
Bidirectional Heuristic Search for Motion Planning with an Extend
Operator

Allen Cheng, Dhruv Mauria Saxena, and Maxim Likhachev

Abstract— Sampling-based approaches are often favored in
robotics for high-dimensional motion planning for their fast
exploration of the search space. However, at best they offer
asymptotic guarantees on solution quality due to their inherent
stochasticity. While planning, the majority of effort is often
spent near the start and goal configurations with a large
amount of free space in between. Bidirectional approaches
such as RRT-Connect exploit this fact by greedily extending
and connecting search frontiers that simultaneously propagate
from the start and goal configurations of a planning problem.
In this work, we use such an extend operator for bidirectional
heuristic search-based planners, which typically struggle with
high-dimensionality. In doing so, we address the difficulty that
these bidirectional planners face with connecting frontiers of
both search efforts while providing suboptimality bounds on
solution quality. We validate our simple approach on high-
dimensional manipulation tasks, demonstrating significantly
reduced search effort when compared against other popular
bidirectional algorithms, both search-based and sampling. Our
algorithm maintains theoretical guarantees on suboptimality
and completeness for a given resolution. In addition, the
solutions found by our planner are of higher quality compared
to those found by the other baseline algorithms.

I. INTRODUCTION

Consider the manipulation problem of pick-and-place in
cluttered environments with a high degree-of-freedom (DoF)
robotic arm, a challenge commonly faced in industrial set-
tings. Successful grasping often requires tight and minimal
tolerances due to clutter around the start and goal configura-
tions. This demands a large amount of search effort around
the start and goal region, but the majority of the intermediate
path is typically collision-free. Naive search-based planners
require procedural reasoning over the possible arm configu-
rations when planning through this free space to maintain op-
timality guarantees. To increase planning efficiency in these
scenarios, biased heuristics may be used, but they suffer
when presented with cluttered environments that induce local
minima. Planning with adaptive dimensionality [1] exploits
this insight to quickly find paths in low-dimensional repre-
sentations before executing a high-dimensional search in a
tunnel around those paths. Despite these advances, sampling-
based approaches are often still favored for planning in
high-dimensions due to their attractive planning speeds.
By abandoning deterministic guarantees on optimality of
found solutions, sampling-based planners randomly probe
the configuration space to quickly find feasible trajectories.
As a result, the solutions found by these planners can be

All authors are affiliated with The Robotics Institute, Carnegie
Mellon University, Pittsburgh, USA {allenc1, dsaxena,
maxim}@cs.cmu.edu

inconsistent and exhibit high variance, whereas those found
by the more deterministic search-based planners are fairly
consistent with each other.1

Nicholson first proposed bidirectional search as two sep-
arate searches initialized from both the start and goal [2].
In theory, these planners can exponentially reduce the num-
ber of expanded states, making them an attractive class
of algorithms. It is well-known that informative heuristics
significantly improve search efficiency for unidirectional
search, so using them for both searches in a bidirectional
algorithm is an intuitive extension. In practice, however, the
frontiers of both search efforts often miss each other entirely,
without any overlap in the search space. The searches can
end up expending significantly more effort in these cases,
contrary to the motivating intuition. This problem is exacer-
bated in high-dimensional state spaces, which are commonly
found in robotic motion planning problems. Bidirectional
sampling-based approaches on the other hand, such as the
RRT-Connect algorithm [3], offer fast planning performance
and scale well with high-dimensionality but at the cost of
deterministic theoretical guarantees on solution quality and
completeness.

In our work, we present a simple but effective extension
that aims to overcome the known shortcomings of bidirec-
tional heuristic search with the use of an extend operator.
The extend operator is used to connect the search frontiers
being explored simultaneously but independently from the
start and goal configurations. This operator was originally
proposed as a greedy heuristic for connecting forward and
backward searches in bidirectional sampling-based planners
[3]. Motivated by the example described earlier, we adopt
this operator for the heuristic search setting to efficiently
reason through free space in high DoF motion planning. With
our modification, we maintain consistency and deterministic
bounds on the suboptimality of found solutions, for a given
resolution of action and state space.

