V-C. Table I shows the results
for the group I averaged over all of the environments in it.
The algorithms were run until full convergence in order to
obtain the comparison results. According to them the number
of states expanded by the original PPCP is about five times
more and its run-time is also close to five times longer
than for the optimized PPCP. The original PPCP has also
converged on less environments within 15 minutes.

In the second set of experiments we compared the exe-
cution cost of the robot planning with our optimized PPCP
versus the execution cost of the robot planning with freespace
assumption [4]. In these experiments, unlike in the previous
experiments, the robot was moving and was given 5 seconds
to plan while traversing 5 meter distance. This amount
of time was always sufficient for planning with freespace
assumption to generate a path. The PPCP planning, on
the other hand, was interleaved with execution as we have
explained in section V.

Table II shows the overhead in the execution cost incurred
by the robot that plans with the freespace assumption over
the execution cost incurred by the robot that uses PPCP for
planning. The rows freespace2 and freespace3 correspond
to making a cost of going through a cell that belongs to
a possible adversary location twice and three times higher
than what it really is, respectively. One may scale costs in
this way in order to bias the paths generated by the planner
with freespace assumption away from going through possible
adversary locations. The results are averaged over 8 runs for
each of the 25 environments in each group. For each run
the true status of each adversary location was generated at
random according to the probability having an adversary in
there.

The figure shows that planning with PPCP results in
considerable execution cost savings. The savings for group
I environments were small only if biasing the freespace
planner was set to 2. The problem, however, is that the
biasing factor is dependent on the actual environment, the
way the adversaries are set up and the sensor range of an
adversary. Thus, the overhead of planning with freespace
for the group II environments is considerable across all
bias factors. In the last two columns we have introduced
penalty for discovering an adversary. It simulated the fact
that the robot runs the risk of being detected by an adversary
when it tries to sense it. In these experiments, the overhead
of planning with freespace assumption becomes very large.
Also, note that the best bias factor for freespace assumption

Overhead in Execution Cost
Group I Group II Group I Group II

no penalty no penalty with penalty with penalty
freespace 5.4% 5.2% 35.4% 21.6%
freespace2 0.5% 4.9% 4.8% 17.0%
freespace3 2.1% 4.3% 0.0% 12.7%

TABLE II

THE OVERHEAD IN EXECUTION COST OF NAVIGATING USING PLANNING WITH

FREESPACE ASSUMPTION OVER NAVIGATING USING PLANNING WITHPPCP

has now shifted to 3 indicating that it does depend on the
actual problem. Overall, the results indicate that planning
with PPCP can have significant benefits and do not require
any tuning.

VII. CONCLUSIONS

In this paper we have shown how to apply the PPCP
algorithm to the problem of robot navigation with possible
adversary locations and have demonstrated that it is bene-
ficial. The experiments have shown that the algorithm can
scale up to large real-world size environments with large
number of possible adversary locations, each having long
range sensors. We are also currently porting the system onto
a real outdoor terrain vehicle. The paper also presents two
general optimizations to the PPCP algorithm that can be
useful by PPCP when used to solve other planning under
uncertainty problems.

VIII. ACKNOWLEDGMENTS
This work was sponsored by the U.S. Army Research Labo-

ratory, under contract Robotics Collaborative TechnologyAlliance
(contract number DAAD19-01-2-0012). The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Govern-
ment.

REFERENCES

[1] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time
dynamic programming.Artificial Intelligence, 72:81–138, 1995.

[2] S. Koenig and M. Likhachev. D* lite. InProceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI), 2002.

[3] S. Koenig and M. Likhachev. Adaptive A*. InProceedings of the
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2005. Poster abstract.

[4] S. Koenig and Y. Smirnov. Sensor-based planning with thefreespace
assumption. InProceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1996.

[5] M. Likhachev and A. Stentz. PPCP: Efficient probabilistic planning
with clear preferences in partially-known environments. In Proceed-
ings of the National Conference on Artificial Intelligence (AAAI), 2006.

[6] M. Likhachev and A. Stentz. PPCP algorithm with formal analysis.
Tech. Rep., Carnegie Mellon University, Pittsburgh, PA, 2007.

[7] N. Nilsson. Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, 1971.

[8] I. Nourbakhsh and M. Genesereth. Assumptive planning and exe-
cution: a simple, working robot architecture.Autonomous Robots
Journal, 3(1):49–67, 1996.

[9] C. H. Papadimitriou and J. N. Tsitsiklis. The complexityof Markov
decision processses.Mathematics of Operations Research, 12(3):441–
450, 1987.

[10] A. Stentz. The focussed D* algorithm for real-time replanning.
In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 1995.

[11] A. Stentz. Map-based strategies for robot navigation in unknown en-
vironments. InAAAI Spring Symposium on Planning with Incomplete
Information for Robot Problems, 1996.

