
Dynamic Multi-Heuristic A*

Fahad Islam†, Venkatraman Narayanan† and Maxim Likhachev†

Abstract— Many motion planning problems in robotics are
high dimensional planning problems. While sampling-based
motion planning algorithms handle the high dimensionality very
well, the solution qualities are often hard to control due to
the inherent randomization. In addition, they suffer severely
when the configuration space has several ‘narrow passages’.
Search-based planners on the other hand typically provide good
solution qualities and are not affected by narrow passages.
However, in the absence of a good heuristic or when there
are deep local minima in the heuristic, they suffer from the
curse of dimensionality. In this work, our primary contribution
is a method for dynamically generating heuristics, in addition
to the original heuristic(s) used, to guide the search out of
local minima. With the ability to escape local minima easily,
the effect of dimensionality becomes less pronounced. On the
theoretical side, we provide guarantees on completeness and
bounds on suboptimality of the solution found. We compare our
proposed method with the recently published Multi-Heuristic
A* search, and the popular RRT-Connect in a full-body mobile
manipulation domain for the PR2 robot, and show its benefits
over these approaches.

I. INTRODUCTION

Consider a typical mobile manipulation planning problem
for a personal robot: the user requests the robot to fetch
an object from a different room in the home. Not only is
the configuration space of this problem high dimensional,
but there are several ‘narrow passages’ in the configuration
space—an example would be going through tight doors
(Figure 1). The number of valid arm configurations for the
robot when passing through the door is very small; most valid
configurations will require the arms to be folded in. In such
a scenario sampling-based motion planners suffer drastically,
since the probability of sampling a valid configuration in the
narrow passage, from the set of all possible configurations
in the world is vanishingly small. Search-based planners
on the other hand do not suffer from this problem, since
they systematically expand the search graph, guided by a
heuristic. However, if the heuristic were to have a deep local
minimum, then the search-based planner spends a significant
amount of time ‘filling up’ this local minimum or depression
region. As an example, consider a typical heuristic used for
mobile manipulation—the Dijkstra distance to goal for the
base of the robot. While this heuristic guides the search
away from locations where the base needs to travel a lot
to get to the goal, it is completely uninformative for the
other planning dimensions. At the doorway for instance,
the heuristic provides no information on how to generate
successor states for the arm. The result is that the planner

†Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
fi@andrew.cmu.edu, {venkatraman,maxim} at

cs.cmu.edu

Fig. 1. Illustration showing a typical mobile manipulation problem where
a personal robot has to fetch an object from a particular room in the home.
Notice the several narrow corridors and tight spaces in the environment.
Shown in blue is the plan generated by our proposed algorithm, Dynamic
Multi-Heuristic A* (DMHA*).

ends up constructing a very dense graph at the doorway
by trying every arm motion, eventually running out of time
before it finds a state that allows it to get through the door.

The above describes a typical local minima problem for
search-based planners. This effect is only aggravated when
using methods such as Weighted A* [15], where the heuristic
is inflated by some factor greater than 1 to create a greedy
depth-first behavior. In this work, our primary contribution is
a method to address the local minima problem by generating
heuristics dynamically to guide the search out of depression
regions. The intuition behind our method is that it is often
easy to find a state in the vicinity of the local minimum, such
that the found state is not in the depression region. Once we
find this ‘attractor state’, we can generate a heuristic whose
sole purpose is to lead the search towards the attractor state.
Once the search gets out of the depression region, the regular
heuristics can then take over and guide the search towards
the goal in the usual manner.

Multi-Heuristic A* (MHA*) [1] is a recently proposed
method that attempts to leverage the information provided
by multiple (and possibly inadmissible) heuristics to cir-
cumvent local minima during search. Moreover, MHA* is
able to provide guarantees on completeness and solution
suboptimality bounds, despite using inadmissible heuristics.
While the idea and solution quality bounds look promising,
it requires the user to manually design heuristics that can
each be independently useful in different parts of the state
space. This is often a time-consuming process and requires
the user to have excellent domain knowledge for generating
good heuristics. In this work, we obviate the need for the user
to carefully design local-minima free heuristics, by instead

generating heuristics dynamically on-the-fly when necessary.
By using our dynamic heuristic with the MHA* framework,
we can reduce the engineering effort on the part of the
user while at the same time providing all the theoretical
guarantees that MHA* does.

