
FOCS: Planning by Fusion of Optimal Control & Search and its
application to navigation

Piero Micelli
Department of Engineering and Architecture

University of Parma
Parma, PR 43124 Italy

pitermicelli+@gmail.com

Maxim Likhachev
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

maxim+@cs.cmu.edu

Abstract— Both Optimal Control and Search-based Planning
are used extensively for path planning and have their own set
of advantages and disadvantages. In this paper, we propose
an algorithm FOCS (Fusion of Optimal Control and Search)
that combines these two classes of approaches together. FOCS
finds a path exploiting the advantages of both approaches while
providing a bound on the sub-optimality of its solution. The
returned path is a concatenation of the path found in the
implicit graph constructed by search and the path generated by
following the negative gradient of the value function obtained
as a solution of the Hamilton-Jacobi-Bellman equation. We
analyze the algorithm and illustrate its effectiveness in find-
ing a minimum-time path for a car-like vehicle in different
environments.

I. INTRODUCTION

Many motion planning tasks in robotics can be represented
as a path finding problem on a graph. To this end, the config-
uration space of the robot is discretized with each vertex in
the graph corresponding to one of these discretized robot
configurations, and the motion of a robot is decomposed
into a small set of short motion primitives that constitute
edges in the graph. Heuristic search algorithms such as A∗

can then be used to search this graph for an optimal or
close-to-optimal path from the vertex that corresponds to the
current robot configuration to the vertex that corresponds
to its goal configuration. This approach allows to find a
solution to a planning task rather quickly, even for large
and high-dimensional operating spaces by utilizing anytime
heuristic search algorithms that provide real-time perfor-
mance combined with rigorous sub-optimality bounds with
respect to the chosen discretization. For this reason, search-
based algorithms are widely used for motion planning in
different domains ([5], [9] or [4]).
Another approach to motion planning involves the numerical
solution of the Hamilton-Jacobi-Bellman (HJB) equation. In
this case, the heart of the algorithm relies in finding the
optimal value function (or optimal cost-to-go function) which
is the solution to the first-order differential equation (the HJB
equation). This value function represents the minimal total
cost for completing the task from the current configuration
of the robot. The optimal solution can then be found using
Dynamic Programming Principle [2]. In general, the HJB
equation is a nonlinear partial differential equation, so it is
computed by numerical procedures which allow to find a
linear approximation to the value function ([16], [11], [1]). In

contrast to search-based algorithms, optimal control methods
allow for finding an optimal solution to the motion planning
problem but at the expense of a greater computational cost.
In this paper, we propose to combine these two methods in
a single algorithm that we call FOCS (Fusion of Optimal
Control and Search). The aim of our approach is to address
the motion planning problem exploiting the advantages of
Optimal Control Theory and Search-based Planning. For
instance, consider the navigation scenario shown in Fig-
ure 1 for a non-holonomic robot. Here, the choice of the
set of the primitives near goal configurations A or B is
critical in order for the search-based algorithm to find a
solution through the dense set of obstacles. On the other
hand, optimal control algorithms can only find solutions in
small operating spaces. This motivates us to construct an
approach as follows: Search-based Planning is used to reach
a small region that contains the goal configuration while, the
motion planning task inside the goal region is completed via
Dynamic Programming-based optimal control. FOCS figures
how to concatenate the two portions of the path together to
return a single path with guarantees on its quality.
Since our approach is based on both Search-based Planning
and Optimal Control Theory, in section II we provide a
brief description of their individual operation and properties.
The proposed algorithm FOCS and its properties are then
described in section III. In section IV we show the results
of its application to navigation. In particular, we use FOCS
to find the minimum-time path for a car-like vehicle.

A

B

Fig. 1: A navigation scenario with narrow space around goal
configurations A and B.

Statement of contribution: In this paper Optimal Control
and Search-based Planning are combined in a single algo-
rithm that exploits the advantages of both approaches while

providing a bound on the sub-optimality of its solution.