II. RELATED WORK

A. Bidirectional Planning Algorithms

1) RRT-Connect: The RRT-Connect algorithm [3] first
introduced the extend function in the context of motion
planning without kinodynamic constraints. The sampling-
based planner dynamically constructs two rapidly-exploring
random trees [4] (from the start and goal configurations). It
attempts to connect both trees using an EXTEND operator.

1Consistency refers to the likeness between paths with similar start-goal
pairs with respect to some metric.



This operator takes a single, fixed-size step towards the
nearest-neighbor in the opposite tree. A CONNECT function
repeatedly executes EXTEND until a node in the opposite
tree is reached or an obstacle blocks any further extension
attempts. The greedy nature of RRT-Connect leads to fast
performance and its sampling behavior allows it to trans-
late well to high-dimensional motion planning problems.
However, the algorithm has no guarantees on optimality
or bounded suboptimality, and solution quality can vary
greatly. Recent work [5], [6] has attempted to address this
by adopting the local rewiring procedure from RRT* [7], but
these approaches can only guarantee asymptotic optimality.

2) Heuristic Search-Based Algorithms: Pohl first ex-
plored the combination of bidirectional and heuristic search
with the classical front-to-back bidirectional heuristic search
algorithm, BHPA [8]. However, the theoretical benefits were
never consistently reflected in experiments. It was later noted
that the frontiers for forward and backward search often
missed or crossed through each other in practice [9]. This
observation, considered to be crux of bidirectional heuristic
search, motivated Champeaux and Sint to develop the Bidi-
rectional Heuristic Front-to-Front Algorithm (BHFFA) [10].
BHFFA achieves reduced expansions compared to BHPA at
the cost of having to exhaustively compute a front-to-front
distance for entire frontiers. For high-dimensional motion
planning, this is prohibitively expensive to compute. Recent
research has focused on ensuring the two search efforts
“meet in the middle” through the use of a unique priority
function [11]. However, this property has no clear use in
the context of complex motion planning, where frontier
intersection may not always be in the middle.

3) A*-Connect: The recently introduced A*-Connect al-
gorithm [12] leverages a Multi-Heuristic A* (MHA*) [13]
framework to guide search bidirectionally towards both the
opposite root and frontier in parallel. MHA* provides a
structured framework enabling the use of multiple inadmis-
sible heuristic functions while still providing guarantees on
completeness and bounds on suboptimality via a consistent
anchor heuristic. MHA* maintains separate priority queues
containing the frontier states for each heuristic for each
search. Specifically, A*-Connect runs two Improved MHA*
searches [14]. For each, the consistent anchor heuristic serves
as a front-to-back estimate. Additional heuristics, referred
to as connect heuristics, are used to estimate the front-
to-front cost to the opposite frontier. However, instead of
exhaustively computing the front-to-front heuristic between
all pairs of states in the frontier of the opposite search, A*-
Connect computes the connect heuristic for selected pivot
states. Pivot states are the last expanded states of the opposite
search for each heuristic, and serve as an estimate for the
“most promising” state for frontier connection. Effectively,
the connect heuristic is a fast-to-compute estimate of the
cost to the opposite frontier. A*-Connect produces bounded
suboptimal solutions by addressing the issue of crossing
frontiers in an efficient, structured manner. Our proposed
algorithm similarly uses front-to-end heuristics for structured
bidirectional search, but instead of an additional connect

heuristic to guide front-to-front search, an extend operator
is used to greedily extend to the opposite tree.

