
Motion Planning in Urban Environments: Part I
Dave Ferguson

Intel Research Pittsburgh
Pittsburgh, PA

dave.ferguson@intel.com

Thomas M. Howard
Carnegie Mellon University

Pittsburgh, PA
thoward@ri.cmu.edu

Maxim Likhachev
University of Pennsylvania

Philadelphia, PA
maximl@seas.upenn.edu

Abstract— We present the motion planning framework for
an autonomous vehicle navigating through urban environments.
Such environments present a number of motion planning chal-
lenges, including ultra-reliability, high-speed operation, com-
plex inter-vehicle interaction, parking in large unstructured
lots, and constrained maneuvers. Our approach combines a
model-predictive trajectory generation algorithm for computing
dynamically-feasible actions with two higher-level planners for
generating long range plans in both on-road and unstructured
areas of the environment. In this Part I of a two-part paper,
we describe the underlying trajectory generator and the on-
road planning component of this system. We provide examples
and results from “Boss”, an autonomous SUV that has driven
itself over 3000 kilometers and competed in, and won, the Urban
Challenge.

I. INTRODUCTION

Autonomous passenger vehicles present an incredible op-
portunity for the field of robotics and society at large. Such
technology could drastically improve safety on roads, provide
independence to millions of people unable to drive because
of age or ability, revolutionize the transportation industry, and
reduce the danger associated with military convoy operations.
However, developing robotic systems that are sophisticated
enough and reliable enough to operate in everyday driving
scenarios is tough. As a result, up until very recently, au-
tonomous vehicle technology has been limited to either off-
road, unstructured environments where complex interaction
with other vehicles is non-existent [1], [2], [3], [4], [5], [6], or
very simple on-road maneuvers such as highway-based lane
following [7].

The Urban Challenge competition was designed to extend
this technology as far as possible towards the goal of unre-
stricted on-road driving. The event consisted of an autonomous
vehicle race through an urban environment containing single
and multi-lane roads, traffic circles and intersections, open
areas and unpaved sections, road blockages, and complex
parking tasks. Successful vehicles had to travel roughly 90
kilometers, all in the presence of other human-driven and
autonomous vehicles, and all while abiding by speed limits
and California driving rules.

This challenge required significant advances over the state
of the art in autonomous vehicle technology. In this paper, we
describe the motion planning system developed for Carnegie
Mellon University’s winning entry into the Urban Challenge,
“Boss”. This system enabled Boss to travel extremely quickly

through the urban environment to complete its missions; inter-
act safely and intelligently with obstacles and other vehicles
on roads, at intersections, and in parking lots; and perform
sophisticated maneuvers to solve complex parking tasks.

In Part I of the paper we introduce very briefly the software
architecture used by Boss and the role of motion planning
within that architecture. We then describe the trajectory gen-
eration algorithm used to generate every move of the vehicle.
In Section V we discuss the motion planning framework used
when navigating on roads.

In Part II of the paper we discuss the framework used
when navigating through unstructured areas or performing
complex maneuvers. We then provide results and discussion
from hundreds of hours and thousands of kilometers of testing,
and describe related work in both on-road and unstructured
planning.

II. SYSTEM ARCHITECTURE

Boss’ software system is decomposed into four major blocks
(see Figure 1). The Perception component fuses and processes
data from Boss’ sensors to provide key environmental infor-
mation, including:
• Vehicle State, globally-referenced position, attitude and

speed for Boss;
• Road World Model, globally-referenced geometric infor-

mation about the roads, parking zones, and intersections
in the world;

• Moving Obstacle Set, an estimation of other vehicles in
the vicinity of Boss;

• Static Obstacle Map, a 2D grid representation of free,
dangerous, and lethal space in the world; and

• Road Blockages, an estimation of clearly impassable
road sections.

The Mission Planning component computes the fastest
route through the road network to reach the next checkpoint
in the mission, based on knowledge of road blockages, speed
limits, and the nominal time required to make special maneu-
vers such as lane changes or u-turns.