II. BACKGROUND

Notations. Let Ω ⊂ Rn be a bounded and connected
domain, which represents the operating space and let Ωopt ⊂
Ω be a region such that target state sgoal ∈ Ωopt. Given a
set E, and i ∈ N, Ei = E × E . . . × E (i times) is the
i-th Cartesian power of E and E? ≡

⋃+∞
i=1 E

i. Moreover,
L∞([0, T];E) is the space of essentially bounded function
f : [0, T]→ E and int(E) is the interior of the set E.

A. Search-based Planning

Search-based Planning can be decomposed in two parts:
turning the motion planning problem into a minimum path
problem on a graph, and searching the graph for finding the
optimal solution.

In order to properly represent the problem with a graph,
the first step is to discretize the robot operating space into a
finite set of states (or nodes) S. The choice of state variables
varies depending on the application. For instance, for a car,
one can represent a state with a position vector (x, y) and
an orientation angle. The second step is to define valid
connections (or edges) between these states. To this end,
a common approach is to use a set of motion primitives
which represent short and feasible motions of the robot.
In particular, the valid successors of a given state are the
states that can be reached with these motion primitives while
not colliding with obstacles. Since these motions satisfy the
kinematic constraints of the robot, this approach constructs
a graph where each connection between its nodes represents
a feasible path ([9],[14]).
In this graph we define the cost of the edge between nodes s
and s′ as c(s, s′) , where c(s, s′) = +∞ if there exist no edge
between s and s′. Therefore, SUCCESSOR(s) := {s′ ∈ S |
c(s, s′) 6= +∞}, represents all successors of s and c∗(s, s′)
denotes the cost of an optimal path from s to s′. Moreover,
the path Π : sstart → sgoal denotes a concatenation of edges
that connects the starting state sstart to the goal state sgoal.

The simplest approaches to search a graph are Dijkstra’s
and A∗ algorithms, which return the cost-minimal path be-
tween a given start and goal state. However, these algorithms
can be slow and memory expensive. Moreover, in most cases,
we do not need to find an optimal path, but one that is good
enough. One algorithm that does this is WA∗ (weighted A∗).
WA∗ [15] is a variant of A∗ with inflated heuristics, meaning
the heuristic values are multiplied by an inflation factor η > 1
(for η = 1 WA∗ is equal to A∗). The inflation factor η
provides a greedy flavor to the search, which finds a solution
in less time at the cost of optimality [3], [17], [10]. At
each iteration of its main loop, WA∗ selects the path that
minimizes the function f : S → R:

f(s) = g(s) + ηh(s),

where s is the last node on the path, g(s) denotes the current
cost of the best path from sstart to s, and h(s) is the heuristic
for state s, which is an estimate of the cost of the path from
s to sgoal. In this way, the function f represents an estimate

of the total cost to travel from sstart to sgoal going through
s.

Heuristic h is considered admissible if it never overesti-
mates the best path cost to sgoal, which means that:

h(s) ≤ c∗(s, sgoal),∀s ∈ S, (1)

and is consistent if it satisfies:

{
h(sgoal) = 0,

h(s) ≤ h(s′) + c(s, s′), ∀s, s′ | s′ ∈ SUCCESSOR(s), s 6= sgoal.

In [13] it is proven that if h is admissible, then the solution
of WA∗ is bounded as follows:

g(s) + ηh(s) ≤ η(g∗(s) + h(s)) ∀s ∈ S, (2)

where g∗(s) is the cost of an optimal path from sstart to s;
and does not require re-expansions to guarantee the bound
if h(s) is consistent [10].

B. Optimal Control and Dynamic Programming

Assume that the motion of a robot is modeled by an
ordinary differential equation (ODE) of the form:{

ż(t) = f̃(z(t), u(t)),

z(0) = z0,
(3)

where f̃ : Rn×U → Rn is a continuous function, z0 ∈ Rn is
the initial state, u(t) ∈ L∞([0,+∞[;U) is the control input
and U is a compact set of admissible controls.