B. Tree Extension

1) EXTEND/ CONNECT Operators: The extend operator
responsible for connecting pairs of states has been widely
explored in robotic motion planning. The extend operator’s
job is two-fold: it must select a state as a local goal
using a distance metric and perform the extension itself.
For bidirectional sampling-based methods, nearest-neighbors
(NN) are selected as extension targets. For problems with
kinematic or kinodynamic constraints, the extension must
solve a two-point boundary value problem (BVP). Lavalle
[15] proposes motion primitives that describe a predefined
set of discretized control actions, but this does not fully solve
the BVP. Prior research has offered solutions that include the
use of optimal controllers [16] and splines [17]. Since we use
the same nearest-neighbors extend operator in our approach,
these methodologies and adaptations to various domains can
be easily adopted into our algorithm.

2) Adaptive Motion Primitives: Cohen, et al. use adaptive
motion primitives [18] that are generated on-the-fly during
search. In the example scenario we introduced previously,
they are used to connect the search frontier to the goal con-
figuration. The goal may be underdefined vis-á-vis degrees-
of-freedom of the robot and thus differ from the dimensional-
ity of the search space. For example, we may specify a 6 DoF
goal pose in SE(3) while planning for a 7 DoF robot arm
(i.e. planning for 7 joints). The redundant joint allows for
a set of states that satisfy the goal constraint. An analytical
inverse kinematics (IK) solver is used to generate a valid
state when the search is sufficiently close to the goal. A
dynamically constructed motion primitive is used to reach
the goal state. For the robotic arm, this translates into to
a linearly-interpolated path between the valid search state
and the goal state. The use of adaptive motion primitives
is shown to improve search efficiency while preserving the
planner’s theoretical guarantees. The extend operator can be
viewed as an adaptive motion primitive to connect more
generally to any state in the opposite frontier.

III. BIDIRECTIONAL HEURISTIC SEARCH WITH AN
EXTEND OPERATOR

A. Notation and Assumptions

We assume the planning problem can be formulated as
a graph-search problem, where S refers to the finite set of
states for the planning domain. The start and goal states are
denoted as sstart and sgoal respectively. The cost function
c(s,s′) denotes the cost of the edge between states s and
s′. If no such edge exists, c(s,s′) = ∞. We further assume
that c(s,s′) ≥ 0 ∀ s,s′ pairs. Let g(s) denote the current
best path cost from sstart to s. The successor function,
SUCC(s) := {s′ ∈ S|c(s,s′) 6=∞}, denotes the set of reachable
successors for state s. The optimal path between s and s′ has
cost c∗(s,s′). The optimal path from sstart to s has cost g∗(s).

The heuristic for state s is denoted as h(s) and is used
to estimate the best path cost from s to sgoal . h(s) is



considered admissible if it never overestimates the path cost
to sgoal , that is h(s)≤ c∗(s,sgoal)∀s ∈ S, and consistent if it
satisfies h(sgoal) = 0 and h(s) ≤ h(s′) + c(s,s′)∀s,s′ where
s′ ∈ SUCC(s), s ∈ S, and s 6= sgoal . OPEN denotes a priority
queue typically ordered with priority f (s) = g(s)+ h(s) or
f (s) = g(s)+ωh(s) given an inflation factor ω ≥ 1. This is
used to store frontier states, and CLOSED denotes states
that have been expanded.

We use dir and dir to denote the current
and opposite search directions respectively. If
s 6∈ (OPENdir ∪ CLOSEDdir), gdir(s) = ∞. An extension
function NEWSTATE(s,sNN ,s′) (Alg. 1, line 7), takes in
search state s and the nearest neighbor in the opposite tree
sNN . It greedily moves from s towards sNN by taking a
step of ε-distance (or smaller if distance from s to sNN is
smaller) and is successful if resulting state s′ is reachable
and collision-free.