II. RELATED WORK

The idea of automatically detecting local minima and
guiding the search away from them has been explored in
the past. R* search [13] is a randomized version of A*
search that aims to circumvent local minima by generating
random successors for a state, and then solving a series of
short-range local planning problems on demand. Diankov
and Kuffner propose a method called ‘Randomized A*’ [4],
primarily for dealing with discretization issues in continuous
state spaces. They also describe a statistical framework for
learning heuristics from data to minimize engineering effort.
A multi-heuristic search method is proposed in [7], that
generates dynamic subgoals when the search is trapped in
a local minimum. The primary difference between these
methods and our proposed approach is that we do not require
the search to expand the generated subgoal, or a random
successor in the case of R*. Instead, the heuristic that we
generate on the fly works in conjunction with the other
baseline heuristics and attempts to guide those individual
searches out of their local minima. Moreover, the proposed
approach can provide deterministic guarantees on complete-
ness and suboptimality bound of the solution returned, unlike
the probabilistic guarantees of R*.

Agent-centric heuristic search methods form a different
class of methods that handle dynamic heuristic updates.
Most of these methods are based on Learning Real-Time
A* [10], that interleaves planning and execution. Between
the two phases, the algorithm updates the heuristic value
of the expanded states, based on the heuristic values of the
frontier states. While these methods attempt to improve the
heuristic dynamically, they often need to update the heuristic
value of states in the local minima multiple times before
they can exit the depression region. On the other hand, the
dynamic heuristic that we generate only attempts to guide
the search out of the local minima, while not caring about
the true cost-to-go value of the states.

The crux of our method depends on finding a state in the
vicinity of a local minimum such that the found state itself is
not in the local minimum region. A natural way to find this
state is by doing rejection sampling in a region around the
local minimum center. Sampling has been used with great
success in motion planning for robots. RRT-Connect [11]
and PRM [8] are two of the most popular motion planning
algorithms that rely on random sampling of the configu-
ration space. While the former grows two trees randomly
out from the start and goal, the latter builds a roadmap
generated by drawing random collision-free samples from
the configuration space. While we also use sampling in our
method, it is fundamentally different from the sampling-
based family of algorithms in that the sampled state is used
only for generating a new heuristic to guide the actual search.

Methods described in in [9], [17] are complementary to ours
in that they use search techniques to bias the growth of an
RRT tree towards promising regions of the state-space.

III. BACKGROUND: MULTI-HEURISTIC A*
Since we use our dynamic heuristic generation within the

MHA* [1] framework, we first provide a brief summary of
MHA* and its properties.

Notations : In the following, S denotes the finite set of
states of the domain. c(s, s0) denotes the cost of the edge
between s and s

0, if there is no such edge, then c(s, s0) =
1. SUCC(s) := {s0 2 S|c(s, s0) 6= 1}, denotes the set
of all successors of s. We use c

⇤(s, s0) to denote the cost
of the optimal path from state s to s

0, g(s) to denote the
current best path cost from s

start

to s, and h(s) to denote
the heuristic for state s, which is an estimate of the best path
cost from s to s

goal

. A heuristic is admissible if it never
overestimates the best path cost to s

goal

and consistent if it
satisfies, h(s

goal

) = 0 and h(s)  h(s0) + c(s, s0), 8s, s0
such that s

0 2 SUCC(s) and s 6= s

goal

. OPEN denotes a
priority queue, and is typically implemented as a min-heap.
Finally, we use bp(s) to denote the backpointer for a state,
i.e, its best parent state at any point during the search.

Optimal search algorithms such as A* [5] suffer in prob-
lems with large state-spaces because of the dramatic increase
in the time and memory required. WA* [15] is a variant
of A* that is often used to solve such large problems by
trading-off optimality for speed. It uses a priority function
f

0(s) = g(s) + w ⇤ h(s) (w > 1) to provide a greedy flavor
to the search, which often results in faster termination [2],
[19], [12]. WA* guarantees that the suboptimality of the
solution is bounded by w times the optimal cost [14] if
h(s) is admissible, and does not require re-expansions to
guarantee the bound if h(s) is consistent [12].

