
Combining Global and Local Planning with Guarantees on
Completeness

Haojie Zhang†, Jonathan Butzke‡, Maxim Likhachev‡

Abstract— Planning with kinodynamic constraints is often
required for mobile robots operating in cluttered, complex
environments. A common approach is to use a two-dimensional
(2-D) global planner for long range planning, and a short range
higher dimensional planner or controller capable of satisfying
all of the constraints on motion. However, this approach is
incomplete and can result in oscillations and the inability to
find a path to the goal. In this paper we present an approach
to solving this problem by combining the global and local path
planning problem into a single search using a combined 2-D
and higher dimensional state-space.

I. INTRODUCTION

Mobile robots often have to operate in large complex
environments. As such, path planning for these systems
needs to account for the various kinodynamic constraints
of the platform and the environment potentially resulting
in a high dimensional state-space. Unfortunately, this high
dimensionality often leads to a dramatic increase in the time
and memory required to find a path as the environment size
increases. For a sufficiently large outdoor environment it can
become computationally intractable for the robot’s onboard
processing capability. Planning only in two dimensions (2-
D), such as planar position (x, y), does not suffice as the
resulting path may not be feasible due to motion constraints
or asymmetric platform shapes. As a result, planning in a
high dimensional (high-D) state-space is often necessary in
order to guarantee executable paths. For example the 2-
D (x, y) path shown in Fig. 1(a) is difficult for a non-
holonomic robot to follow due to the instantaneous change in
the orientation of the robot. On the contrary the 3-D (x, y, θ)
path shown in Fig. 1(b) is relatively easy to execute.

Current approaches to full-dimensional planning for navi-
gation are either suboptimal [1], [2] or are limited in the size
of the area they can handle [3]. For very large environments,
a common alternative is to perform a global plan in 2-D
and have a separate local controller or local planner perform
a higher dimensional plan on a small local region around
the robot [4], [5], [6]. While effectively ignoring a subset
of the dimensions for the global plan can make these large
environments tractable and improve planning times, they are

This work was partially supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate Fellowship
(NDSEG) Program. This research has also been in part supported by the
ONR DR-IRIS MURI project grant N00014-09-1-1052 and ONR ANTI-
DOTE MURI project grant N00014-09-1-1031.

†Intelligent Vehicle Research Center, School of Mechanical En-
gineering, Beijing Institute of Technology, Beijing 100081, CHINA
haojie.bit@gmail.com

‡Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA jbutzke@andrew.cmu.edu, maxim@cs.cmu.edu

Fig. 1: (a) Unfeasible 2D path for a non-holonomic robot,
(b) feasible 3D path for a non-holonomic robot

incomplete in that the robot may get stuck and never reach
the goal even though there is a feasible path. The main reason
for this is the inconsistency between the assumptions that
local and global planners make.

As an example, Fig. 2 depicts a scenario that many
planners are incapable of successfully dealing with. In this
scenario, a short path to the goal is available but due to the
sharp turn initially being located outside of the range of the
local high dimensional planner, it is infeasible unbeknownst
to the robot. As the robot approaches the impassable area,
the sharp turn enters the range of the local controller. At this
point the system recognizes that the current path is no longer
executable, replans, and produces a path that goes down the
right hand route. However, once the robot leaves the vicinity
of the obstruction such that the problem area is no longer
within the planning area of the local planner, any replan by
the global planner will once again attempt to route the robot
down the left hand side. For some environments numerous
such routes may exist resulting in a multi-state oscillation
where the robot in turn tries each of them without ever
producing a plan through the one correct route. A similar
situation may occur in outdoor environments where states
may be feasible but have high cost depending on which

G

R

Fig. 2: Example of environment that could be incomplete
for systems with separate local and global planners. Robot
R is at the start location in the upper left. The local planner
operates within the grey circle surrounding the robot. The
global planner initially generates red dashed path to the goal
G. However the robots size prevents it from making the turn
marked by the green “+”. At this point the global planner
returns the green dotted path. Once the robot returns to the
vicinity of the start location, any replan by the global planner
would return a path similar to the red dashed path, potentially
resulting in the robot oscillating between the two points.

direction the robot is oriented. An example would be a steep
slope. While traversing along the side of the slope the cost
would be relatively low, however going straight up or down
would be considerably more expensive. The naı̈ve approach
to solving these problems by blocking off the offending path
also results in an incomplete planning solution as the robot
may need to partially enter the area in order to maneuver for
the correct path, or in the slope example, may be required
to pass through a position with a certain orientation.