B. Algorithm

At a high level, our algorithm runs two A*-like algorithms
from both start and goal configurations while using an extend
operator to guide front-to-front connection. We choose to an-
alyze our strategy using weighted A* (WA*) [19] to run the
forward and backward searches. In effect, an inflation factor
ω ≥ 1 is used to bias the front-to-back heuristic. Since our
approach is bidirectional, we initialize separate OPEN and
CLOSED sets for each search direction. sstart is initialized
as the start configuration for the forward search, and the
goal configuration for the backward search. sgoal follows in a
complementary manner. The main loop iteratively runs WA*
where CONNECT is called after every expansion. If connec-
tion is successful, the connecting state in the opposite frontier
is added to the current OPEN list. After each iteration, the
search direction is swapped (Alg. 2 line 29). Search stops
when smin satisfies the TERMINATIONCRITERION (Alg. 2
line 3). This occurs when the considered state exists in
both search efforts. In other words, smin is either in the
OPEN or CLOSED lists for both directions (Alg. 2 line
4). At this point, the search terminates, and the solution
path is reconstructed by recursively tracing the parents of
the connecting state in both directions.

C. Extend Operator

The connection process, depicted in Fig. 1, is a slightly
modified version of the one used in RRT-Connect and can be
viewed as a greedy front-to-front heuristic to directly address
the problem of missing frontiers. Given a state and the
current search direction, CONNECT first selects the nearest-
neighbor sNN in the opposite search tree using a domain-
dependent distance function, 4 (Alg. 1, line 4). It then at-
tempts to connect to the chosen state by repeatedly applying
EXTEND until either sNN is reached or no further extensions
are possible. Feasible extension states from NEWSTATE are
treated similarly to successor states in A* expansion and
added to OPENdir with priority PRIORITY-C if s′ is not
in CLOSEDdir. For intermediate states (where s′ 6= sNN),
this is would be equivalent to PRIORITY (Alg. 2, line 1). In

Fig. 1: Extend Operator On expansion, smin takes ε-size step
to successor states, s′, towards the nearest-neighbor state,
sNN . If a connection is made, sNN has the root-to-state cost
for forward and backward search, as shown with blue and
red edges respectively.

Algorithm 1 Extend Operator
1: procedure PRIORITY-C(s,dir)
2: return gdir(s)+min(ω ·hdir(s),gdir(s))
3: procedure NEARESTNEIGHBOR(scur,dir)
4: return argmin

s∈OPENdir ∪CLOSEDdir

4(s,scur)

5: procedure EXTEND(s,sNN ,dir)
6: EXTENDSTATUS← Trapped
7: if NEWSTATE(s,sNN ,s′) then
8: if s′ = sNN then
9: EXTENDSTATUS = Reached

10: else
11: EXTENDSTATUS = Advanced
12: if s′ 6∈ OPENdir then
13: gdir(s′) = ∞

14: if gdir(s′)> gdir(s)+ c(s,s′) then
15: gdir(s′) = gdir(s)+ c(s,s′)
16: if s′ 6∈ CLOSEDdir then
17: Insert/Update s′ in OPENdir with PRIORITY-C(s′,dir)
18: return EXTENDSTATUS
19: procedure CONNECT(s,dir)
20: sNN ← NEARESTNEIGHBOR(s,dir)
21: repeat
22: EXTENDSTATUS← EXTEND(s,sNN ,dir)
23: until not EXTENDSTATUS = Advanced

the case that a successful connection between both searches
exists (when s′ = sNN), PRIORITY-C additionally considers
gdir(s

′), calculated in the opposite search, when estimating
cost-to-go for s′.

Variations to the algorithm naturally arise as one may
choose the frequency at which valid intermediate states s′

are added to the open list. In the context of heuristic search,
intermediate states added from extend iterations may not
lie on the discretized graph induced by the SUCC function.
For this reason, we focus on the variation that does not
add these intermediate successors, effectively requiring that
EXTENDSTATUS = Reached before adding to OPENdir in
line 17 in Algorithm 1.