While WA* speeds up search for many applications, it
relies heavily on the accuracy of the heuristic function. If
the heuristic is subject to local minima however, then WA*’s
performance can degrade severely [6], [18] owing to its
greedy nature. Multi-Heuristic A* (MHA*) [1] is a recently
developed search algorithm that builds on the observation
that while designing a single heuristic that is admissible,
consistent and has shallow local minima is challenging for
complex domains, it is often possible to design a number of
inadmissible heuristics. MHA* uses multiple such (possibly
inadmissible) heuristics to guide the search around local min-
ima, by exploiting the synergy provided by these heuristics,
each of which may be useful in different parts of the search
space.

Formally, MHA* takes in one consistent heuristic (h0),
a set of arbitrary inadmissible heuristics (h1..hn

) and two
weight factors w1 and w2 (both � 1). It then runs multiple
WA* searches (with weight w1) with the inadmissible heuris-
tics (h1..hn

) in a round-robin fashion (using separate priority
queues for each search), while using the consistent heuristic
h0 in a separate WA* search, called the anchor search to
control the round-robin strategy. Specifically, MHA* allows
for expanding only those states s in WA* searches with

Start

Goal

(a) (b) (c)

(d) (e) (f)
Fig. 2. Behavior of DMHA* in a holonomic (x, y, ✓) planning problem. (a)
Start and Goal positions. (b) Expansions (in blue) from the baseline heuristic
queue. (c) The sampled attractor state (in yellow). (d) Expansions (in red)
from the dynamic heuristic queue. (e) The dynamic heuristic queue makes
its way out of the baseline heuristic depression region. (f) The baseline
heuristic queue latches onto the state outside its depression region, and the
dynamic queue is suspended.

inadmissible heuristics whose priority is within w2 of the
smallest priority in the open list of the anchor search (line 26
in Alg. 1). This way, MHA* can guarantee completeness
and bounded suboptimality (w1 ⇤w2) of the solution. In [1],
two variants of MHA* were described, namely Independent
Multi-Heuristic A* (IMHA*) which uses independent g and
h values for each search and Shared Multi-Heuristic A*
(SMHA*) which uses independent h values but shares the g

value among all the searches. By sharing g values, SMHA*
can use a combination of partial paths found by different
searches to overcome local minima, thereby making it more
powerful than IMHA*. Tradeoffs between the two methods
are discussed in [1].

IV. DYNAMIC MULTI-HEURISTIC A*

Our algorithm, Dynamic Multi-Heuristic A* (DMHA*)
builds upon Shared Multi-Heuristic A* (SMHA), where the
g-values are shared among all queues. We first convey the
intuition and behavior of DMHA* with a simple example of
a (x, y, ✓) motion planning problem, shown in Figure 2.

In the figure, the rectangular holonomic robot has to navi-
gate from the marked starting position to the goal position by
passing through a narrow passage (Figure 2a). Let us assume
that there is a simple baseline heuristic computed by running
a 2D Dijkstra search starting from the goal. The heuristic for
a state (x, y, ✓) of the robot is then the Dijkstra distance from
the cell (x, y) to the goal. While this heuristic captures some
information about obstacles in the environment, it does not
account for the orientation of the robot. Since the initial state
of the robot has an ‘incorrect’ orientation for passing through
the narrow passage, the search gets stuck at the entrance
to the narrow passage (expanding states without making
progress toward the goal). This is a local minimum for the
search as the heuristic is no longer decreasing and no longer
providing guidance, causing the search to expand states
uniformly around the state “closest” to the goal according

to the baseline heuristic. Eventually, the search would fill up
the entire depression region around the local minimum.

DMHA* monitors the progress of every baseline heuristic
and creates a dynamic heuristic when all of the individual
baseline heuristics are stuck in a local minimum. In the
example, we have only one baseline heuristic search, shown
in blue (Figure 2b). When the search is “stuck”, DMHA*
randomly samples a state in the vicinity of the local min-
imum such that the sampled state has a smaller baseline
heuristic than the local minimum state. This is shown in
Figure 2c, where a state with a smaller Dijkstra distance
heuristic was sampled in the narrow passage. We call this
state the attractor state (s

attractor

), as we want the search to
be pulled towards it, and away from the local minimum. A
new heuristic is dynamically generated at this point which
biases the search towards s

attractor

. We then instantiate a
new search queue containing all the states generated by
the baseline heuristic, and update their priorities based on
the dynamic heuristic. Figure 2d shows the state expansions
from this dynamic queue. Since this queue contains all the
states that were generated by the baseline heuristic, it directly
expands that state which promises to align with s

attractor

the
best. The dynamic search queue then immediately makes its
way out of the baseline depression region (Figure 2e). Since
the generated successors are shared between all the queues in
SMHA*, the baseline search latches onto the state which is
outside its depression region, and continues to make progress
from thereon. Once any of the baseline searches start making
progress, the dynamic queue is emptied and suspended until
a new local minimum is encountered (Figure 2f).