In this paper we show how to extend the concept of
the local and global planners to a single graph in such
a way that we can guarantee completeness while being
efficient enough for use as an online planner. Using ideas
from adaptive dimensionality reduction [7] we can iteratively
combine the 2-D global graph along with one or more
higher dimensional areas. By selecting the areas in the
vicinity of the robot and at key points in the environment
for inclusion as high-dimensional areas we can improve

upon the separate global and local planner paradigm. This
approach relies on the notion that only certain areas need
or even benefit from the higher dimensional planning while
the vast majority of states only need to be searched in the
lower dimension. This results in substantial speedups and
lower memory requirements while preventing oscillations.
We show that the algorithm is complete with respect to the
state-space discretization and can provably guarantee to find
a solution, if one exists, provided its actions are reversible
(e.g. no one way streets). We also demonstrate the efficiency
of the algorithm in simulation and applied to a real-world
significantly asymmetric differential drive robot.

II. ALGORITHM

A. Description

The algorithm functions by forming a graph of the search
space with a mix of 2-D and high-D states. It starts out by
planning in high-D around the robot and everywhere else
in 2-D (just as a standard combination of global and local
planning). Then as the robot starts executing the trajectory,
every time it encounters a situation where the re-planning
finds a path that differs from the previous path or it rec-
ognizes the potential for oscillations to occur, the planner
leaves a permanent high-D region at the current location.
For our purposes we use 2-D synonymously with the low
dimensional component of our algorithm, specifically using it
to represent the planar position (x, y). The high-D state-space
is typically translation and orientation (x, y, z, θ) although
velocity v or other dimensions could be used as well.

B. Notations and Assumptions

We assume that the planning problem is represented as
searching a directed graph G = (Sd, Ed) where Sd is a dis-
cretized finite state-space with dimensionality d, consisting
of vertices s = (x1, x2, . . . , xd) and Ed is the set of directed
edges in the graph. The transition between vertices e(si, sj)
is associated with a cost c(si, sj). The objective of the search
is to find a least-cost path in G from start state sstart to goal
state sgoal. We use the notation π(si, sj) to denote a path
in graph G from state si to state sj and π?(si, sj) to denote
the least-cost path.

Definition 1 (SH , SL): We define two auxiliary state-
spaces that we use to construct our search state-space, a high
dimensional state-space SH with dimensionality h and a low
dimensional state-space SL with dimensionality l such that
h > l.

Definition 2 (λ(·)): Function returning the projection of a
state into a lower-dimensional subspace. There also exists
the inverse λ−1 which maps from a lower to a higher-
dimensional space:

λ(sh) = sl (1)

λ−1(sl) = {sh} (2)

λ(λ−1(sl)) = sl (3)

λ−1(λ(sh)) 6= sh (4)

Notice that λ is a many to one mapping and λ−1 is a
one to many mapping. Also note that the left-hand side of
(4) results in a set of states not the single state provided as
input.

Definition 3 (Qc, Q1): Qc is the queue that stores the
position of all high dimensional regions that have been
introduced by the algorithm. Each high-D region can be
represented by a single state. For example, a high-D sphere
where the center state is stored in Qc. Q1 is a queue
that stores potential centers of high-D regions and their
corresponding lower bounds on cost-to-goal (glow).