Let yz0,u = z(t) be a solution of ODE (3) for the control
u(t), we define the cost functional J : U → R as:

Jz0(u) =

∞∫
0

l(z(r), u(r))dr , (4)

where l : Rn × U → R is a continuous cost function.
With respect to this formulation, our goal is to find an

optimal pair (y∗, u∗) (it can be not unique) which minimizes
cost functional (4).

Dynamic Programming approach [2] provides a method
for the solution of this optimal control problem introducing
the value function v̄ : Rn → R:

v̄(z0) = inf
u∈U

Jz0(u), (5)

that represents the best value of cost functional (4) for the
starting state z0. Since the value function (5) is generally
unbounded, a common approach is to perform the following
rescaling of v̄ (see [8] and [7]):

v̆(z0) =

{
1
λ if v̄(z0) = +∞,
1
λ −

1
λe
−λv̄(z0) otherwise,

(6)

where λ is a positive scalar and is called discount factor.
The change of variable (6) gives several advantages. In
particular, v̆ takes values in

[
0, 1

λ

]
(whereas v̄ is generally

unbounded), and this helps in both the analysis and the

numerical approximation. Once one obtains v̆, the value
function v̄ can be recovered by the relationship:

v̄(z0) = − 1

λ
ln (1− λv̆(z0)) . (7)

Function v̆ : Rn → R is itself a value function defined as

v̆(z0) = inf
u∈U

∞∫
0

l(z(r), u(r))e−λrdr ,

and is the unique viscosity solution of HJB equation:

λv̆(z) + sup
u∈U
{−f(z, u)Dv̆(z)− l(z, u)} = 0, z ∈ Rn , (8)

where Dv̆ denotes the gradient of v̆ at z. See [6] for the
derivation of equation (8).

The dynamic programming method can then be decom-
posed as follows. First the HJB equation (8) is solved
using a numerical procedures which allows finding a linear
approximation to the value function (see [16], [11], [1]).
Then, the optimal feedback control u∗(t) is found choosing
the control such that the minimum in equation (8) is obtained.

Note that the solution of equation (8) does not depend on
the choice of the starting state z0. Once the value function is
computed, it contains all the information needed to compute
the optimal solution y∗z0 for any starting state z0 ∈ Rn.

III. ALGORITHM FOCS

As mentioned before, we first use Search-based Planning
to find a path on a graph in order to reach the small region
Ωopt. Then, we use the Dynamic Programming method to
compute a path that goes to sgoal within Ωopt. Note that in
general this second path does not contain the nodes of the
graph.

To this end, we define the path ΣΠ,y as a concatenation of
the search-based path Π : sstart → s and the optimal path
y∗s , where the state s lies in Ωopt. Let Λ be the finite set that
contains all the possible paths ΣΠ,y . We introduce the cost
function l̄ : Λ→ R:

l̄(ΣΠ,y) = c(Π : sstart → s) + v̄(s).

Here, c(Π : sstart → s) is the cost of the search-based path
Π : sstart → s and, the function v̄ : Ωopt → R is the value
function obtained by applying the Dynamic Programming
method, and therefore it represents the optimal cost to reach
the goal state sgoal starting from any state in Ωopt. In this
way, the cost of the best path Σ∗Π,y is defined as follows:

l̄(Σ∗Π,y) = min
ΣΠ,y∈Λ

l̄(ΣΠ,y). (9)

We use our algorithm FOCS (Algorithm 1) to solve
problem (9). In particular, for η equal to 1, FOCS returns
the best solution ΣΠ,y(η = 1) = Σ∗Π,y (line 3), while for
values of η greater than 1 it provides a sub-optimal solution
to problem (9).

Algorithm 1 FOCS

Inputs: sgoal: goal state, sstart: starting state,
v̄ : Ωopt → R: value function,
h : Ω→ R: heuristic function,
η ≥ 1: inflation factor.