A. Algorithm
DMHA* is presented in Alg. 1. The colored lines show

our contributed part, while the rest is the original SMHA*
algorithm. As in SMHA*, the planner is provided with 1
consistent heuristic and n (possibly inadmissible) baseline
heuristics. The search proceeds in the usual SMHA* round-
robin fashion, cycling between expansions from different
queues. We additionally have one more OPEN list for the
dynamic heuristic, called OPEN

dyn

, which is always empty
as long as one of the baseline searches is making progress.

The algorithm proceeds by monitoring each of the baseline
heuristic searches to check for a local minimum. This is done
as follows: whenever a state s is expanded from OPEN

i

, we
check if its h-value is lower than the smallest h-value seen
for a state expanded from OPEN

i

previously. The failure of
this check indicates that heuristic i has guided the search
into a local minimum. When all OPEN

i

, i = 1, .., n, and
OPEN

dyn

(when its non-empty) are observed to be stuck
in their respective local minima, OPEN

dyn

is reset with the
states from OPEN

i

(line 36). Note that we can use any i

because all queues in SMHA* contain the exact same set
of frontier states. Alg. 2 describes the INLOCALMINIMA
method that determines if all the baseline heuristic searches
have entered a depression region. We generate s

attractor

in
the vicinity of the local minima, subject to the condition
that at least one of the baseline heuristics for that state

Algorithm 1 DMHA*
1: procedure KEY(s, i)
2: return g(s) + w1 ⇤ h

i

(s);
3:
4: procedure EXPAND(s)
5: Remove s from OPEN

i

8i = 0, . . . , n
6: for each s

0 in SUCC(s) do
7: if s0 was never visited then
8: g(s

0
) =1; bp(s

0
) = null

9: if g(s0) > g(s) + c(s, s
0
) then

10: g(s0) = g(s) + c(s, s
0
); bp(s

0
) = s

11: if s0 has not been expanded in the anchor search then
12: insert/update (s0) in OPEN0 with key(s0, 0)
13: if s0 has not been expanded in any inadmissible search then
14: for i = 1 to n do
15: if key(s0, i)  w2 ⇤ key(s0, 0) then
16: insert/update (s0) in OPEN

i

with key(s0, i)

17:
18: procedure MAIN()
19: g(s

goal

) =1; bp(s
start

) = bp(s
goal

) = null

20: g(s
start

) = 0
21: for i = 0 to n do
22: OPEN

i

= ;
23: insert s

start

into OPEN
i

with key(s
start

, i) as priority
24: while OPEN0 not empty do
25: for i 2 {1, .., n} [dyn do
26: if OPEN

i

.Minkey()  w2 · OPEN0.Minkey() then
27: if g(s

goal

)  OPEN
i

.Minkey() then
28: terminate and return path pointed by bp(s

goal

)

29: s = OPEN
i

.T op()
30: EXPAND(s)
31: if INLOCALMINIMA() then
32: s

attractor

 SAMPLEATTRACTOR()
33: if s

attractor

= NULL then
34: continue // return control to line 25
35: else
36: OPEN

dyn

 COPY(OPEN
i

)
37: h

dyn

(s0) = �(s0, s
attractor

)8s0 2 OPEN
dyn

38: UPDATEPRIORITIES(OPEN
dyn

)

39: else
40: OPEN

dyn

 ;
41: else
42: if g(s

goal

)  OPEN0.Minkey() then
43: terminate and return path pointed by bp(s

goal

)

44: s = OPEN0.T op()
45: EXPAND(s)

is smaller than the best seen for the corresponding queue
(line 37 and 38). The priorities of the states in OPEN

dyn

are then recomputed according to the attractor heuristic,
which is simply a domain dependent distance metric (�)
between a given state and s

attractor

. Note that s

attractor

does not act as a sub-goal, but only pulls the expansions
towards itself, for the duration needed for one of the baseline
searches to escape their local minimum. This is due to the
shared nature of the algorithm, where a successor generated
by OPEN

dyn

is copied to all other OPEN
i

. It could be
the case that there is no s

attractor

or the sampling takes
prohibitively long (greater than T

sampling

), in which case
the SAMPLEATTRACTOR method returns NULL, and we
continue executing the usual round-robin SMHA* search
with the baseline heuristics. The details and complexity of
sampling s

attractor

are in general domain-specific. However,
for most robotics problems such as mobile manipulation,
this is straightforward. The experiments section describes the
sampling procedure we use in greater detail.