Algorithm 2 Bidirectional WA* with Extend Operator
1: procedure PRIORITY(s,dir)
2: return gdir(s)+ω ·hdir(s)
3: procedure TERMINATIONCRITERION(s)
4: return s ∈ (OPEN f ∪CLOSED f )∩ (OPENb ∪CLOSEDb)

5: procedure EXPAND(s,dir)
6: Remove s from OPENdir
7: CLOSEDdir ← CLOSEDdir ∪{s}
8: for s′ ∈ SUCCdir(s) do
9: if s′ 6∈ OPENdir then

10: gdir(s′) = ∞

11: if gdir(s′)> gdir(s)+ c(s,s′) then
12: gdir(s′) = gdir(s)+ c(s,s′)
13: if s′ 6∈ CLOSEDdir then
14: Insert/Update s′ in OPENdir with PRIORITY-C(s′,dir)
15: procedure MAIN(args)
16: OPEN f ← /0,OPENb← /0
17: CLOSED f ← /0,CLOSEDb← /0
18: g f (sstart)← 0,g f (sgoal)← ∞

19: gb(sstart)← ∞,gb(sgoal)← 0
20: Insert sstart into OPEN f with PRIORITY-C(sstart , f )
21: Insert sgoal into OPENb with PRIORITY-C(sgoal ,b)
22: dir = f
23: while not OPENdir.EMPTY() do
24: smin← argmin

s∈OPENdir

PRIORITY-C(s,dir)

25: if TERMINATIONCRITERION(smin) then
26: return EXTRACTPATH(smin)
27: EXPAND(smin,dir)
28: CONNECT(smin,dir)
29: dir = dir

D. Theoretical Analysis

These properties hold for a bidirectional heuristic-search
using any A* variant for forward and backward search, but
we consider the case of using WA*. As our framework
follows closely using forward and backward WA* (without
re-expansions), we borrow the proofs of [20].

Theorem 1: On expansion for each direction, it holds
that g-values are at most ω-suboptimal, i.e., gdir(s) ≤
ωg∗dir(s)∀s ∈ CLOSEDdir.

Proof: (Sketch) As WA* is used for both searches here,
we directly borrow this property from [20].

Theorem 2: On expansion for each direction, it
holds that PRIORITY(smin,dir) ≤ ωg∗(sgoal) for smin =
argmin

s∈OPENdir

PRIORITY(s,dir).

Proof: (Sketch) This proof directly follows Theorem 2 of
[13].

Theorem 3: (Bounded suboptimality) When the main
search exits, the returned solution (if one exists) has a cost
which is at most ω-suboptimal, or g(sgoal)≤ ωg∗(sgoal).

Proof: (Sketch) The strategy terminates either when both
OPEN lists are exhausted (no solution exists) or when
TERMINATIONCRITERION is satisfied, which occurs when
expanded state smin exists in both searches (Alg. 2 line 25).
There are two cases for which smin is expanded and it exists
in both searches:

1) smin was expanded in search dir, and was generated
as a reachable successor of another state via SUCC in
search dir

2) smin was expanded in search dir, and a successful

Fig. 2: Visualization of WA*-Extend for the single-arm plan-
ning domain. The found trajectory is colored to denote the
different regions of search. Green and red denote the forward
and backward search respectively, and blue highlights the
connection between frontiers.

connection was made to it via EXTEND from search
dir

The first scenario is a direct extension of WA*,
so we can apply the same proof as described in
[20]. Let us now consider the second scenario where
a connection is made. Since connection was success-
ful, there are two possible priorities of smin stemming
from Alg. 1 line 2. The unique case arises when
PRIORITY-C(smin,dir) = gdir(smin) + gdir(smin). By defini-
tion, PRIORITY-C(smin,dir) ≤ PRIORITY(smin,dir). When
smin is expanded with a priority based on two g-values, then
g(sgoal) ≤ gdir(smin) + gdir(smin) = PRIORITY(smin,dir) ≤
ωg∗(sgoal), by Theorem 2.