The Behavioral Executive combines the strategic global
information provided by Mission Planning with local traffic
and obstacle information provided by Perception and gen-
erates a sequence of local tasks for the Motion Planner. It
is responsible for the system’s adherence to various rules of
the road, especially those concerning structured interactions



Fig. 1. “Boss”: Tartan Racing’s winning entry in the Urban Challenge, along
with its software system architecture.

with other traffic and road blockages, and for detection of
and recovery from anomalous situations. The local tasks it
feeds to the Motion Planner take the form of discrete motion
goals, such as driving along a road lane to a specific point or
maneuvering to a specific pose or parking spot. The issuance of
these goals is predicated on traffic concerns such as precedence
among vehicles stopped at an intersection. In the case of
driving along a road, desired lane and speed commands are
given to the Motion Planner to implement behaviors such as
distance keeping, passing maneuvers, and queueing in stop-
and-go traffic.

The Motion Planning component takes the motion goal
from the Behavioral Executive and generates and executes
a trajectory that will safely drive Boss towards this goal,
as described in the following section. Two broad contexts
for motion planning exist: on-road driving and unstructured
driving.

III. MOTION PLANNING

The motion planning layer is responsible for executing the
current motion goal issued from the Behavioral Executive.
This goal may be a location within a road lane when per-
forming nominal on-road driving, a location within a parking
lot or obstacle field when traversing through one of these
areas, or any location in the environment when performing
error recovery.

Figure 2 provides a basic illustration of the nature of the
goals provided by the Behavioral Executive. During nominal
on-road driving, the goal entails a desired lane and a desired
position within that lane (typically a stop-line at the end of the
lane). In such cases, the motion planner invokes a high-speed
lane-based planner to generate a path that tracks the desired
lane. During unstructured driving, such as when navigating
through parking lots, the goal consists of a desired pose of
the vehicle in the world. In these cases, the motion planner
invokes a 4D lattice planner that generates a global path to the
desired pose. These unstructured motion goals are also used
when the vehicle encounters an anomalous situation during
on-road driving and needs to perform a complex maneuver
(such as when an intersection is partially blocked and cannot
be traversed through in the desired lane).

As well as issuing motion goals, the Behavioral Exec-
utive is constantly providing maximum speed and acceler-
ation/deceleration commands to the motion planner. It is

Fig. 2. Motion goals provided by the Behavioral Executive to the Motion
Planner. Also shown are the frequently updated speed and desired acceleration
commands.

through this interface that the Behavioral Executive is able
to control the vehicle’s forward progress in distance keeping
and intersection precedence scenarios. When the vehicle is not
constrained by such scenarios, the motion planner computes
desired speeds and accelerations based on the constraints of
the environment itself (e.g. road curvature and speed limits).

Given a motion goal, the motion planner creates a path
towards the desired goal then tracks this path by generating
a set of candidate trajectories that follow the path to vary-
ing degrees and selecting from this set the best trajectory
according to an evaluation function. As mentioned above, the
nature of the path generated differs based on the context of the
motion goal and the environment. In addition, the evaluation
function differs depending on the context but always includes
consideration of static and dynamic obstacles, curbs, speed,
curvature, and deviation from the path. The selected trajectory
is then directly executed by the vehicle.

IV. TRAJECTORY GENERATION

Each candidate trajectory is computed using a model-
predictive trajectory generator from [8] that produces dynami-
cally feasible actions between initial and desired vehicle states.
In general, this algorithm can be used to solve the problem
of generating a set of parameterized controls (u(p,x)) that
satisfy a set of state constraints whose dynamics can be
expressed by a set of differential equations:

x =
[

x y θ κ v . . .
]T

(1)

ẋ(x,p) = f(x,u(p,x)), (2)

where x is the vehicle state (with position (x, y), heading
(θ), curvature (κ), and velocity (v)) and p is the set of
parameters for which we are solving. The derivative of vehicle
state ẋ is a function of both the parameterized control input
u(p,x) and the vehicle state x because the vehicle’s response
to a particular control input is state dependent. In this section
we describe the application of this general algorithm to our
domain, specifically addressing the state constraints, vehicle
model, control parameterization, initialization function, and
trajectory optimization approaches used.



