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Abstract— In a cluttered scene, an object is often occluded
by other objects, and a robot cannot figure out what the object
is and perceive its pose exactly. We assume that the robot is
equipped with a depth sensor and given a database of 3D object
models and their grasping poses, but yet there is uncertainty
about object’s class and pose. In this paper, we study the
problem of how to predict the class and pose of an occluded
object by carefully taking a sequence of observations. To find
the best sequence of viewpoints by the robot, we construct
hypotheses of the states of the target and occluding objects,
and update our belief state as new observations come in. Every
time selecting the next robot pose, we greedily choose the one
that is expected to reduce the uncertainty the most. Based on
the theoretical analysis of adaptive submodular maximization
problems, this process is guaranteed to find a near-optimal
sequence of robot poses in terms of observation and traverse
costs. To validate the proposed method, we present simulation
and robot experiments using a PR2.

I. INTRODUCTION

It happens frequently that an object is occluded by another

when there are multiple objects on a table as shown in Fig. 1.

It is not easy for a robot to make a decision how to grasp the

occluded object even in the case that we know that the object

is one of objects in our database with predefined desirable

gripper poses to grasp. There can be several objects in the

database in several different poses that roughly match the

partially observed point cloud. So we need to consider them

as hypotheses that can possibly be the true state (class and

pose) of the target object. The problem is that there would

be many hypotheses.

If a single observation of a cluttered scene contains

insufficient information to infer the state of the target object,

we need to take another observation to gather more infor-

mation. From a sequence of observations, we can update the

probability of each hypothesis by comparing it with the new

point cloud and declare a hypothesis as the most likely state

when we think we have found sufficient evidence.

There are two questions that need to be answered in this

approach. One is how to extract information from point cloud

observation and update our belief states, i.e., the probability

of hypotheses. The other is how to determine a next action

that would allow us to get the most informative observation.

For the belief state update, we basically utilize Bayesian

recursive estimation. In our specific problem of cluttered

environment, it is important to build good observation model
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Fig. 1. A scene of objects in clutter. The cluster of yellow points is the
target object assigned by the user.

that can represent relationship of the target object and the

other objects (called obstacles hereafter) sufficiently and effi-

ciently. We abstracted the geometric information of obstacles

as simple 3D shape primitives, such as a sphere, a cylinder

or a box. Furthermore, there is key prior knowledge that is

useful in belief update; a target object is in a stable pose on a

table, does not collide with (overlap) obstacles, and occludes

the table surface where it exists. More details are presented

in section V.

In action selection, we applied adaptive submodularity to

our problem. By representing the amount of uncertainty of

the true state of the target object as an adaptive submodular

and monotonous utility function, a simple greedy algorithm

that evaluates just one step ahead and takes the action with

the maximum expected margin of the utility function can

lead us a theoretically provable near-optimal solution of

action sequence. Section IV provides detailed formulation

and pseudo-code to understand how belief update and action

selection are executed.

To validate our approach, we conducted experiments in

simulation and in real world with a robot. In section VI,

four test cases are presented and analyzed, and the attached

video shows the overall process of active object recognition

in a cluttered scene.

II. PREVIOUS WORKS

Active recognition of an occluded object can be formulated

as a partially observable Markov decision process (POMDP)

because the state of the object is unknown and the se-

quence of actions should be selected carefully for efficient

recognition [1], [2], [3], [4]. Hsiao et al. applied POMDP

to active object localization problem in [5], which is in a



similar form to active recognition. However, in general, the

time complexity to optimally solve a POMDP problem is

exponential in the search depth, which makes it intractable.

As a workaround, it is approximated by limited horizon or

assumed to have a small branching factor.

Recently, adaptive submodularity strategy was proposed

and applied to several robotics problems [6], [7], [8]. Sub-

modular function maximization can be regarded as a dis-

crete version of concave maximization, and a simple greedy

algorithm can give a near-optimal solution for monotonous

submodular problems [9], [10]. This paper adopts this frame-

work and theoretical analysis to the active object recognition

problem.