Algorithm 2 DMHA* Procedures
1: procedure INLOCALMINIMA()
2: for i 2 {1, .., n} [dyn do
3: S set of all states expanded from OPEN

i

4: s state last expanded from OPEN
i

5: s

0 argminS h

i

(s)
6: if h

i

(s) < h

i

(s0) then
7: return false
8: return true
9: procedure SAMPLEATTRACTOR()

10: for i 2 {1, .., n} do
11: S

i

 set of all states expanded from OPEN
i

12: s

i

 argminSi hi

(s)

13: s

attractor

 sampled state s such that
h

i

(s) < h

i

(s
i

) for at least one i

14: if s
attractor

found within time T

sampling

then
15: return s

attractor

16: else
17: return NULL

B. Theoretical Properties
Theorem 1: The cost of the solution returned by Dynamic

Multi-Heuristic A* is bounded by w1 ⇤ w2 of the optimal
solution cost.

The proof of this follows from the properties of SMHA*.
SMHA* can take in a number of inadmissible heuristics and
still provide a solution quality bound as long as there is one
consistent heuristic [1] used for the ‘anchor’ search. Since
our method runs under the SMHA* framework, it does not
matter if the dynamically generated heuristic is inadmissible.
Moreover, removing or adding a new heuristic does not affect
any of the operations of the anchor search, thereby permitting
us to dynamically add a search queue when necessary.

Theorem 2: Dynamic Multi-Heuristic A* is complete with
respect to the underlying search graph.

While the original SMHA* method is complete, one might
be concerned that the probabilistic sampling component of
DMHA* might affect its completeness. However, since we
always timeout when s

attractor

is not generated within a par-
ticular time, the search falls back to round-robin expansions
using the baseline heuristics. This guarantees completeness.

V. EXPERIMENTAL RESULTS

We evaluated the performance of DMHA* on a 12 DOF
mobile manipulation problem for the PR2 robot. The PR2
robot has two arms with 7 joints each, a holonomic base
and a prismatic spine. The state space representation which
we used for planning is similar to Cohen et al. [3]. The
robot configuration is represented by a 12 DOF pose: a 6
DOF object pose for the end-effector, 2 redundant arm joints,
(x, y, ✓) for the base, and the prismatic spine height. The start
state for the robot is represented by the full body configu-
ration which includes all the 12 dimensions. The goal state
is represented by a 6 DOF pose (x, y, z, roll, pitch, yaw)
for the end-effector and is hence underspecified. The en-
vironment we used for our experiments is a typical home
environment with multiple rooms, doorways and corridors
(Figure 3). The search graph for the problem is constructed
on the fly, by applying a set of ‘motion primitives’ to the
state being expanded. These motion primitives are small
kinematically feasible motions that the robot can execute.

Fig. 3. The house environment model used for experiments.

An example would be a motion primitive that only moves
the base forward by 20cm in the x-direction, while leaving
all other dimensions unchanged.

A. Heuristics

For our baseline heuristics (h1 and h2), we use two
common and easy to compute ones, namely the base heuristic
and the end-effector heuristic [1]. Both of these heuristics
are admissible and they are calculated as follows: the end-
effector heuristic is computed as the Euclidean distance in
(x, y, z) from the end-effector position to the goal position.
The base heuristic is calculated by running a 2D Dijkstra
search for the robot base for which the goal region is defined
by a circle centered around the (x, y) projection of the goal
pose. The purpose of this circular region is to maintain an
admissible heuristic despite having an underspecified search
goal. As the set of possible goal states must have the robot
base within arm’s reach of the goal, we ensure that the
heuristic always underestimates the actual cost to goal by
setting the radius of the circular region to be slightly larger
than the maximum reach of the robot arm. Finally, we use the
base heuristic as the anchor heuristic, h0, since it is consistent
and admissible.