Definition 4 (Priority): For every high-dimensional state
s, the priority of s according to the ith replan is:

P i(s) =

 2 if s ∈ Qc

1 if s ∈ Q1

0 otherwise
Definition 5 (πi): The ith plan returned from COM-

PUTEPATH. It consists of the ordered list of states
{si0, si1, si2, . . . , sin} where sin = sgoal and si0 = scurr at
the time when COMPUTEPATH was executed. We assume
COMPUTEPATH executes a backward A? search or one of its
variants and as such it computes g-values which are the cost-
to-goal for some states in the state-space. It is guaranteed
to have been computed for all states on the returned path.
The search is performed from the goal to the start state so
gi(sij) > gi(sij+1) ∀j : 0 . . . n− 1.

Definition 6 (Condition 1 (C1)): is a planner specific test
for inserting high-D regions into the hybrid graph. For our
implementation we use a change in homotopic class (Def. 7)
to signal this condition. Our planner is guaranteed to be
complete independent of what “Condition 1” stipulates or
even if it is absent.

Definition 7 (Homotopic Class): Two paths connecting
the same start and goal coordinate are in the same homotopy
class if they can be smoothly deformed into one another with-
out intersecting any obstacle in the environment, otherwise
they are in different homotopy class. The homotopic class of
a path is dependent on which obstacles it went around and in
which direction. In this way paths that take fundamentally
different routes to the goal can be identified1 (see [8] for
in-depth mathematical treatment).

Assumption 1: The cost of transition between different
high dimensional states is at least the cost of transition
between the corresponding low dimensional states. For every
pair of high-dimensional state si and sj , it will hold that
c(si, sj) ≥ c∗(λ(si), λ(sj)). We further stipulate that all
transitions are dynamically feasible. By only using feasible
edges, the resulting trajectory through the graph is guaran-
teed to be executable without additional smoothing or post-
processing. For 3-D navigation typical motion primitive sets

1Homotopic classes can be thought of like a road system. If one were
to take Highway 1 from A → B, your path may vary depending on which
lane you travel in, however, your homotopic class would remain the same
since all lanes would travel on the same side and in the same direction
around obstacles. If you were to take Highway 2 instead, your homotopic
class would be different since it would not pass the obstacles in the same
way.

a. b. c.

Fig. 3: Examples of motion primitives used to determine
allowable edges in the search graph. (a) Non-holonomic
robot capable of turning only while moving forwards. (b) A
non-holonomic robot capable of turning in both directions.
(c) An omni-directional robot capable of strafing sideways.

are depicted in Fig. 3
Assumption 2: The map only changes a finite number of

times. This assumption is required for completeness, as a
map could be modified in an adversarial way to ensure no
plan ever successfully reaches the goal state.

Assumption 3: ∀s : e(scurr, s) ∈ EHL =⇒ s ∈ SH .
To maintain the completeness property we assume that

the high-D region around the robot is larger than the length
of the longest high-D motion primitive. This ensures that the
immediate successor of a robot state, scurr, is a high-D state.
For the sake of efficiency in execution we assume that the
cost of turning through an angle of α is no greater than the
cost to drive along an arc of length rα, where r is the radius
of the high-D circle.

C. Search Graph Construction

We construct a hybrid dimensional state space SHL as
our search state-space by combining the high dimensional
state-space SH and low dimensional state-space SL. The
high dimensional state space in SHL consists of 1 . . . N
small circular regions Rn, centered at key points (xn, yn)
with one of these points always being the current robot
position. For each high dimensional region, SHL is modified
by removing all low dimensional states sl inside the high
dimensional region Rn, replacing them with the set of
high dimensional projections λ−1(sl). Thus, SHL contains
both low dimensional and high dimensional states. Also, by
construction

sh ∈ SHL ⇔ λ(sh) /∈ SHL (5)

Fig. 4: Example of EHL construction for a 3-D/2-D envi-
ronment. The states in the light grey area are 3-D while the
white states are 2-D. The state in the lower left is completely
in the 3-D region, and thus all of its possible edges are part
of EHL. The 2-D state in the upper left contributes its 2-D
edges to other 2-D states, and an edge to each element of
the set λ−1(slj) depicted in red. Similarly, the 3-D state on
the right has edges to the 2-D state λ(shj) shown in blue.

a high dimensional state sh and its corresponding low dimen-
sional projection λ(sh) are never simultaneously members of
SHL although one of them always is.