Chen et al. proposed an active object detection method

based on adaptive submodularity, which determines a se-

quence of queries (actions) for user interventions (obser-

vations) to improve the detection performance in the run-

time [6]. This is a different framework from ours in the

notions of “state” and “action”. In our approach, the robot

only considers actions for autonomous observations such as

repositioning and re-scanning the object.

Rather, a tactile localization problem that Javdani et al.

addressed as adaptive submodular maximization in [7] is

closer to our problem. Because possible states of poses

of a (known) object are represented as particles, touch-

based observation for each state is straight-forward in their

formulation, while it is more complex to consider 3D point

observations in the presence of obstacles as in our problem.

Another related work is an underwater vehicle inspection

problem presented by Hollinger et al. [8]. The goal is to find

an informative path to reconstruct 3D meshes of a vehicle,

and the metric for uncertainty is defined by the mean and

variance of observed meshes nearby. Our paper deals with

uncertainty of object identification and its 3D pose, mostly

coming from occlusion by obstacles, which can be more

unstructured than continuous surface regression.

III. PROBLEM DESCRIPTION

A. Partially Observable Markov Decision Process Model

As mentioned in section I, we can formulate the active

object recognition problem in a cluttered scene as a partially

observable Markov decision process (POMDP) problem.

First of all, we define two goals in the problem. One is to

estimate the true state (class and pose) of the target object

given a series of observations,

p(φ|o0:ta , a0:t), (1)

where φ ∈ Φ is a random variable that represents a state, and

o0:ta is a sequence of observations after individual actions, a,

from step 0 to t. This probability distribution can be updated

by recursive Bayesian estimation (Bayes filter).

The other is to find a policy to select a next action, at+1,

based on observations and executed actions so far,

at+1 = π(o0:ta , a0:t), (2)

such that it can minimize the cost until we gain sufficient

confidence in the state estimation, which can be formulated

as the following.

minimizeπ EΦ[c(A(π,Φ))]

subject to f(A(π, φ), φ) > Q, (3)

where π stands for a policy that depends on o0:ta and at+1.

A(π, φ) is the sequence of actions selected by π when the

true state is φ, and c(·) is a cost function of A(π, φ). f(·) is

a utility function which is defined as 1 minus a sum of

probability over hypotheses (see section IV for more details)

so that it can encode confidence in the state estimation. Q
is a threshold for the utility function.

This problem can be formalized and specified as a POMDP

model as follows.

• State: Target object class and its pose, and obstacles and

their poses. We assume that the target object is one of

the objects in the database while we do not limit classes

of the obstacles.

• Observation: 3D point cloud measurement from the

robot sensor that contains a part of a target object that is

not occluded by obstacles and visible parts of obstacles

as well.

• Action: One dimensional motion of the robot base

moving around the table that the objects are placed on,

and one dimensional vertical motion of the robot torso.

We set the angle of rotation around the table and the

change in torso height as discretized.

• Transition model: Assumed to be deterministic without

any variance, that is, there is no probability for the robot

to transit to any poses other than the controller assigned

pose. See Discussion 1 for more detail.

• Observation model: Probability of an observation given

a state. In our problem, it is associated with an error

metric how a partial observation matches to given object

class and pose. We assume the sensor measurement of

point cloud pose and its color map is deterministic. See

Discussion 2 for more detail.

• Utility function: Adaptive monotonous submodular

function that encodes the amount of confidence (uncer-

tainty reduction) in the state estimation. A lower value

represents higher uncertainty.

• Reward function: Expected marginal utility per cost

for an action at a state, that is, expected amount of

uncertainty removal by an observation obtained from

an action over the cost to execute that action.

Discussion 1: Deterministic transition model

This issue mainly originated from the dimensionality of

state. Since our application deals with 3D point cloud, the

observation model itself is computationally expensive. If we

have high dimensional state, one step look-ahead expansion

for next action selection requires a lot of computation. In or-

der to reduce the dimension of state, we are using quantized

action space which makes the robot to consider only discrete

poses. If we want to consider probabilistic transition model,

possible poses of a robot should be continuous to make sense,

but the problem would be intractable in our framework. We

still can use discrete robot poses with non-zero variance, but



Fig. 2. Object database of 3D geometric model and predefined desired
gripper poses for grasping.

in this work, we just assume the transition variance to be

zero for simplicity.