IV. EXPERIMENTAL RESULTS

We compare our approach to search-based and sampling-
based planners in the context of high-dimensional, single-
arm manipulation. Since any graph search algorithm may
be used in our framework, we choose to run our algo-
rithm, that is weighted A* without re-expansions, bidi-
rectionally with an extend operator (WA*-Extend). We
evaluate WA*-Extend’s performance against unidirectional
WA*, A*-Connect, BHPAw [21], RRT-Connect, and RRT*.
These include unidirectional, bidirectional, search-based, and
sampling-based planners.

A. Single-Arm Motion Planning

We evaluate the use of the extend operator in bidirectional
heuristic search in the domain of high-dimensional manip-
ulation. All experiments use a simulated model of a PR2
robot’s 7 DoF arm. Each test involves generating collision
free trajectories to a specified goal. Start configurations are
randomly generated such that they lie above the cluttered



TABLE I: Performance for Single-Arm Motion Planning

WA*-Extend WA* A*-Connect BHPA RRT-Connect RRT*
Success (%) 99 58 100 98 100 98

State Expansions 2027.24 119284.95 21364.71 43638.84 - -
Solution Cost (rad) 14.43 11.17 11.59 12.77 22.49 16.55
Total Plan Time(s) 3.47 31.58 6.44 17.51 0.09 7.09

Post Processing Time (ms) 6.95 7.97 6.63 6.07 5.54 4.44
Processed Solution Cost (rad) 11.68 9.59 9.04 10.88 12.89 10.41

table top, and goal configurations are similarly generated to
be within a feasible region in the shelf. The presented setup
in Fig. 2 reproduces manipulation tasks that are common in
industrial settings where large amounts of free space exists
between start and goal configurations. In the presence of
high clutter all throughout the workspace, the search would
less likely be able to utilize the extend operator, leading to
performance degradation.

1) Heuristics: For high-dimensional planning, it is well-
known that solutions to simplified, lower-dimensional prob-
lems can be used as informative heuristic for the original
problem [22]. In the context of single-arm planning, a 6 DoF
goal constraint describes the desired end effector position
and orientation in SE(3). The solution to the relaxed problem
of only considering the goal position (x,y,z) ∈ R3 performs
well as a proxy heuristic for the full dimensional representa-
tion. Cohen et al [23], discretize the environment using 3D
voxels and find the shortest feasible path to the simplified
goal using breadth first search, referred to as hBFS. In
practice, this heuristic proves to outperform other commonly
used estimates such as heuc, the Euclidean distance between
states, when applied to obstacles in cluttered workspaces.

2) Motion Primitives: Motion primitives are used to en-
code kinematic constraints of a robot and ensure that a valid
transition between adjacent states exists. In search-based
planning, the robot’s action space is discretized to control the
branching factor of search. For the 7 DoF arm, we use a base
set of 14 static motion primitives, corresponding to moving
each joint by a small, fixed amount in both directions.

3) Extend Operator: The extend operator used in this
experiment selects the nearest-neighbor in joint space and
attempts a direct extension using a linearly interpolated path.
For all our experiments, the bidirectional search we imple-
ment executes the extend operator until either a connection
to sNN is made, or the extension is trapped due to an obstacle
and cannot go any further. Another option would be to
directly interpolate between end-effector poses similar to the
approach of Cohen et al [18] for adaptive snapping to goal
configuration. This requires repeatedly computing inverse
kinematics solutions which can be computationally costly.

B. Implementation Details

Since our strategy requires extensions to the opposite fron-
tier, we use the k-d tree library nanoflann [24] to dynamically
add states and perform efficient NN queries. The search-
based planners in our tests use an inflation factor ω of 100.
hBFS is used as the front-to-back, anchoring heuristic for

Fig. 3: In the left (right) plot, each data point illustrates
WA*-Extend state expansions (post-processed solution cost)
against A*-Connect for a single run.