In order to transition between the high dimensional re-
gions and the low dimensional regions, the hybrid transition
set EHL is defined for SHL. The hybrid transition set is
constructed as the union of the following edges:

∀i, j : e(shi , shj) ∈ EH , shi ∈ SHL ∧ shj ∈ SHL

⇒ e(shi , s
h
j) ∈ EHL (6)

∀i, j : e(sli, slj) ∈ EL, sli ∈ SHL ∧ slj ∈ SHL

⇒ e(sli, s
l
j) ∈ EHL (7)

∀i, j : e(shi , shj) ∈ EH , shi ∈ SHL ∧ λ(shj) ∈ SHL

⇒ e(shi , λ(s
h
j)) ∈ EHL (8)

∀i, j : e(sli, slj) ∈ EL, sli ∈ SHL∧shj ∈ SH∧shj ∈ λ−1(slj)

⇒ e(sli, s
h
j) ∈ EHL (9)

Notice that the above definition of EHL allows for tran-
sitions between states of different dimensionalities. Fig. 4
illustrates the set of transitions in the GHL graph in the case
of 3D (x, y, θ) path planning and Algorithm 2 in Section II-D
below details the pseudo-code.

Algorithm 1 SEARCH(G, sstart, sgoal)
1: Qc = {∅},Q1 = {∅},
glow(s) = 0, g0(s) =∞for∀s,
sprev = scurr = sstart, i = 0

2: while scurr 6= sgoal do
3: update map with sensor data
4: i = i+ 1
5: [πi, gi,C1] = COMPUTEPATH(scurr, sgoal,

CONSTRUCT(G, {Qc ∩ scurr}))
6: if C1 is satisfied then
7: insert scurr in Qc

8: end if
9: if ∃s : (s ∈ πi) ∧ (s ∈ Q1) ∧ (gi(s) < glow(s)) then

10: move s from Q1 to Qc

11: end if
12: if gi(scurr) ≥ gi−1(sprev) then
13: glow(scurr)=max(gi(scurr), glow(scurr))
14: insert/update scurr in Q1 with glow(scurr)
15: end if
16: sprev = scurr
17: scurr = πi(1)
18: end while

D. Graph Search

The variable dimensional search algorithm is detailed in
Algorithm 1. The variables specific to this algorithm are
initialized on line 1 prior to the first search. COMPUTEPATH
on line 5 takes the current position and goal along with the
set of all high dimensional regions and runs backward A?

or one of its variants on the hybrid graph to determine the
optimal path to the goal. It returns this path, as well as
updated g-values2 for all states on the returned path. The
third return value is a variable used to denote whether the
trajectory returned meets the conditions of “Condition 1”
(Def. 6). Note that the current position is always passed into
COMPUTEPATH as a location for a high-D region.

The hybrid graph consisting of the hybrid vertex and
edge elements, SHL and EHL is constructed as detailed in
Section II-C and shown in Algorithm 2 and passed into the
COMPUTEPATH function (line 5 of Algorithm 1). It initially
sets the hybrid state-space to be equal to the low dimensional
state-space. For each of the high-D regions it adds the
appropriate high-D states and corresponding edges to the
graph (lines 5-7). The REGION function on line 5 is also
responsible for removing the corresponding low dimensional
states from SHL. The ADDEDGES function generates EHL

as described in section Section II-C above.
In the event that “Condition 1” is satisfied (as detected by

line 6 in Algorithm 1) then the current location is added to
the set of high-D states. This is done because “Condition 1”
should signal when new information, such as the inclusion
of the higher dimensions in the search, has shown the
current trajectory to not be optimal. By placing the current

2Note: only the i and i − 1 g-values must be stored, older ones can be
discarded.