Discussion 2: Deterministic sensor measurement

This assumption means each sensor measurement from

any (discrete) possible robot pose gives the exact pose (but

not necessarily the point cloud of partially observable object

geometry) of the true object in robot frame. This allows us

to consider the hypothetic object pose state as a relative pose

with respect to the true sensor measurement and to re-align

it according to the latest sensor measurement at each step.

As a result, we do not care about the object pose uncertainty

that came from robot motion and sensor measurement error

in our action selection framework. Then, the uncertainty we

consider is only from “partial” observation of target object

and obstacle shapes, which lets us focus on the core issue

of occlusion.

B. Object Database

In this work, it is assumed that we have a database

with full information about object geometry, symmetry, and

desired grasp poses as shown in Fig 2. Object geometry is

described by a 3D point cloud, and its symmetric property,

such as rotational symmetry of a bowl about a vertical axis,

is represented by a symmetry label which is assigned as

an additional field value for each point in the point cloud.

Provided that the robot has a simple one degree-of-freedom

gripper, a grasp pose is described as a transformation matrix

of 3D position and orientation of the gripper.

IV. FORMULATION OF BELIEF STATE UPDATE AND

ACTION SELECTION

A. Properties of Adaptive Monotone and Submodularity

Before developing our problem as an adaptive submod-

ularity maximization problem, we introduce the properties

of adaptive monotone and submodularity first. If a utility

function, f , satisfies the following properties for A ⊆ B ⊆ A

and a ∈ A\B, it is called monotonous and submodular,

respectively.

• Monotonicity:

f(A ∪ {a})− f(A) ≥ 0 (4)

• Submodularity:

f(A ∪ a)− f(A) ≥ f(B ∪ a)− f(B) (5)

In adaptive setting, they are modified as follows.

• Strong Adaptive Monotonicity:

E[f(A ∪ {a},Φ)|ψ, o]− E[f(A,Φ)|ψ] ≥ 0 (6)

• Adaptive Submodularity:

E[f(A ∪ {a},Φ)− f(A,Φ)|ψA] = ∆f (a|ψA)

≥E[f(B ∪ {a},Φ)− f(B,Φ)|ψB ] = ∆f (a|ψB) (7)

where ψA and ψB are sequences of observations ac-

cording to sequences of actions, A and B, respectively.

B. Formulation as Adaptive Submodular Maximization

Now we develop our problem as an adaptive submodu-

lar problem. First, more concrete problem description and

definitions are provided in the following.

• State realization: We denote a state as a tuple of object

class, object pose, and obstacle point cloud in global

frame.

φ = (IDobj , Tobj , Xobs) (8)

• Realization (hypothesis) probability: The probability of

φ ∈ Φ is

p(φ) = P[Φ = φ] (9)

where Φ is a random variable over all realization. Every

φ ∈ Φ is regarded as a hypothesis, and our goal is to

find a hypothesis that is most likely to be the true state.

• Observation: o ∈ O is a possible observation which

depends on a state of relative poses between a object,

obstacles, and a robot.

• Action: a ∈ A encodes a discretized rotating motion of

the robot base about the table and a discretized vertical

displacement of the torso. A ∈ A stands for a sequence

of actions selected so far, and it is assumed that A is a

sufficient set of actions to find a solution.

• Cost function:

c(at) = cθ|∆θ
t|+ ch|∆h

t|+ c0 (10)

c(A) =
∑

a∈A

c(a) =

|A|−1
∑

t=0

c(at) (11)

where ∆θt is a base rotation angle about z-axis centered

at the table, and ∆ht is a change in torso height at

t-th step, respectively. cθ and ch are positive weights

for base rotation angle and torso height change, re-

spectively, and c0 is a positive constant to penalize the

number of actions which is related to the time to obtain

and process an observation. |A| indicates the cardinality

of A, i.e., the number of actions that have been taken.