For computing the dynamic heuristic, we only need to
define a domain-specific distance metric for a pair of states.
Here, we simply use the Euclidean distance in the full 12
DOF configuration of the robot, with an additional detail that
every dimension is scaled according to the minimum cost
incurred by an action along that dimension. For instance, if
moving the base 20cm along the x-direction has a cost of 100
units in the graph (the corresponding motion primitive has a
cost of 5 units/cm), then the x-component of our Euclidean
distance is scaled by 5. This helps translate configuration
space distances to costs on the search graph and puts the
heuristic on the same scale as the g values.

B. Sampling an Attractor State

When the baseline heuristic searches are stuck in local
minima, the algorithm requires us to sample an attractor
state in the vicinity of one of the local minima centers,
such that it has a smaller heuristic value. For the mobile
manipulation problem, we do this by sampling a random 12
DOF configuration from a union of 12D hyperellipsoids cen-
tered at the local minima of all baseline heuristic searches,
and reject those samples that do not satisfy the condition
on the heuristic. Alternatively, one could repeatedly apply a

(a) (b)

(c) (d)
Fig. 5. Example showing the operation of the dynamic heuristic. Here,
the problem is to find a plan that takes the PR2 through the doorway. (a)
The starting configuration expanded from the base heuristic search queue (in
blue). (b) A local minimum state for the base heuristic search (blue) and the
sampled attractor state (yellow). (c) Expansions from the dynamic heuristic
search (in red) (d) The base heuristic search escapes the local minimum,
and the dynamic heuristic search is reset.

sequence of random motion primitives starting from the local
minima states, until a resulting state is found that satisfies
the attractor condition.

Note that there could be a scenario where all the baseline
heuristics have reached their respective ‘goals’, i.e, all the
baseline heuristics are identically 0. This typically happens
when the robot has reached a point on the circle around the
goal pose, and the end-effector has its (x, y, z) to be the same
as the goal (x, y, z), but with different roll, pitch and yaw.
This is now a local minimum for the baseline heuristics, and
it is not possible to find an attractor state with a baseline
heuristic smaller than 0. In such a scenario, we instead
sample from the manifold of valid goal configurations for the
robot by generating a base configuration (x, y, ✓) from which
there exists a valid inverse kinematics solution to the goal
object pose. The sampling scheme that is described is only
a strawman proposal to help demonstrate the effectiveness
of DMHA*. In practice, one could use additional domain
knowledge or a more sophisticated sampling method to help
accelerate finding the attractor state.

Figure 5 shows the process of generating an attractor
state. Here, the robot needs to find a plan that takes it
from the starting location (Figure 5a), to a goal on the
other side of the door. Figure 5b shows a state (in blue)
expanded from the base heuristic search. This is a local
minimum state because the arm configuration is such that the
robot cannot pass through the doorway. The algorithm then
immediately generates an attractor state (shown in yellow,
Figure 5b). Note that the base heuristic for this state is
better than that of the local minimum state, since it is
“closer” to the goal according to the base heuristic. Once
the attractor state is generated, the dynamic queue is created
and it starts expanding states (shown in red, Figure 5c),

Fig. 4. The PR2 robot executing a full-body manipulation task that requires moving a broom from the hallway to a room. Note that the planner has to
jointly reason about moving the robot’s base and the arms so that the object can fit through the doorway.

which drive it towards the attractor. At the same time, the
base heuristic search also continues its regular operation,
expanding states in the local minimum. Soon, the dynamic
heuristic search expands a state closely aligned with the
attractor state. Because the successor states are shared among
all the queues, the base heuristic search now immediately
expands this state (because it has a smaller heuristic than its
local minimum heuristic), and continues to make progress
from thereon (Figure 5d). At this point, the dynamic heuristic
search is reset and suspended.

C. Mobile Manipulation on the PR2 Robot
We tested our algorithm DMHA* on the physical PR2

robot for a full-body mobile manipulation task. The task
assigned to the robot was to carry a large T-shaped broom
through the hallway and then into a room. Note that this
problem is challenging in several aspects: the planner has to
jointly reason about moving the base and its arms because
of the tight passages and the large object that it is carrying.
Consequently, simple heuristics such as the base and end-
effector heuristics described earlier are insufficient for this
problem as they cannot provide information to guide the
search in the full 12 DOF space. As a result SMHA*
with these simple heuristics fails to find a solution. On the
contrary, DMHA* generates appropriate dynamic heuristics
whenever necessary to get the search out of the local minima
for the simple heuristics, and is able to find a solution within
60 seconds. The attached video shows the robot executing
the plan while Figure 4 provides some screenshots from the
video.