A*-Connect as well as the main informative heuristic for
remaining heuristic search-based planners. For the connect
heuristic, we use the fast-to-compute heuc as Islam suggests
[12]. For bidirectional planners, we swap directions after
expanding 10 times [12], but attempt to connect frontiers
on each iteration WA*-Extend. Our baseline sampling-based
planners, RRT-Connect and RRT*, use implementations pro-
vided from the Open Motion Planning Library (OMPL) [25].
RRT* is conditioned to terminate after a first valid solution
is found. We post process all solutions using existing OMPL
implementations to simplify and smooth paths.

C. Results

Table I compares our approach against a suite of planners.
We consider 100 different planning problems with randomly
generated start and goal pairs such that all planners find
a solution for them given a large timeout. We then say a
planner failed if that solution took longer than 120 seconds to
find. Except for the success percentage, only the successful
trials are used to compute the statistics in Table I.

1) Comparison with Search-Based Planners: Bidirec-
tional variants are faster to find solutions compared to
unidirectional planners for the high DoF planning problems
we consider. Compared to the other search-based planners,
our approach has the largest averaged solution cost but
outperforms its search-based counterparts in terms of speed
and reduced state expansions. In Fig. 3, we compare our
approach to A*-Connect, which is more competitive com-
pared to the other bidirectional heuristic search, BHPAw. The
left plot shows how WA*-Extend commonly expands 100 to
1000 times less states than A*-Connect on each run. The
right plot illustrates that comparable solution cost is achieved
after post-processing. Ultimately, this highlights the extend
operator’s effectiveness in efficiently connecting frontiers. In
our example domain, this translates to interpolated paths in



TABLE II: Evaluating Solution Consistency

WA*-Extend WA* A*-Connect BHPAw RRT-Connect RRT*
µc 12.79 8.81 9.30 15.92 27.43 12.71
σc - - - - 8.06 2.11

free regions as shown in Fig. 2 where the backward search
is able to extend to the opposite frontier after planning out
of the constrained cubby region near the goal configuration.

2) Comparison with Sampling-Based Planners: While
RRT-Connect is fastest in terms of planning time, our
solutions are competitive in other criteria. We borrow the
distance metric used by Cohen et al. [18] to measure solution
consistency across planners. This is defined as the ratio
between the unprocessed solution path length and euclidean
distance between start and goal configurations. We execute
50 runs for each planner, using the same start and goal
configurations each time. The mean and standard deviation
for this consistency metric, µc and σc, are recorded in Table
II. For search-based planners, this value is deterministic.
Without post-processing, solutions found with RRT-Connect
are of poor quality as first observed in Table I. With
respect to the defined distance metric, RRT-Connect has
high variance for the same start and goal configurations.
Inconsistent solutions are undesirable in applications that
require high repeatability such as automated manufactur-
ing. In highly cluttered environments, where post-processing
methods might not always be able to converge, RRT-Connect
can produce inconsistent solutions. However, our approach
is grounded from using a search-based framework and finds
consistent solutions.

V. CONCLUSION

In this work, we presented a simple extension to bidi-
rectional heuristic search that enables fast and bounded
suboptimal solutions. Bidirectional heuristic search faces the
trade-off of ensuring intersecting frontiers with competitive
planning efficiency. Our strategy capitalizes on large free
space in high DoF motion planning to connect frontiers
using an extend operator popular in sampling-based planners.
These extend operators may need to be adapted to take
into account the kinodynamic constraints of robots and take
advantage of redundant degrees-of-freedom of complicated
robots. This leaves open the possibility of further research
into better operators and extension strategies. By running
WA* bidirectionally with an informative front-to-end heuris-
tic, we maintain deterministic, theoretical guarantees that
sampling-based planners lack. We also provide consistent
solution paths as a result of using deterministic, search-based
methods. From our simulated experiments, our approach
achieves significantly faster search efficiency compared with
other search-based strategies and makes strides towards
closing the performance gap between heuristic-based and
sampling-based planners in high DoF motion planning.