Conceptually, the overall algorithm is as follows: 1) run

3D point cloud processes for a new observation, 2) update the

belief state according to fitness to each hypothesis, 3) com-

pute expected marginal utility for each action, 4) greedily

select and take the action with maximum expected marginal

utility per cost, and 5) iterate above processes until sufficient



information is gathered. In Appendix, the pseudo-code is pre-

sented to show how belief state update and action selection

are conducted iteratively.

Then we formally introduce, with the notion of belief

state, a utility function that is adaptive, monotonous and

submodular, and a greedy strategy for action selection.

• Belief state: Let us denote a partial realization, by ψ
which is a sequence of observations corresponding to a

sequence of actions, A. The probability of a hypothesis

for a partial realization, ψ, is as follows.

pψ(φ) = p(φ, ψ) (12)

Note that this is an unnormalized probability distribu-

tion over Φ such that
∑

φ∈Φ pψ(φ) ≤ 1 because we

curtail probability mass of pψ(φ) individually without

normalization to encode the uncertainty reduction.

• Weight function for hypothesis pruning: A down-weight

determined by an action, a, and a corresponding partial

observation, oa, is defined as

woa(φ) = w(oa, oφ) = 1−min

(

e(oa, oφ)

eT
, 1

)

(13)

where oφ is an ideal, full observation when the true state

is φ. e(oa, oφ) is a fitness error function that returns the

mean of the Euclidean distances between corresponding

points of o and oφ, and eT is a threshold for selecting

candidate object classes. So, the weight will be 1 if oa
matches to oφ exactly and 0 if the fitness error is greater

than a threshold.

• Prior violation penalty on weights: As mentioned in

section I, prior knowledge can provide strong reasoning

to prune unlikely hypotheses. If a hypothesis collides

with observed obstacles or does not occlude the table

surface that should have been occluded, the weight gets

a harsh penalty.

woa(φ) = ǫpwoa(φ) (14)

where ǫp is a prior violation penalty constant which is

positive but much less than 1.

• Belief state update: Belief state is updated by multiply-

ing the weight for oa to the previous belief state.

pψ(φ) =





∏

{oa}∈ψ

woa(φ)



 p(φ) (15)

• Probability mass: As a quantity for uncertainty in state

estimation, we define probability mass over Φ for given

partial realization, ψ, by

Mψ =
∑

φ′∈Φ

pψ(φ
′) (16)

Furthermore, updated probability mass after action a
with observation oa is denoted as

Mψ,oa =
∑

φ′∈Φ

woa(φ
′)pψ(φ

′) (17)

• Utility function: We define a utility function as

f(A, φ) = 1−Mψ (18)

Since the weight function can only remove the proba-

bility mass and never add to it, this is strong adaptive

monotonous and adaptive submodular, which follows

directly from Theorem 1 in [7] and Theorems 5.8 and

5.9 in [10].

• Marginal utility for action a and observation o:

fψ,oa = f(A ∪ {a}, φ)− f(A, φ) (19)

=Mψ −Mψ,oa (20)

• Probability of observation oa from action a over Φ:

P(oa = oΦ|ψ) =
∑

φ∈Φ

P(oa = oΦ|φ, ψ)P(φ|ψ) (21)

where P(oa = oΦ|φ, ψ) = P(oa = oφ|ψ) = woa(φ)
can be regarded as the weight function, and P(φ|ψ) ∝
p(φ|ψ) = pψ(φ) is a normalized version of belief state.

• Expected marginal utility for action a:

∆f (a|ψ) = E[fψ,oa ] (22)

=
∑

oa∈O

P(oa = oΦ|ψ)fψ,oa (23)

• Simple greedy algorithm: Finally, a simple greedy al-

gorithm selects the action with the maximum expected

marginal utility per cost, ∆f (a|ψ)/c(a), by inspecting

just one step ahead. Again, the adaptive monotonous

submodular property guarantees that a simple greedy

algorithm with horizon 1 gives a near-optimal solution.