Output: ΣΠ,y(η).
1: procedure PATH(s)
2: ΣΠ,y(η) = [Π : sstart → s, y∗s]
3: return ΣΠ,y(η)

4: procedure PRIORITY(s)
5: if optimal(s) then
6: return g(s) + v̄(s)
7: else
8: return g(s) + ηh(s)

9: procedure MAIN()
10: g(sgoal) =∞ g(sstart) = 0
11: OPEN = CLOSED = ∅
12: insert sstart into OPEN with PRIORITY(sstart)
13: s∗ = sstart
14: optimal(s∗) = false
15: while not optimal(s∗) do
16: for each s′ ∈ SUCCESSOR(s∗) do
17: if s′ was not visited before then
18: g(s′) =∞
19: optimal(s′) = false
20: if s′ ∈ Ωopt then
21: optimal(s′) = true
22: if g(s′) > g(s∗) + c(s∗, s′) then
23: g(s′) = g(s∗) + c(s∗, s′)
24: if s′ /∈ CLOSED then
25: insert s′ into OPEN with PRIORITY(s′)

26: s∗ = argmin
s∈OPEN

{PRIORITY(s)}

27: remove s∗ from OPEN
28: CLOSED = CLOSED ∪ s∗
29: return PATH(s∗)

At each iteration of its main loop, FOCS selects the path
that minimizes the function f̄ : S → R:

f̄(s) =

{
g(s) + v̄(s) if s ∈ Ωopt ,

g(s) + ηh(s) otherwise ,

where s is the last node on the path, g(s) denotes the
current cost of the best path from sstart to s, v̄(s) represents
the optimal cost from s to sgoal and h(s) is the heuristic
function.

FOCS uses the lists OPEN and CLOSED to keep track of
the frontier states and of the expanded states, respectively.
Moreover, it associates with each node the variable optimal
to check if a node lies in Ωopt: if optimal(s) is true, then the
node s is part of Ωopt. In Loop 15-28, the node s∗ represents
the last node on the current best path. In for loop 16-25, the
successors of s∗ are evaluated: in lines 18,19, if s′ is a new
node, the variable g is initialized to infinity and the variable
optimal to false. In line 23, the value of the current best path
from sstart to s′ is updated if the path through s∗ has a lower
cost and, if s′ has not yet been expanded, the node is stored in
OPEN. In this way, as long as the terminal condition in line

15 is not satisfied, at each iteration the node s∗ is updated
with the node in OPEN that minimizes the function f̄ (line
26).

As one can see, FOCS works in a way very similar to
WA∗. There are two main differences between them. One
difference is that, when a node lies in Ωopt, FOCS uses the
value function instead of the heuristic in order to evaluate
the cost from this node to the node that corresponds to the
goal configuration. In addition, FOCS ends when a node
that is part of Ωopt is expanded while WA∗ only when the
node sgoal is reached. Despite these differences, however,
we prove that all the theoretical guarantees for WA∗ hold
for FOCS.

A. Theoretical Analysis

When using an admissible and consistent heuristic, the
theoretical guarantees of WA∗ continue to hold for FOCS.

Theorem 1. Let a ∈ Ωopt be a state such that the terminal
condition in FOCS Algorithm is satisfied, then we have that:

min
s∈OPEN

f̄(s) = g(a) + v̄(a) ≤ ηc∗(sstart, sgoal). (10)

In other words, the cost of the solution returned by FOCS
is no greater than η times the cost of the optimal solution
returned by A∗.

Sketch of Proof. To prove it by contradiction we suppose
that exists a path Π∗ : sstart → sgoal such that:

g(a) + v̄(a) > ηc(Π∗) = ηc∗(sstart, sgoal). (11)

Then there must be at least one state on Π∗ that has not
been expanded and is in OPEN at the time the algorithm
terminates. Let d be such a state, and if there are multiple
such states, then let d be a state that is closest to sstart on
Π∗. Given this, the parent of d, say p, has been expanded.
Consequently g(p) ≤ ηg∗(p) from (2). As a result,

g(d) ≤ g(p) + c(p, d) ≤ ηg∗(p) + c(p, d) ≤ ηg∗(d). (12)

Case 1. d ∈ Ωopt

from (10), g(d) + v̄(d) ≥ g(a) + v̄(a)

from (12), ηg∗(d) + v̄(d) ≥ g(a) + v̄(a)

η (g∗(d) + v̄(d)) ≥ g(a) + v̄(a)

η (g∗(d) + c∗(d, sgoal)) ≥ g(a) + v̄(a)

ηc(Π∗) ≥ g(a) + v̄(a).