D. Simulation Results and Comparisons
For comprehensive evaluation, we compared DMHA*

against the original SMHA* method and popular sampling-
based algorithms including RRT-Connect, PRM, KPIECE
and EST from the Open Motion Planning Library
(OMPL) [16]. Unlike the real PR2 experiment which in-
volved a dual-arm mobile manipulation task, we used single-
arm mobile manipulation for our simulation experiments. We
generated 100 random start-goal pairs in the home environ-
ment and ran each of the methods on those instances. For all
the methods the start state was a full 12 DOF configuration of
the robot. For SMHA* and DMHA*, the goal was an under-
specified 6 DOF end-effector pose (x, y, z, roll, pitch, yaw),
while for RRT-Connect, the goal state was a full 12 DOF

TABLE I
COMPARISON OF DMHA* WITH SMHA* AND RRT-CONNECT

SMHA* DMHA*
Success Rate(percent) 25 82
Mean planning time(s) 6.58 4.76
Mean state expansions 465 399
Mean path length base 5.99m, base 6.06m,

arms 7.11rad arms 7.34rad

(a) SMHA* and DMHA*
RRT-Connect DMHA*

Success Rate(percent) 29 82
Mean planning time(s) 10.15 3.79
Mean path length base 8.0m, base 5.4m,

arms 35.5rad arms 7.7rad

(b) RRT-Connect and DMHA*

configuration that satisfied the same 6 DOF end-effector
pose. For SMHA*, we used the same baseline and anchor
heuristics as that used by DMHA*. Also, for both the MHA*
methods we used a value of 25 for w1 and 4 for w2. Since
our evaluation is only on single-arm mobile manipulation
tasks, we constrain the attractor state sampling for DMHA*
by generating only those samples in the vicinity of the
robot that have the arms folded in towards the body, i.e, the
sampling is effectively only in (x, y, ✓) of the robot’s base.
This helps reduce the number of rejections needed before
a valid attractor state can be sampled as rejection sampling
in high-dimensional configuration spaces is expensive. All
experiments were performed on an Intel i7 - 3770(3.4GHz)
PC with 16GB RAM, and the timeout for planning was set
to 60 seconds. We declare a trial as successful if a solution
was returned before the timeout. Of all the sampling-based
methods we compared with, only RRT-Connect achieved a
success rate of over 10% and therefore we report detailed
comparisons only with RRT-Connect.

Table I compares the performance of DMHA* with
SMHA* and RRT-Connect. The algorithms are compared
against the measures of mean planning time, mean number
of expansions (only for SMHA* and DMHA*), and the
mean path length computed in terms of the total distance
traveled by the base (in meters), and the sum angular distance
covered by all the joints (in radians). The mean statistics
are computed only on common trials in which DMHA*
and the method being compared to, both succeeded. Our
proposed method shows substantial improvements in the
success rate as compared to both SMHA* and RRT-Connect.
We are able to solve over 50% more problems than either

Pe
rc

en
ta

ge
 o

f E
xp

er
im

en
ts

Time(secs)
Fig. 6. Planning time distributions for RRT-Connect, SMHA* and DMHA*.
The planning times used for this computation are only from trials on which
all three methods succeeded.

of these methods. This follows from the fact that SMHA*
did not have enough carefully designed baseline heuristics
to help it avoid local minima, while RRT-Connect simply
cannot handle the large number of narrow passages in the
configuration space. The mean planning time for DMHA* is
only slightly better than that for SMHA*. This is expected,
since the majority of problems solved by SMHA* are the
ones that have no local minima. In those cases DMHA*
behaves exactly the same as SMHA*. The mean planning
time for RRT-Connect is much larger however, since it takes
significant time to sample configurations in narrow passages.

The histogram in Figure 6 shows the distributions of
planning times for RRT-Connect, SMHA* and DMHA*,
computed over planning trials where all three methods were
successful. While the distribution for DMHA* is skewed to-
wards the left, SMHA* and RRT-Connect both have centered
distributions. In particular, DMHA* found a solution within
2 seconds in 58% of the common successful trials. This
demonstrates that DMHA* not only provides better success
rates but also better planning times.