C. Theoretical Performance Guarantee

In this section, we briefly summarize the theoretical per-

formance guarantee of the proposed method. The utility func-

tion is adaptive submodular and strongly adaptive monotone

due to the property of our down-weight function [7]. As

cost of an action includes traverse cost that depends on

the current pose of the robot, this problem is a special

case of adaptive submodular problem with arbitrary costs.

From the results of [10] and [11], we can prove that it

has
(

ln
(

Q
minφ p(φ)

cmax(a)
cmin(a)

)

+ 1
)

-approximation for optimal

worst case policy.

Note that, in our problem, observation cost dominates

traverse cost when cost is simply taken as duration of time

to perform an action, and thus,
cmax(a)
cmin(a)

can be close to 1.

As a cost minimization problem, this problem has large

adaptivity gap [8], so the ratio of observation/traverse costs

can effectively play a role in trading off exploration of the

scene to get more information and exploitation of the current

belief to reduce the total cost [12], [13].

V. 3D POINT CLOUD PROCESS

In this section, the overall process of 3D point cloud

as shown in Fig. 3 is described. There are five main sub-

processes that arise while applying adaptive submodularity

scheme to 3D point cloud data.
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Fig. 3. Flowchart of 3D point cloud processing.

A. Object Template Registration

In order to evaluate each hypothesis with observation, we

need to register the object templates in the database to the

observed point cloud first.

3D point cloud contains purely geometric information,

such as surface normal and principal curvature. There are

several feature descriptors for 3D point cloud, and we used

Fast Point Feature Histogram (FPFH) which is a histogram

descriptor for variation of surface normal around the query

point [14].

Iterative Closest Point (ICP) algorithm is widely used for

finding rigid-body transformation between two point clouds

but can be easily stuck to local minima [15]. Since Random

Consensus Initial Alignment (SAC-IA) algorithm can find a

globally approximate but coarse solution [14], ICP is used

to refine the registration after SAC-IA is applied.

Based on the prior knowledge that any objects lie on the

table in stable poses, we can reduce the dimension of search

space for finding a pose of a rigid body from 6 to 3, which

can be applied to both of SAC-IA and ICP.

B. Weight Computation

For registered object templates by the previous process,

we need to prune away implausible hypotheses with high

fitness errors. Fitness error metric is defined as the mean of

Euclidean distances between corresponding points in source

and target point clouds, and the object classes with high

errors are removed from the candidate list as described in

(13) and (15).

Note that as discussed in (14), violation of prior knowledge

imposes high penalty on weights. For collision detection with

Fig. 4. Examples of obstacle primitive estimation and corresponding
expected observation of the target object. For sphere and cylinder cases,
the obstacle is regarded to occupy the volume which is inside the primitive
and between the two parallel planes at the same time. A cyan square on the
left represents the sensor position, and yellow squares are the visible points
of the target object that are not occluded by the obstacle primitives.

obstacles, we check for collision between a hypothesis and

actually observed obstacle point clouds. Since it needs to be

conservative in checking for violation, obstacle primitives,

which are approximate models, are not used. For visibility

violation, we first sample points from a hypothesis that do

not have any corresponding points in the observed target

cloud, and check if those points are also occluded by obstacle

primitives or not. If not for many sampled points, this

hypothesis is considered to violate the visibility prior.

C. Grasp Hypothesis Construction

State hypotheses are constructed from the remaining can-

didate object classes and their possible poses. If all the

template points with correspondence to the observation have

the same symmetry label, it implies that the observation has

no evidence to determine the pose of the template about

that symmetry. For example, if a frying pan template has

correspondence with an observation only in the circular part,

it cannot be decided where the handle should be located.

Using the symmetry labels in the object database and

the correspondence information, possible object poses are

generated for each candidate object classes. As a result, the

cardinality of the total grasp hypotheses becomes |Φ| =
∑n

i=1 ji, where n is the number of valid candidate objects,

and ji is the number of possible object poses by symmetry

for i-th object class.