Case 2. d /∈ Ωopt

from (10), g(d) + ηh(d) ≥ g(a) + v̄(a)

from (12), ηg∗(d) + ηh(d) ≥ g(a) + v̄(a)

η (g∗(d) + c∗(d, sgoal)) ≥ g(a) + v̄(a)

ηc(Π∗) ≥ g(a) + v̄(a).

�

Theorem 2. Any state in the graph is expanded no more
than 1 time by FOCS.

Sketch of Proof. It is a consequence of the fact that FOCS
maintains a CLOSED list in the same way as WA∗ without
re-expansions does [10]. �

IV. APPLICATION OF FOCS TO NAVIGATION

We use the FOCS Algorithm to find the minimum-time
path for a car-like vehicle. In order to do this, we first
define the graph and the value function (5) for this specific
application.

Lattice-based graph. We use the lattice-state in [9],[14]
to obtain a discretization of the operating space Ω into the
finite set of states S, where every connection between these
states represents a feasible path. As shown in section II,
the two key elements to build a lattice are: the choice of
the representation of the states in the lattice, and the action
space (or control set) used for the inter-state connections.
For this application, each state in the lattice is represented
by coordinates (x, y, θ), where the couple (x, y) represents
the center of the real wheel axle of the vehicle and θ the
orientation angle. The offline construction of the action
space is based on work [14] by Pivtoraiko and Kelly that
aims to create near-minimal spanning action spaces. In
particular, we use an action space that is composed of 8
actions for each state. For instance, Figure 2 illustrates the
action space for the state in the lattice that corresponds to
the vehicle facing right. Moreover, we assign the cost of an
action to be the time it takes to the vehicle for traversing
with constant velocity the path associated with the action.

-2 -1 0 1 2
x (m)

-2

-1

0

1

2

y
 (

m
)

Fig. 2: Action space for a single state in the lattice. For each
action the end point is represented by a cross marker.

Value function. In order to model the minimum-time
problem for a car-like vehicle via Dynamic Programming,
we use the algorithm presented in [12] which allows finding
the shortest, collision-free path, with a limited number of
direction changes.

Let Ω̂opt = R2 × [0, 2π) be the operating space
of the vehicle. Following [12] we model the car-like
vehicle by switched system ż(t) = f̂(z(t), i, ω), where
f̂ : Ω̂opt × {1, 2} × R→ Ω̂opt is defined as:

f̂(z, 1, ω) =

v+ cos θ
v+ sin θ
ω

 , (13)

f̂(z, 2, ω) =

v− cos θ
v− sin θ
ω

 . (14)

Here, v− < 0 < v+ are the speeds associated to forward
and reverse gears and i ∈ {1, 2} denotes the configuration
of the vehicle. Namely, i = 1 is associated to forward gear
and i = 2 to reverse gear. The control signal is given by the
couple α = (ω, σ), where ω : [0,+∞) → [ωmin, ωmax] is
the steering control input and σ = {(t1, i1), (t2, i2), . . .} is
the sequence of switches. In this way, if (tk, ik) ∈ σ, then the
controller switches to subsystem ik at time tk. Moreover we
define the cardinality of σ by |σ| and the set of the control
signals as A = L∞(R, [−ωmin, ωmax])× (R, {1, 2})?.