(a) (b)
Fig. 3. Velocity and curvature profiles. (a) Several different linear velocity profiles were applied in this system, each with their own parameterization and
application. Each parameterization contains some subset of velocity and acceleration knot points (v0, vt, vf , a0, and af ) and the length of the path, measured
in time (t0, tf ). (b) The curvature profile includes four possible degrees of freedom: the three spline knot points (κ0, κ1, and κ2) and the length of the path
(sf ).

A. State Constraints

For navigating both on-road and unstructured areas of urban
environments we generated trajectories that satisfied both
target two-dimensional position (x, y) and heading (θ) con-
straints. We defined the constraint equation formula (C(x,p))
as the difference between these target boundary state con-
straints (denoted xC) and the integral of the model dynamics
(the endpoint of the computed vehicle trajectory):

xC =
[

xC yC θC

]T
(3)

xF(p,x) = xI +
∫ tf

0

ẋ(x,p)dt (4)

C(x,p) = xC − xF(p,x) (5)

The constrained trajectory generation algorithm determines
the control parameters p that drive Equation 5 to zero. This
results in a trajectory from an initial state xI to a terminal
vehicle state xF that is as close as possible to the desired
terminal state xC.

B. Vehicle Modeling

The development of a high fidelity vehicle dynamics model
is important for the accurate prediction of vehicle motion
and thus for the generation of accurate trajectories using our
constraint-based approach.

Our vehicle model consists of a set of parameterized
functions that were fit to data extracted from human-driven
performance runs in the vehicle. The key parameters in
our model are the controller delay, the curvature limit (the
minimum turning radius), the curvature rate limit (a function
of the maximum speed at which the steering wheel can be
turned), and the maximum acceleration and deceleration of the
vehicle. The controller delay accurately predicts the difference
in time between a command from software and the corre-
sponding initial response from hardware and is an important
consideration when navigating at high speeds. The curvature,
rate of curvature, acceleration and deceleration limits were
essential for accurately predicting the response of the vehicle
over entire trajectories. This model is then simulated using a
fixed timestep Euler integration to predict the vehicle’s motion.

C. Controls Parameterization

For Ackermann steered vehicles, it is advantageous to define
the vehicle controls with a time-based linear velocity function
(v(p, t)) and an arclength-based curvature function (κ(p, s)):

u(p,x) =
[

v(p, t) κ(p, s)
]T

(6)

We allow the linear velocity profile to take the form of
a constant profile, linear profile, linear ramp profile, or a
trapezoidal profile (see Figure 3(a)). The motion planner
selects the appropriate profile based on the driving mode
and context (e.g. maintaining a constant velocity for distance
keeping or slowing down for an upcoming intersection). Each
of these profiles consists of a set of dependent parameters
(v0, vt, vf , a0, and af ) and the time to complete the profile
(t0, tf ), all of which become members of the parameter set
p. Since all of the dependent profile parameters are typically
known, no optimization is done on the shape of each of these
profiles.

The curvature profile defines the shape of the trajectory and
is the primary profile over which optimization is performed.
Our profile consists of three independent curvature knot point
parameters (κ0, κ1, and κ2) and the trajectory length (sf )
(see Figure 3(b)). In general, it is important to limit the
degrees of freedom in the system to minimize the presence of
local optima and to improve the runtime performance of the
algorithm (which is approximately linear with the number of
free parameters in the system) but maintain enough flexibility
to satisfy all of the boundary state constraints. We chose a
second order spline profile because it contains enough degrees
of freedoms (4) to satisfy the boundary state constraints (3).
We further fix the initial command knot point κ0 during the
optimization process to the curvature at the initial state xI to
provide smooth controls1.