Algorithm 2 CONSTRUCT(G,Q)

1: SHL = SL
2: EHL =NULL
3: GHL = (SHL, EHL)
4: for all 〈sl〉 ∈ Q do
5: add REGION(〈sl〉) to SHL

6: end for
7: EHL =ADDEDGES(SHL)
8: return (SHL, EHL)

location into the list of high-D states, that information will
be “remembered” during future planning cycles.

States that had previously been priority 1 and are on the
current trajectory to the goal and now have a lower g-value
than the glow stored for that state are also added to the list of
high-D states (lines 9-11). This is done in order to prevent
oscillations as a drop in a g-value indicates a fundamental
change in the path taken from that location to the goal, even
if “Condition 1” was not true. As an example, consider a
long, narrow hallway with a robot incapable of turning in
place, a high penalty for traveling backwards and a goal
state behind the robot. If the robot cannot sense the end of
the hallway, it may choose to travel forward to the unseen
area and turn around there. However, once reaching the end
of the hallway, the robot will determine that it is unable
to turn-around, and will travel in reverse back to the goal
state. As it does this, it is undesirable for the robot to return
to the end of the hallway once it leaves the sensor range.
However, we can detect this phenomenon by the lowering
of the g-values during the back-tracking portion and place
high-D regions along the hallway. In this way, the robot is
guaranteed to not oscillate.

The check on line 12 is to flag potential oscillation points
along the path. As these points are elevated to priority 1,
they become eligible for inclusion in the high-D areas as
described in the above paragraph. This check is true when
the g-value of the current robot pose is higher than the
previously computed g-value of its previous pose. Since the
search is made outwards from the goal, the values should
be monotonically decreasing, thus any increase signals a
potential oscillatory region.

Finally the plan is passed to the drive control subsystem
to conduct the actual move. After a (possibly zero) delay,
the position is updated and the loop repeats (line 17).

E. Theoretical Analysis

The algorithm holds several theoretical properties due to
the construction of the search graph. In the following we
assume N is the number of high-D states in the original
search graph, GH .

Theorem 1: At the conclusion of every iteration i of
lines 5-15 for i > 1, one of the following conditions holds
prior to the execution of line 16:

• case i gi−1(sprev) > gi(scurr)
• case ii ∃ high-dimensional state s such that P i−1(s) <
P i(s)

• case iii ∃j < i such that ‖Qc
j‖ < ‖Qc

i‖ and sjcurr =
scurrand for∀k = j+1, . . . , i−1, skcurr 6= scurr, where
sjcurr denotes the value of scurr right before line 16 is
executed during the jth iteration.

Proof sketch: Assume case i does not hold then
gi−1(sprev) ≤ gi(scurr).
If P i−1(scurr) = 0, by lines 12-15, scurr will be moved to
Q1. As a result, P i(scurr) = 1 > P i−1(scurr) and case ii
will hold.
If P i−1(scurr) = 1, it indicates scurr has been the start state
at least once before since only start states are inserted into
Q1 (line 14). Let j be the most recent iteration that started
from scurr and let gj(scurr) be the corresponding g-value.
By line 13 glow(scurr) ≥ gj(scurr). Between the jth and
ith plan, one of two cases must be true: ∃ si such that si is
inserted in Qc or not.

• If si is inserted in Qc, case iii will hold since the
algorithm never removes a state from Qc.

• If @si inserted in Qc the hybrid graph did
not change and gi(scurr) = gj(scurr). Since
gi(scurr) ≥ gi−1(sprev) > gi−1(scurr) because
sprev = si−1

0 , scurr = si−1
1 then due to Assump-

tion 1 gi−1(si−1
0) > gi−1(si−1

1) from Def. 5, then
glow(scurr) > gi−1(scurr) because glow(scurr) ≥
gj(scurr) = gi(scurr). In which case line 9 will be
true (prior to glow being updated on line 13) and scurr
will be moved from Q1 to Qc which is a contradiction
to assuming @si inserted in Qc.