Let yz,α(t) = z(t) be the trajectory for switched system
(13),(14), and Γ ⊂ Ω̂opt be a target set, closed and such
that int(Γ) 6= ∅, we define a cost function t : Ω̂opt × A →
R ∪ {+∞} that associates to each initial state z0 ∈ Ω̂opt,
and control α the cost:

t(z0, α) =

{
+∞ if yz0,α(t) 6∈ Γ, ∀t > 0 ,

inf
t∈R+
{t : yz0,α(t) ∈ Γ} otherwise .

where we consider t(z0, α) = +∞ if the solution never
reaches set Γ for any t > 0. Thus, we define the function
T : Ω̂opt × N→ R ∪ {+∞}:

T (z0, i) = inf
|σ|≤i

t(z0, α) , (15)

that represents the first time of arrival on the target Γ using
at most i direction changes.

We solve problem (15) via dynamic programming by char-
acterizing the function T in terms of a first order Hamilton-
Jacobi-Bellman equation. To this end, using the change of
variable (6) we obtain the value function:

V (z0, i) =

{
1
λ if T (z0, i) = +∞,
1
λ −

1
λe
−λT (z0,i) otherwise.

(16)

In this work we use Algorithm 2 and 3 in [12], to solve
the value function (16) and to find the optimal trajectory y∗z0 ,
respectively (see [12] for more details).

Let {V ∗,0, . . . , V ∗,Kmax} be the corresponding solution
of Algorithm 2 in [12] to problem (16), with at most
kmax direction changes. Using relationship (7) we define the
function ¯̄v : S → R ∪ {+∞} as:

¯̄v(s) =

{
+∞ if s 6∈ Ω̂opt ,

argmin
k

{
−

1

λ
ln

(
1− λ interp(V ∗,k

, s)
)}

otherwise ,

where interp(V, s) is the function that evaluates the value
cost function at s as a multi-linear interpolation of the vector
V of the values of the cost function on the vertices of a grid.
The function ¯̄v represents the minimum time to reach target
set Γ for any state s in the lattice, using at most Kmax

direction changes. Since we are interested in finding a mini-
mum time trajectory, in this paper we consider an high value
for parameter Kmax. In fact, using an unlimited number of
direction changes (which means i→ +∞ in problem (15)),
it can be proven that the following inequality is true:

¯̄v(s) ≤ c∗(s, sgoal) ∀s ∈ Ω̂opt.

A. Numerical tests

We validate the FOCS Algorithm through the following
scenarios:

1) the complex scenario of Figures 3,4,
2) the parking lot of Figure 5,
3) the randomly generated environment of Figure 6.

We consider a C++ implementation of FOCS Algorithm
running on a 2.6 GHz Intel Core i5 processor with 8GB
RAM. In FOCS Algorithm, the heuristic function h is
computed as the Euclidean distance in 2D (x, y), and the
value function ¯̄v by a C++ implementation of Algorithm 2
in [12]: here Kmax is set to 8 and the target set Γ as an
ellipsoid centered in sgoal with semi-axis rx = ry = 0.06
m and rθ = 0.05 rad. The vehicle has size 4.2× 2 m with a
minimum turning radius of 6 m and constant velocity equal
to 1 ms−1. Moreover, Algorithm 1 runs on a lattice which
employs 16 orientation angles, a 2D (x, y) resolution of 0.2
m for scenario 1, and 0.25 m for scenarios 2,3.

1) Complex scenario. Figures 3,4 show the path
computed by FOCS for a parallel parking maneuver and a
diagonal parking maneuver. In the figures, the boundaries
of the optimal control region Ω̂opt and the switching state
are depicted in red. As per “switching state” we mean
the state s∗ that ends the FOCS Algorithm, which is the
one that joins paths Π : sstart → s∗ (depicted in green)
and y∗s∗ (depicted in blue). Moreover, in all the figures the
position of the center of the rear wheels axle of the vehicle
is represented by a circle. In the first parking maneuver,
the value function ¯̄v is solved on a grid of 67126 vertexes,
over Ω̂opt = [60, 80] × [30, 40] × [0, 2π), and takes a
computational time of 1.8743 s. For the diagonal parking
maneuver, the time to compute the value function on a grid
of 63851 vertexes, over Ω̂opt = [0, 22]× [0, 12]× [0, 2π), is
1.3226 s. In both cases we use discount factor λ = 0.07.
Table I shows the performance of FOCS for these two
parking maneuvers with different values of η.