With the linear velocity profile’s dependent parameters
being fully defined and the initial spline parameter of the
curvature profile fixed, we are left with a system with three
parameterized freedoms: the latter two curvature spline knot
points and the trajectory length:

pfree =
[

κ1 κ2 sf

]T
(7)

The duality of the trajectory length (sf ) and time (tf ) can be
resolved by estimating the time that it takes to drive the entire

1However, this can also be fixed to a different value to produce sharp
trajectories, as described in Section V-B.



distance through the linear velocity profile. Arclength was
used for the independent parameter for the curvature profiles
because the shape of tehse profiles is somewhat independent
of the speed at which they are traveled. This allows solutions
with similar parameters for varying linear velocity profiles.

D. Initialization Function

Given the three free parameters and the three constraints in
our system, we can use various optimization or root finding
techniques to solve for the parameter values that minimize
our constraint equation. However, for efficiency it is beneficial
to pre-compute offline an approximate mapping from relative
state constraint space to parameter space to seed the constraint
optimization process. This mapping can drastically speed up
the algorithm by placing the initial guess of the control pa-
rameters close to the desired solution, reducing the number of
online optimization steps required to reach the solution (within
a desired precision). Given the high number of state variables
and the non-integrable model dynamics, it is infeasible to pre-
compute the entire mapping of state space to input space for
any nontrivial system, such as the Boss vehicle model. We
instead generate an approximation of this mapping through
a five-dimensional lookup table with varying relative initial
and terminal position (4x,4y), relative heading (4θ), initial
curvature (κi), and constant velocities (v). Because this is
only an approximation some optimization is usually required,
however the initial seed from the lookup table significantly
reduces the number of optimization iterations required from
an arbitrary set of parameters.

Figure 4 provides an illustration of the lookup table genera-
tion process. We first discretize our five dimensions of interest
into a 5D table. Next, we uniformly sample from the set of
all possible parameter values and record which table position
each of these sample trajectories terminates in. We then step
through the 5D table and for each position in the table we
find the sample parameter values that came closest to this
position. We take that parameter set and optimize it (using
the optimization technique presented in the next section) to
accurately match the table position, and then store the resulting
parameter set in the corresponding index of the 5D table.

E. Trajectory Optimization

Given a set of parameters p that provide an approximate
solution, it is then necessary to optimize these parameters
to reduce the endpoint error and ‘snap’ the corresponding
trajectory to the desired terminal state. To do this, we linearize
and invert our system of equations to produce a correction
factor for the free control parameters based on the product of
the inverted Jacobian and the current boundary state error. The
Jacobian is model-invariant since it is determined numerically
through central differences of simulated vehicle actions.

∆p = −
[
δC(x,p)

δp

]−1

C(x,p) (8)

The control parameters are modified until the residual of
the boundary state constraints is within an acceptable bound

Fig. 4. Offline lookup table generation. Top-left: Some sampled trajectories
(in red) and some table endpoints (red arrows) that we wish to generate
trajectories to for storage in the lookup table. Bottom-left: The closest sampled
trajectories to the desired table endpoints are selected and then optimized
to reach the desired endpoints. The parameter sets corresponding to these
optimized trajectories are then stored in the lookup table. Right: The set of
all sampled trajectories (red) and table endpoints (blue) for a single initial
vehicle state.

κ1(rad)
κ2(rad)

sf (m)

x(m) y(m)
x(m) y(m)

x(m) y(m)

Fig. 5. Online Trajectory Generation. Top-left: Given an initial state and
desired terminal state (relative terminal state shown in green), we find
the closest elements of the lookup table (in red) and interpolate between
the control parameters associated with these elements (interpolation of free
parameters shown at bottom row) to come up with an initial approximation of
the free parameters (resulting corresponding trajectory shown in blue). Top-
right: This approximate trajectory is then optimized by modifying the free
parameters based on the endpoint error, resulting in a sequence of trajectories
that get closer to the desired terminal state. When the endpoint error is within
an acceptable bound, the most recent parameter set is returned (trajectory
shown in green). The interpolation over the free parameters κ1, κ2, and sf is
shown by the three graphs on the bottom row (interpolated solutions shown
in blue, final optimized solutions shown in green).

or until the optimization process diverges. In situations where
boundary states are unachievable due to vehicle limitations,
the optimization process predictably diverges as the partial
derivatives in the Jacobian approach zero. The optimization
history is then searched for the best candidate action (the
action that gets closest to the state constraints) and this
candidate is accepted or rejected based on the magnitude of
its error.