If P i−1(scurr) = 2, it indicates that scurr is already the
center of the high dimensional space. Also gi−1(sprev) >
gi−1(scurr) because of Def. 5. Between line 5 of the i−1th

and the ith iteration either a state s was added to Qc or Q1

in which case P i−1(s) < P i(s) and case ii holds or not.
If not, then the COMPUTEPATH function was called with
{Qc ∩ sprev} on the i − 1th iteration and {Qc} on the ith

(since scurr is already in Qc). Since there are no additional
high dimensional states being searched (and possibly less)
gi−1(sprev) > gi−1(scurr) ≥ gi(scurr), which contradicts
the assumption that case i does not hold.

Lemma 1: On a finite graph, case i can only occur a
maximum O(N) times before case ii or case iii happen.

Proof sketch: Since the g-values are finite, and, without
loss of generality, decrease by integral amounts along the
path, this leaves a limited number of moves before the robot
reaches its goal or case ii or case iii happen.

Lemma 2: On a finite graph, case ii can only occur a
maximum O(2N) times

Proof sketch: When case ii occurs at least one state
whose priority is increasing. Since each state can increase
its priority twice and the priority never decreases, case ii
can only occur at most O(2N) times.

Lemma 3: On a finite graph, case iii can only occur a
maximum O(N) times

Proof sketch: When case iii occurs at least one state has
been added to Qc which can happen N times.

Theorem 2: On a finite graph, the robot is guaranteed to

(a) Melvin the Segbot (b) Footprint

Fig. 5: a) Photo of the robot used for the experiments show-
ing asymmetric footprint. b) The planners representation of
the robot as seen from above.

reach its goal if any state reachable from the start pose has
a feasible path to the goal pose.
Proof sketch: Since for every iteration one of case i , case ii ,
case iii will occur, there is a bounded number of times case i
may occur prior to either case ii or case iii occurring and
case ii and case iii are both themselves bounded in their
number of occurrences, then the algorithm will terminate on
a finite graph with a solution if one exists. Therefore, the
algorithm is complete on finite graphs.

III. EXPERIMENTAL RESULTS
We initially tested our algorithm using a simulation envi-

ronment similar to that shown in a very simplified form in
Fig. 6. The robot model was a differentially driven robot with
a significantly asymmetric footprint (Fig. 5b). The map was
provided to the robot at the start of the simulation, and the
robot planned in 3-D (x, y, θ) for the high dimensional state-
space. 50 maps of three different sizes and two types were
randomly generated. The indoor maps consisted of many
narrow hallways with the occasional larger room. In addition
there were several thousand single point obstacles randomly
placed (Fig. 7). The other type of map was more open with
many rectangular obstacles and single point obstacles placed
randomly (Fig. 8). For both map types, the start and goal
states were placed in diagonally opposite corners with a
heading of 0◦. Our algorithm and planning on a uniform
3-D state-space (both using optimal A? were run on each of
the maps and the results are presented in Table I and Table II.
Since the maps were randomly generated, there were a few
maps in each category that had no feasible solution, so the
number of maps actually completed is presented and all
statistics are based on only those maps.

As can be seen our algorithm had comparable path costs to
the optimal search (< 110% of the optimal cost on average
for each map size and type), with significantly lower planning
times (42-67 times faster on average for each map size and
type). In the outdoor environments with their “more convex”
obstacles and less dead-ends the algorithm put very few high-
D regions into the search graph in comparison with the more
complex indoor maps.

After verifying that the algorithm performed satisfactorily
in the simulation environment, we ran it on our differential
drive robot. In order to make it a fair comparison with full
3-D A? type searches we added a long boom on the robot so

Fig. 7: Example 2000× 2000 indoor map for the simulation
environment. Black areas are obstacles, in addition there are
several thousand single cell obstacles randomly spread across
the map. Start is in the upper left corner and the goal is in
the lower right corner.