ACKNOWLEDGEMENTS

This work was in part supported by ONR grant N00014-
15-1-2129

REFERENCES

[1] K. Gochev, B. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path planning with adaptive dimensionality,” in Fourth annual sym-
posium on combinatorial search, 2011.

[2] T. A. J. Nicholson, “Finding the shortest route between two points in
a network,” The computer journal, vol. 9, no. 3, pp. 275–280, 1966.

[3] J. J. Kuffner Jr and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000.

[4] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[5] S. Klemm, J. Oberländer, A. Hermann, A. Roennau, T. Schamm, J. M.
Zollner, and R. Dillmann, “Rrt-connect: Faster, asymptotically optimal
motion planning,” in 2015 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE, 2015, pp. 1670–1677.

[6] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring
random trees,” 2013.

[7] S. Karaman and E. Frazzoli, “Incremental sampling-based
algorithms for optimal motion planning,” in Robotics:
Science and Systems VI, Universidad de Zaragoza, Zaragoza,
Spain, June 27-30, 2010, 2010. [Online]. Available:
http://www.roboticsproceedings.org/rss06/p34.html

[8] I. Pohl, “Bidirectional and heuristic search in path problems,” Tech.
Rep., 1969.

[9] J. B. Kwa, “Bs: An admissible bidirectional staged heuristic search
algorithm,” Artificial Intelligence, vol. 38, no. 1, pp. 95–109, 1989.

[10] D. de Champeaux and L. Sint, “An improved bidirectional heuristic
search algorithm.” J. ACM, vol. 24, no. 2, pp. 177–191, 1977.

[11] R. C. Holte, A. Felner, G. Sharon, and N. R. Sturtevant, “Bidirectional
search that is guaranteed to meet in the middle,” in Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[12] F. Islam, V. Narayanan, and M. Likhachev, “A*-connect: Bounded
suboptimal bidirectional heuristic search,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
2752–2758.

[13] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic a,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224–243, 2016.

[14] V. Narayanan, S. Aine, and M. Likhachev, “Improved multi-heuristic
a* for searching with uncalibrated heuristics,” in Eighth Annual
Symposium on Combinatorial Search, 2015.

[15] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The international journal of robotics research, vol. 20, no. 5,
pp. 378–400, 2001.

[16] D. J. Webb and J. v. d. Berg, “Kinodynamic rrt*: Optimal motion plan-
ning for systems with linear differential constraints,” arXiv preprint
arXiv:1205.5088, 2012.

[17] K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B. Kim, and S. Joo,
“Spline-based rrt path planner for non-holonomic robots,” Journal of
Intelligent & Robotic Systems, vol. 73, no. 1-4, pp. 763–782, 2014.

[18] B. J. Cohen, G. Subramania, S. Chitta, and M. Likhachev, “Planning
for manipulation with adaptive motion primitives,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 5478–5485.

[19] I. Pohl, “First results on the effect of error in heuristic search,”
Machine Intelligence, vol. 5, pp. 219–236, 1970.

[20] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara: formal analysis,”
2003.

[21] A. L. Koll and H. Kaindl, “Bidirectional best-first search with bounded
error: Summary of results,” in Proceedings of the 13th international
joint conference on Artifical intelligence-Volume 1. Morgan Kauf-
mann Publishers Inc., 1993, pp. 217–223.

[22] B. Bonet, G. Loerincs, and H. Geffner, “A robust and fast action
selection mechanism for planning,” in AAAI/IAAI, 1997, pp. 714–719.

[23] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning
for manipulation with motion primitives,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 2902–
2908.

[24] J. L. Blanco and P. K. Rai, “nanoflann: a c++ header-only fork of
flann, a library for nearest neighbor (nn) wih kd-trees,” 2014.

[25] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.