Figure 5 illustrates the online trajectory generation approach
in action. Given a desired terminal state, we first lookup
from our table the closest terminal and initial states and their
associated free parameter sets. We then interpolate between
these closest parameter sets in 5D to produce our initial
approximation of the parameter set to reach our desired
terminal state. Figure 5(top-left, bottom) shows the lookup and



Fig. 6. Smooth and sharp trajectories

(a) (b) (c) (d)
Fig. 7. Following a road lane. These images show a single timeframe from the Urban Challenge.

interpolation steps, with the resulting parameter set values and
corresponding trajectory. Next, we evaluate the endpoint error
of the resulting trajectory and we use this error to modify our
parameter values to get closer to our desired terminal state,
using the optimization approach just described. We repeat this
optimization step until our endpoint error is within an allowed
bound of the desired state (see Figure 5(top-right)), and the
resulting parameters and trajectory are stored and evaluated
by the motion planner.

V. ON-ROAD PLANNING

A. Path Extraction

During on-road navigation, the motion goal from the Behav-
ioral Executive is a location within a road lane. The motion
planner then attempts to generate a trajectory that moves the
vehicle towards this goal location in the desired lane. To do
this, it first constructs a curve along the centerline of the
desired lane, representing the nominal path that the center of
the vehicle should follow. This curve is then transformed into
a path in rear-axle coordinates to be tracked by the motion
planner.

B. Trajectory Generation

To robustly follow the desired lane and to avoid static and
dynamic obstacles, the motion planner generates trajectories
to a set of local goals derived from the centerline path. Each
of these trajectories originates from the predicted state that
the vehicle will reach by the time the trajectories will be
executed. To calculate this state, forwards-prediction using an
accurate vehicle model (the same model used in the trajectory
generation phase) is performed using the trajectories selected
for execution in previous planning episodes. This forwards-
prediction accounts for both the high-level delays (the time

required to plan) and the low-level delays (the time required
to execute a command).

The goals are placed at a fixed longitudinal distance down
the centerline path (based on the speed of the vehicle) but vary
in lateral offset from the path to provide several options for the
planner. The trajectory generation algorithm described above is
used to compute dynamically feasible trajectories to these local
goals. For each goal, two trajectories are generated: a smooth
trajectory and a sharp trajectory. The smooth trajectory has
the initial curvature parameter κ0 fixed to the curvature of the
forwards-predicted vehicle state. The sharp trajectory has this
parameter set to an offset value from the forwards-predicted
vehicle state curvature to produce a sharp initial action. These
sharp trajectories are useful for providing quick responses to
suddenly appearing obstacles or dangerous actions of other
vehicles.

Figure 6 provides an example of smooth and sharp trajec-
tories. The left-most image shows two trajectories (cyan and
purple) generated to the same goal pose. The purple (smooth)
trajectory exhibits continuous curvature control throughout;
the cyan (sharp) trajectory begins with a discontinuous jump
in commanded curvature, resulting in a sharp response from
the vehicle. In these images, the initial curvature of the vehicle
is shown by the short pink arc. The four center images show
the individual sharp and smooth trajectories, along with the
convolution of the vehicle along these trajectories. The right-
most image illustrates how these trajectories are generated in
practice for following a road lane.

C. Trajectory Velocity Profiles

The velocity profile used for each of the generated tra-
jectories is selected from the set introduced in Section IV-
C based on several factors, including: the maximum speed
given from the Behavioral Executive based on safe following



Fig. 8. Performing a lane change reliably and safely. Here, Boss changed
lanes because another robot’s chase vehicle was traveling too slowly in its
original lane.

distance to the lead vehicle, the speed limit of the current road
segment, the maximum velocity feasible given the curvature
of the centerline path, and the desired velocity at the local
goal (e.g. if it is a stopline).