0 10 20 30 40 50 60 70 80
x (m)

0

5

10

15

20

25

30

35

40

y
 (

m
)

Fig. 3: Planned path for sstart = [24, 4, 0.571] and sgoal =
[67.1, 38, 6.173] with η = 1.

2) Parking lot. In the parking lot environment of Figure 5,
the horizontal and vertical lanes are wide 6 and 10 meters,

0 10 20 30 40 50 60 70 80
x (m)

0

5

10

15

20

25

30

35

40
y
 (

m
)

0 10 20 30 40 50 60 70 80
x (m)

0

5

10

15

20

25

30

35

40

y
 (

m
)

Fig. 4: Planned path for sstart = [60.1, 26.3, 3.711] and
sgoal = [2.5, 5.1, 0.25] with η = 3 (top picture) and η = 1
(bottom picture).

TABLE I: Performance of Algorithm 1 for the parallel and
diagonal parking with different values for inflation factor η

η 3 2 1.6 1.4 1.2 1
Parallel: time (s) 0.004 0.021 0.49 1.419 3.416 5.433
Diagonal: time (s) 0.001 0.193 0.862 2.083 4.938 6.938

TABLE II: Performance of Algorithm 1 for the parking lot
environment with different values for inflation factor η

η 3 2 1.6 1.4 1.2 1
Mean time (s) 0.003 0.004 0.011 0.029 0.102 1.982

TABLE III: Performance of Algorithm 1 for the random
environment with different values for inflation factor η

η 3 2 1.6 1.4 1.2 1
Mean time (s) 0.811 0.884 0.953 1.074 1.306 2.204

respectively. Here, we run the FOCS Algorithm with goal
state sgoal = [13.9, 46.2, π2] and 100 randomly generated
starting states (xrstart, y

r
start, θ

r
start), using different value

of η. In particular for angle θrstart, we chose a random
value between interval [−π6 ,

π
6]∪ [−π6 + π, π6 + π] when the

random couple (xrstart, y
r
start) drops in an horizontal lane,

and interval [π4 ,
3π
4] ∪ [π4 + π, 3π

4 + π] otherwise. For all
the experiments the solution is found. Table II shows the
mean computational time over the 100 tests for each value
of η. In this case, the value function ¯̄v is solved on a grid
of 63676 vertexes, over Ω̂opt = [7, 26] × [44, 57] × [0, 2π).
Using discount factor λ = 0.05, it takes a computational

time of 1.2156 s.

6 10.2 14.4 18.6 22.8 27
x (m)

43

46.75

50.5

54.25

58

y
 (

m
)

Fig. 5: Planned path for sstart = [140, 180, 2.6180] and
sgoal = [13.9, 46.2, π2], with η = 1 in a 200 × 200 meters
parking lot environment.

3) Random environment. We also run the FOCS
Algorithm in the randomly generated environment
of Figure 6. In this environment we use 100 pairs
of random starting and goal states (srgoal, s

r
start).

The performance of these experiments are shown
in Table III. In this case we solve ¯̄v over the torus
Ω̂opt = [xrgoal−9, xrgoal+9]× [yrgoal−9, yrgoal+9]× [0, 2π),
with λ = 0.05. The resolution of the value function takes
a mean time of 1.8426 s for a mean number of 76480
vertexes. For all the experiments the solution is found.

At this point it would be appropriate performing a nu-
merical comparison with the two original algorithms since
the algorithm we propose is a fusion of Optimal Control
and Search-based Planning. However, if we run the search-
based method keeping the same state space resolution and
the same action space, the algorithm always fails in the two
first scenarios. What one can do is to increase the resolution
of the lattice and the number of motion primitives in order
to find a solution even when the operating space over the
target configuration is tight, but at the expense of a greater
computational time. On the other hand, the scenarios 1 − 3

97 102 107 112 117
x (m)

13

18

23

28

33

y
 (

m
)

Fig. 6: Planned path for sstart = [140, 180, 4.4124] and
sgoal = [107, 23, 2.9], with η = 1, in a 200 × 200 meters
randomly generated environment.

cannot be addressed by the Optimal Control method due to
the excessive time required for solving a value function that
covers the entire scenarios. Therefore, we believe that a fair
comparison can be only made with search-based methods
which run on a multi-resolution lattice where, in Ωopt, the
state space and the action space are chosen dense enough in
order to complete the task.