D. Obstacle Primitive Estimation

In order to compute expected marginal utilities as in

section IV, we need to enumerate all possible actions and

observations. In other words, we need to compute a fitness

error between every possible oφ ∈ O and oa ∈ O. To

generate all possible observations, O, over all possible object

classes and poses, and robot poses, we need to build an

obstacle map.

For computational efficiency, parametric shape primitives

rather than a full obstacle occupancy grid are used in this

work to represent the observed obstacles. As shown in Fig. 4,

we use primitives of sphere, cylinder, and bounding box [16].



For better representation, two parallel planes offer additional

boundaries for sphere and cylinder cases.

When an observed, probably partial, obstacle point cloud

is given, RANSAC fitting for sphere and cylinder is tried

first and selected if a large portion of points are inliers to

the model. If both have bad fitnesses, bounding box, which is

the most conservative estimation for the occluded geometry

of the obstacle, is selected as a last resort.

E. Expected Marginal Utility Computation

After all obstacles are represented by shape primitives,

then we can generate an expected observation for each

hypothesis, φ, based on ray-tracing algorithm (Fig. 4). For

given obstacle primitives, candidate object class and pose,

and sensor pose, we first sample points from the candidate

object point cloud, and check if the ray from the sample point

to the sensor intersects with the obstacle primitives. With

geometric/algebraic algorithms, we can efficiently check the

intersection with these parametric primitives.

When we have all the expected observations, we can

compute fitness scores, e(oa, oφ), accordingly, and finally

get the expected marginal utility as in (20) to (23).

VI. EXPERIMENTAL RESULTS

Experiments are conducted in simulation and with a real

robot. For analysis purposes, we mostly present simulation

results which allows us to explore different cluttered scenes

precisely, while robot experiments are for validation in real

world situations as presented in the attached video.

A. Simulation Environment Setup

• System: The simulation platform is Ubuntu 12.04 with

ROS Groovy. Dynamic simulation of PR2, a dual-arm

robot with a tilting laser scanner, is run by Gazebo 1.9.5

as shown in Fig. 5(a). Implementation of 3D point cloud

processing utilized Point Cloud Library [17].

• Database: An object database that contains object ge-

ometry, symmetry labels, and grasp poses is prepared

(Fig. 2). The mesh models of IKEA kitchen objects are

obtained from [18], and their symmetry labels and grasp

poses are generated from preprocessing and verified by

a human.

B. Simulation Results

Simulation results of the proposed method for four differ-

ent cases are presented in Fig. 6, 7, and 8. To explain a case

with scene 1, two object classes were selected as candidates

from the initial observation based on the fitness error metric,

and eight possible object poses were established as hypothe-

ses for each object class. You can see that two hypotheses

of object 1 have bad probability after the first action. This

is because those hypotheses violated prior conditions.

By computing expected marginal utilities, an action of

rotating 0.4 rad about the table was assigned to the robot. The

utility function increased by 0.2 after the second observation.

However, the evidence collected so far was not sufficient, and

another action of rotation by 0.2 rad was executed.

(a) Simulation using Gazebo

(b) Robot experiment and its visualization

Fig. 5. Simulation and robot experiment environment in a cluttered scene.

Finally, small part of the handle appeared in the third

observation, and thus, the bowl-shaped object was excluded

from the candidates, and uncertainty was significantly re-

moved so that a feasible grasp pose can be determined.

To demonstrate the effectiveness of the proposed method,

breadth-first search (BFS) was selected as a baseline and

compared with our method for the same task. BFS simply

tries all the possible robot poses (nodes) by taking the

minimum action of base rotation and torso height change

until it finds a feasible grasp pose, and it was found to be

clearly suboptimal compared to the proposed method.

VII. CONCLUSION

This paper investigated how to select a sequence of actions

adaptively to estimate an occluded target object’s class and its

pose. The problem was formulated as adaptive submodular

maximization problem so that a simple greedy algorithm can

provide a provably near-optimal solution. Equipped with 3D

point cloud processing algorithms for registration and fitness

error metric, this framework was successfully applied to the

active object recognition problem and showed its validity by

simulation of several example tasks.