In general, profiles are chosen that maximize the speed of
the vehicle at all times. Thus, typically a linear ramp profile is
used, with a ramp velocity equal to the maximum speed pos-
sible and a linear component corresponding to the maximum
acceleration possible. If the vehicle is slowly approaching
a stop-line (or stopped short of the stop-line), a trapezoidal
profile is employed so that the vehicle can both reach the
stop-line quickly and come smoothly to a stop.

Multiple velocity profiles are considered for a particular
trajectory when the initial profile results in a large endpoint
error. This can occur when the rate of curvature required to
reach the desired endpoint is not possible given the velocity
imposed by the initial profile. In such cases, additional profiles
with less aggressive speeds and accelerations are generated
until either a valid trajectory is found or a maximum number
have been evaluated (in our case, 3 per initial trajectory).

D. Trajectory Evaluation

The resulting set of trajectories are then evaluated against
their proximity to static and dynamic obstacles in the environ-
ment, as well as their distance from the centerline path, their
smoothness, their endpoint error, and their speed. The best
trajectory according to these metrics is selected and executed
by the vehicle. Because the trajectory generator computes the
feasibility of each trajectory using an accurate vehicle model,
the selected trajectory can be directly executed by a vehicle
controller.

One of the challenges of navigating in urban environments
is avoiding other moving vehicles. To do this robustly and
efficiently, we predict the future behavior of these vehicles
and collision-check our candidate trajectories in state-time
space against these predictions. See [9] for more details on the
algorithms used for prediction and efficient collision-checking.

Fig. 9. Defensive Driving on roads. Left: Boss initially plans down its lane
while the oncoming vehicle is far away. Center: When the oncoming vehicle
is detected as dangerous, Boss generates a set of trajectories off the right side
of the road. Right: After the oncoming vehicle has passed, Boss plans back
onto the road and continues.

Figure 7 provides an example of the local planner following
a road lane. Figure 7(b) shows the vehicle navigating down
a two-lane road (detected obstacles and curbs shown as red
and blue pixels, lane boundaries shown in blue, centerline of
lane in red, current curvature of the vehicle shown in pink,
minimum turning radius arcs shown in white) with a vehicle
in the oncoming lane (in green). Figure 7(c) shows a set of
trajectories generated by the vehicle given its current state
and the centerline path and lane boundaries. From this set of
trajectories, a single trajectory is selected for execution, as
discussed above. Figure 7(d) shows the evaluation of one of
these trajectories against both static and dynamic obstacles in
the environment.

E. Lane Changing

As well as driving down the current lane, it is often
necessary or desired in urban environments to perform lane
changes. This may be to pass a slow or stalled vehicle in the
current lane or move into an adjacent lane to prepare for an
upcoming turn.

In our system lane changes are commanded by the Behav-
ioral Executive and implemented by the motion planner in a
similar way to normal lane driving: a set of trajectories are
generated along the centerline of the desired lane. However,
because it is not always possible to perform the lane change
immediately, an additional trajectory is generated along the
current lane in case none of the desired lane trajectories
are feasible. Also, to ensure smooth lane changes no sharp
trajectories are generated in the direction of the current lane.
Figure 8 provides an example lane change performed during
the Urban Challenge to pass a chase vehicle.

F. U-turns

If the current road segment is blocked the vehicle must be
able to turn around and find another route to its destination.
In this scenario, Boss uses information about the dimensions
of the road to generate a smooth path that turns the vehicle
around. Depending on how constrained the road is, this



(a) (b) (c) (d)
Fig. 10. Performing a U-turn when encountering a road blockage. (a) Initial U-turn plan generated to reverse direction. (b, c) Tracking the resulting U-turn
plan. (d) Reverting to lane planning when in desired lane.

path may consist of a single forwards segment or a three-
point turn. This path is then tracked in a similar fashion to
the lane centerline paths, using a series of trajectories with
varying offsets. Figure 10 provides an example three-point
turn performed during one of the qualification events at the
Urban Challenge.