Fig. 8: Example 2000×2000 outdoor map for the simulation
environment. Coloring and positions are the same as for the
indoor map.

that its orientation played a key roll in whether a particular
area of the map was traversable as shown in Fig. 5a. We ran
a series of test runs an example of which is shown in Fig. 9.
During each of the test runs the robot replans every meter
of distance traveled and used a five meter radius for the 3-D
circles. For this particular example (the full motion video is
included in the accompanying video submission3), the robot
was attempting to go around the corner near some obstacles
in the middle of the hallway. The spacing of the obstacles
was enough for the robot to fit through, if the robot did not
have the boom attached, it would have been able to make
the corner. Once the 3-D circle encompasses the obstacles,
the planner finds a better path going around the central core
of the map. A 3-D circle was placed at this point due to the
homotopic class changing so that as the robot replanned it
retained the knowledge that the upper right corner was not
traversable.

REFERENCES

[1] K. Bekris and L. Kavraki, “Greedy but safe replanning under kin-
odynamic constraints,” in Robotics and Automation, 2007 IEEE

3http://www.youtube.com/watch?v=Y1TZMQTEahs

(a) (b) (c) (d)

Fig. 6: Simple environment, black areas are obstacles, robot R with active 3-D search areas depicted by the colored circles.
(a) Robot at start (b) Robot reaches obstacles and determines it cannot fit, replans and leaves permanent 3-D area (in purple)
(c) Robot determines it also cannot traverse the far left gap, replans, and leaves 3-D area (in purple, previous circle in blue)
(d) Robot reaches goal

TABLE I: Combined Graph Algorithm Simulation Results

Map Map Size # of Initial Plan Avg Plan # of 2-D # of 3-D # of Final
Type (cells) Maps Time (s) Time (s) Expands Expands Circles Path Cost

Outdoor
2000× 2000 43 0.84 0.14 64062 7241 2.19 275823
3000× 3000 45 1.68 0.33 149268 7734 5.09 419057
4000× 4000 48 2.42 0.59 234310 7209 7.40 493062

Indoor
2000× 2000 50 1.95 0.83 319069 7718 32 653451
3000× 3000 49 5.13 2.84 850135 9095 64 1076430
4000× 4000 45 10.18 5.15 1426658 8051 63 1325369

TABLE II: A? Comparison Results

Map Map Size # of Initial Plan # of Final
Type (cells) Maps Time (s) Expands Path Cost

Outdoor
2000× 2000 43 35.56 2328883 257108
3000× 3000 45 93.36 5280830 388813
4000× 4000 48 162.14 8506620 458966

Indoor
2000× 2000 50 108.14 7292373 610800
3000× 3000 49 339.23 18380536 978386
4000× 4000 45 594.39 29472991 1233831

International Conference on, april 2007, pp. 704–710.
[2] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-

ments,” in Intelligent Robots and Systems, 2005. (IROS 2005). 2005
IEEE/RSJ International Conference on, aug. 2005, pp. 2210–2215.

[3] M. Likhachev and D. Ferguson, “Planning long dynamically
feasible maneuvers for autonomous vehicles,” Int. J. Rob.
Res., vol. 28, pp. 933–945, August 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1577179.1577184

[4] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” in Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on, vol. 1, 1999, pp.
341–346 vol.1.

[5] A. Kelly, “An intelligent predictive control approach to the high-
speed cross-country autonomous navigation problem,” Robotics Insti-
tute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-95-33, September 1995.

[6] R. Philippsen and R. Siegwart, “Smooth and efficient obstacle avoidance
for a tour guide robot,” in Robotics and Automation, 2003. Proceedings.
ICRA ’03. IEEE International Conference on, vol. 1, sept. 2003, pp.
446–451.

[7] K. Gochev, B. J. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path planning with adaptive dimensionality.” in SOCS, D. Borrajo,
M. Likhachev, and C. L. Lpez, Eds. AAAI Press, 2011.

[8] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path
planning with homotopy class constraints,” in Third Annual Symposium
on Combinatorial Search, 2010.

(a) Start (b) Replan

Fig. 9: (a) the robot initially plans a path through the upper
right corner to the goal. (b) once the robot reaches the corner
it discovers that it cannot maneuver past the obstacles and
plans a path around the loop, leaving a 3-D circle at its
present location.