The number of expansions and average path lengths are
more or less identical for SMHA* and DMHA*. This is
expected since they are both search-based methods that
explicitly optimize for solution quality. On the other hand,
the average path lengths for RRT-Connect are significantly
worse (even after running a short-cutter on the final path),
especially for the joint angle motions.

VI. CONCLUSIONS

We presented DMHA*, an algorithm that dynamically
generates heuristics to avoid local minima in search-based
planning. This relieves the user from manually engineering
heuristics based on the domain to help improve search per-
formance. The dynamically generated heuristic is used under
the Multi-Heuristic A* framework, where search information
is shared between multiple search queues. From a theo-
retical side, DMHA* provides guarantees on completeness
and bounds on suboptimality of the solution found. Our
experiments on full-body mobile manipulation for the PR2
robot show that DMHA* outperforms a naive version of
SMHA* that uses only simple heuristics designed without
much effort, and RRT-Connect, a popular sampling-based

motion planning algorithm. In particular, our success rate for
a typical home environment was significantly better than the
other methods, showing that DMHA* is an ideal candidate
for personal robot mobile manipulation planning.

An interesting direction for future work would be to
leverage more sophisticated sampling schemes to accelerate
finding the attractor state. Additionally, we would like to
extend our method to an anytime version, where the solution
quality can be improved as time permits.

ACKNOWLEDGMENTS

This research was sponsored by the ONR DR-IRIS MURI
grant #N00014-09-1-1052. The authors would like to thank
Mike Phillips for fruitful discussions.

REFERENCES

[1] Sandip Aine, Siddharth Swaminathan, Venkatraman Narayanan, Victor
Hwang, and Maxim Likhachev. Multi-heuristic A*. In Proceedings
of Robotics: Science and Systems, Berkeley, USA, July 2014.

[2] B. Bonet and H. Geffner. Planning as heuristic search. Artificial
Intelligence, 129(1-2):5–33, 2001.

[3] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Search-
based planning for dual-arm manipulation with upright orientation
constraints. In Robotics and Automation (ICRA), 2012 IEEE Inter-
national Conference on, pages 3784–3790. IEEE, 2012.

[4] Rosen Diankov and James Kuffner. Randomized statistical path
planning. In Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pages 1–6. IEEE, 2007.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100–107, July 1968.

[6] C. Hernández and J. A. Baier. Avoiding and escaping depressions in
real-time heuristic search. J. Artif. Intell. Res. (JAIR), 43:523–570,
2012.

[7] Pekka Isto. Path planning by multiheuristic search via subgoals. In
Proceedings of the 27th International Symposium on Industrial Robots,
CEU, pages 71272–6, 1996.

[8] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. Robotics and Automation, IEEE Transactions on,
12(4):566–580, 1996.

[9] Scott Kiesel, Ethan Burns, and Wheeler Ruml. Abstraction-guided
sampling for motion planning. In SOCS, 2012.

[10] Richard E Korf. Real-time heuristic search. Artificial intelligence,
42(2):189–211, 1990.

[11] James J. Kuffner and Steven M. LaValle. Rrt-connect: An efficient
approach to single-query path planning. In ICRA, pages 995–1001.
IEEE, 2000.

[12] M. Likhachev, G. J. Gordon, and S. Thrun. ARA*: Anytime A* with
provable bounds on sub-optimality. In Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[13] Maxim Likhachev and Anthony Stentz. R* search. Lab Papers
(GRASP), page 23, 2008.

[14] J. Pearl. Heuristics: intelligent search strategies for computer problem
solving. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1984.

[15] I. Pohl. First results on the effect of error in heuristic search. Machine
Intelligence, 5:219–236, 1970.

[16] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–
82, December 2012.

[17] Vojtěch Vonásek, Jan Faigl, Tomáš Krajnı́k, and Libor Přeučil. Rrt-
path–a guided rapidly exploring random tree. In Robot Motion and
Control 2009, pages 307–316. Springer, 2009.

[18] C. M. Wilt and W. Ruml. When does weighted A* fail? In SOCS.
AAAI Press, 2012.

[19] R. Zhou and E. A. Hansen. Multiple sequence alignment using
anytime a*. In Proceedings of 18th National Conference on Artificial
Intelligence AAAI’2002, pages 975–976, 2002.