V. CONCLUSIONS

We presented a path planning algorithm based on the
fusion of Optimal Control and Search-based Planning while
providing bounds on the sub-optimality of its solution. The
proposed approach allows us to find a solution for large
environment, even when the operating space over the target
configuration is tight, exploiting the performances of the
search-based algorithms and the accuracy of the Optimal
Control Theory. We have tested the algorithm to find the
minimum-time path for a car-like vehicle, illustrating the
effectiveness of the method with various numerical tests
and different environments. Our future work involves an
extension of the FOCS algorithm for using the Optimal

Control approach also in the start region, since usually in
motion planning problems, the planning complexity arises
near the start and goal regions. Moreover, it also involves
a comparison of our algorithm FOCS with search-based
methods running on a multi-resolution lattice.

ACKNOWLEDGMENTS

This work was in part supported by ONR grant N00014-
15-1-212.

REFERENCES

[1] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf. Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B (Cybernetics), 38(4):943–949, Aug 2008.

[2] Martino Bardi and Italo Capuzzo-Dolcetta. Optimal control and
viscosity solutions of Hamilton-Jacobi-Bellman equations. Springer
Science & Business Media, 2008.

[3] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5–33, 2001.

[4] Jonathan Butzke, Kalin Gochev, Benjamin Holden, Eui-Jung Jung,
and Maxim Likhachev. Planning for a ground-air robotic system
with collaborative localization. In IEEE International Conference on
Robotics and Automation (ICRA), pages 284–291, 2016.

[5] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Single-and
dual-arm motion planning with heuristic search. The International
Journal of Robotics Research, 33(2):305–320, 2014.

[6] Lawrence C Evans. An introduction to mathematical optimal control
theory version 0.2. 1983.

[7] M Falcone. The minimum time problem and its applications to front
propagation. Motion by mean curvature and related topics, pages 70–
88, 1994.

[8] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian Approxi-
mation Schemes for Linear and Hamilton-Jacobi Equations. SIAM,
2013.

[9] Maxim Likhachev and Dave Ferguson. Planning long dynamically fea-
sible maneuvers for autonomous vehicles. The International Journal
of Robotics Research, 28(8):933–945, 2009.

[10] Maxim Likhachev, Geoffrey J Gordon, and Sebastian Thrun. ARA*:
Anytime A* with provable bounds on sub-optimality. In Advances in
Neural Information Processing Systems, pages 767–774, 2004.

[11] D. Liu and Q. Wei. Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems. IEEE Transactions on
Cybernetics, 43(2):779–789, April 2013.

[12] Piero Micelli, Luca Consolini, and Marco Locatelli. Path planning
with limited numbers of maneuvers for automatic guided vehicles: An
optimization-based approach. In IEEE 25th Mediterranean Conference
on Control and Automation (MED), pages 204–209, 2017.

[13] Judea Pearl. Heuristics: intelligent search strategies for computer
problem solving. 1984.

[14] Mihail Pivtoraiko and Alonzo Kelly. Generating near minimal span-
ning control sets for constrained motion planning in discrete state
spaces. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 3231–3237, 2005.

[15] Ira Pohl. First results on the effect of error in heuristic search. Machine
Intelligence, 5:219–236, 1970.

[16] S. Wang, F. Gao, and K. L. Teo. An upwind finite-difference
method for the approximation of viscosity solutions to Hamilton-
Jacobi-Bellman equations. IMA Journal of Mathematical Control and
Information, 17(2):167–178, 2000.

[17] Rong Zhou and Eric A Hansen. Multiple sequence alignment using
anytime A*. In AAAI/IAAI, pages 975–977, 2002.