G. Defensive Driving

One of the advanced requirements of the Urban Challenge
was the ability to react safely to aberrant behavior of other
vehicles. In particular, if another vehicle was detected traveling
the wrong direction in Boss’ lane, it was the responsibility of
Boss to pull off the road in a defensive driving maneuver to
avoid a collision with the vehicle. To implement this behavior,
the Behavioral Executive closely monitors other vehicles and
if one is detected traveling towards Boss in its lane, the motion
planner is instructed to move Boss off the right side of the road
and come to a stop. This is performed in a similar fashion to
a lane change to a hallucinated lane off the road but with
a heavily reduced velocity so that Boss does not leave the
road traveling too quickly and then comes to a stop once it
is completely off the road. After the vehicle has passed, Boss
then plans back onto the road and continues (see Figure 9).

H. Error Detection and Recovery

A central focus of our system-level approach was the
detection of and recovery from anomalous situations. In lane
driving contexts, such situations usually presented themselves
through the motion planner being unable to generate any
feasible trajectories to track the desired lane (for instance, if
the desired lane is partially blocked and the on-road motion
planner cannot plan a path through the blockage). In such
cases, the Behavioral Executive issues a motion goal that
invokes the more powerful 4D lattice motion planner. If this
goal is achieved, the system resumes with lane driving. If the
motion planner is unable to reach this goal, the Behavioral
Executive continues to generate new goals for the lattice
planner until one is satisfied. We provide more details on how
the lattice planner interacts with these goals in Part II of this
paper, and more details on the error detection and recovery
process can be found in [10].

VI. CONCLUSIONS

We have presented the on-road motion planning frame-
work for an autonomous vehicle navigating through urban
environments. Our approach combines a model-predictive
trajectory generation algorithm for computing dynamically-
feasible actions with an efficient lane-based planner. It has
been implemented on an autonomous vehicle that has traveled
over 3000 autonomous kilometers and we have presented
sample illustrations and results from the Urban Challenge,
which it won in November 2007. Part II of this paper describes
the unstructured component of this framework and discusses
in more detail the existing body of related work.

VII. ACKNOWLEDGEMENTS

This work would not have been possible without the ded-
icated efforts of the Tartan Racing team and the generous
support of our sponsors including General Motors, Caterpillar,
and Continental. This work was further supported by DARPA
under contract HR0011-06-C-0142.

REFERENCES

[1] A. Stentz and M. Hebert, “A complete navigation system for goal
acquisition in unknown environments,” Autonomous Robots, vol. 2,
no. 2, pp. 127–145, 1995.

[2] A. Kelly, “An intelligent predictive control approach to the high speed
cross country autonomous navigation problem,” Ph.D. dissertation,
Carnegie Mellon University, 1995.

[3] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, and
K. Schwehr, “Recent progress in local and global traversability for
planetary rovers,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2000.

[4] “Special Issue on the DARPA Grand Challenge, Part 1,” Journal of Field
Robotics, vol. 23, no. 8, 2006.

[5] “Special Issue on the DARPA Grand Challenge, Part 2,” Journal of Field
Robotics, vol. 23, no. 9, 2006.

[6] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global path planning
on-board the Mars Exploration Rovers,” in Proceedings of the IEEE
Aerospace Conference, 2007.

[7] C. Thorpe, T. Jochem, and D. Pomerleau, “The 1997 automated highway
demonstration,” in Proceedings of the International Symposium on
Robotics Research (ISRR), 1997.

[8] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” International Journal of Robotics Research,
vol. 26, no. 2, pp. 141–166, 2007.

[9] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, Predic-
tion, and Avoidance of Dynamic Obstacles in Urban Environments,” in
Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2008.

[10] C. Baker, D. Ferguson, and J. Dolan, “Robust Mission Execution for Au-
tonomous Urban Driving,” 2008, submitted to International Conference
on Intelligent Autonomous Systems (IAS).