For the future work, there are remaining issues to improve

this method to make it more general and efficient. Classifiers

such as support vector machine can be applied to determine

candidate objects rather than using a constant threshold of

fitness error. For more general obstacle representation and

reasonable generation of expected observations, 3D voxel

occupancy grid can be used.

Additionally, we plan to incorporate multi-modal infor-

mation of objects, such as color intensity or tactile property.

Since multi-modal features would have multiple metrics to

represent uncertainty, it would be important to study how

to combine them into a single metric within the current

framework.
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APPENDIX

Algorithm 1 Active Object Recognition Framework

Input: A sequence of sensor measurements of depth map

X1:t
s , a sequence of previous robot actions a0:t−1, and

object database containing point clouds {X̂i} of n ob-

jects

Output: Robot base/torso motion or grasping command at

[Step 1] Segmentation of sensor measurement

1: Xt
p ← Segmentation(Xt

s)

⊲ Xt
p: partial point cloud segment of target object

2: Ot ← ObstaclePrimitve(Xt
s −X

t
p)

⊲ Ot: parametric model for obstacle shape

[Step 2] Registration of database to measurement

3: for each i in 1 to n do

4: if t = 1 then

5: Xt
i ← RansacInitialAlignment(X̂i, X

t
p)

⊲ Xt
i : registered X̂i in world frame

6: else

7: Xt
i ← MotionUpdate(Xt−1

i , at−1)

8: Xt
i ← IterativeClosestPoint(Xt

i , X
t
p)

[Step 3] Belief state update

9: if t = 1 then

10: for each i in 1 to n do

11: {φiji} ← HypothesisGeneration(Xt
p, X

t
i )

⊲ φiji : hypothesis of ji-th instance of i-th object

12: N ←
∑n

i=1

∑mi

ji=1 1
13: for each i in 1 to n and ji in 1 to mi do

14: p(φiji) ← 1/N

15: for each i in 1 to n do

16: {Xt
iji
} ← PointCloudInstance(Xt

i , {φiji})

17: for each i in 1 to n and ji in 1 to mi do

18: eXiji ← ErrorFunction(Xt
iji
, Xt

p)

19: wiji ← 1−min(eXiji/ethr, 1)
20: wiji ← CollisionDetection(Xt

iji
, Xt

s, X
t
p, wiji )

21: wiji ← VisibilityViolation(Xt
iji
, Xt

p, O
t, wiji )

22: p(φiji) ← wijip(φiji)

23: f t ← 1−
∑n

i=1

∑mi

ji=1 p(φiji) ⊲ f t: utility function

[Step 4] One-step action expansion

24: if f t ≥ Q then ⊲ Q: threshold for termination

25: φ̂ ← argmaxφiji
p(φiji)

26: return GraspAction(φ̂)

27: for each k in 1 to l do

28: for each i in 1 to n and ji in 1 to mi do

29: X̃t+1
iji
← MotionUpdate(Xt

iji
, ak)

30: Õt+1 ← MotionUpdate(Ot, ak)

⊲ ak ∈ A: base/torso action

31: X̃t+1
p ← VirtualOcclusion(X̃t+1

iji
, Õt+1)

32: f̃ t+1
iji
← Step2-3(X̃t+1

p , Õt+1)

33: p̃iji ← 1/N

34: ∆fk ←
∑n

i=1

∑mi

ji=1 p̃iji(f̃
t+1
iji
− f t)

⊲ ∆fk : expected marginal utility for action ak

[Step 5] Action selection

35: at ← argmaxak(∆fk/ActionCost(ak))
36: return BaseTorsoAction(at)



Fig. 6. Experiment results for scene 1 (upper) and scene 2 (lower) using adaptive-greedy algorithm.
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Fig. 7. Experiment results for scene 1 (left) and scene 2 (right) using
adaptive-greedy algorithm, compared to breadth-first search (BFS) algo-
rithm. Action(i) stands for base action index i.
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Fig. 8. Experiment results for scene 3 (left) and scene 4 (right) using
adaptive-greedy algorithm. Action(i, j) stands for base action index i and
torso action index j.


