
Planning Under Topological Constraints Using Beam-Graphs

Venkatraman Narayanan†, Paul Vernaza†, Maxim Likhachev†, and Steven M. LaValle‡

Abstract— We present a framework based on graph search
for navigation in the plane with a variety of topological
constraints. The method is based on modifying a standard
graph-based navigation approach to keep an additional state
variable that encodes topological information about the path.
The topological information is represented by a sequence of
virtual sensor beam crossings. By considering classes of beam
crossing sequences to be equivalent under certain equivalence
relations, we obtain a general method for planning with
topological constraints that subsumes existing approaches while
admitting more favorable representational characteristics. We
provide experimental results that validate the approach and
show how the planner can be used to find loop paths for
autonomous surveillance problems, simultaneously satisfying
minimum-cost objectives and in dynamic environments. As an
additional application, we demonstrate the use of our planner
on the PR2 robot for automated building of 3D object models.

I. INTRODUCTION

We consider in this work the problem of planning paths in
the plane subject to different kinds of topological constraints.
Fig. 1 demonstrates an application of planning with topolog-
ical constraints to the problem of planning for Unmanned
Aerial Vehicle (UAV) surveillance. In this scenario, we wish
to find a path that takes the UAV on a circuit beginning
and ending at its home base, subject to the constraint that it
must observe some set of regions of interest (ROI). We can
achieve this by planning with a constraint imposed on the
way the path winds around the ROI.

Search-based planning with winding constraints in partic-
ular has been considered in previous work [1, 9, 5, 13]. In
this work, we propose a generalization of these methods that
allows for planning with winding constraints as well as var-
ious other kinds of topological constraints in a search-based
framework. Our approach additionally features a simplified
state representation that captures the bare minimum informa-
tion necessary to plan with these kinds of constraints, which
enables more efficient implementation without any numerical
stability issues that can arise in other methods [1, 13]. The
approach is also quite intuitive. Inspired by similar ideas
in computational geometry [3, 4, 2] and combinatorial filter-
ing [12], we imagine that virtual sensor beams emanate from
obstacles in our environment. Our approach then consists of
simply applying a graph-based planner with an augmented
state in which we record sequences of beam crossing events.
By declaring certain kinds of states to be equivalent via

†V. Narayanan, P. Vernaza and M. Likhachev are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, USA venkatraman
at cmu.edu, {pvernaza,maxim} at cs.cmu.edu
‡S.M. LaValle is with the Department of Computer Science, University

of Illinois, Urbana, USA lavalle at uiuc.edu

TABLE I
EXAMPLES OF DIFFERENT TOPOLOGICAL CONSTRAINTS THAT CAN BE

HANDLED BY PLANNING USING BEAM-GRAPHS

Constraint in words
(algebraic topology
equivalent, if any)

String relations
applied Illustrative figure

Find a loop that
crosses beams A,
B and C, in the
specified order
(Homotopy)

xx′ ∼ x′x ∼ ε

Find a loop that
crosses beams A, B
and C in some order
(Homology)

xx′ ∼ x′x ∼ ε
yx ∼ xy

Obtain 360◦ views of
regions A, B and C,
in the specified order
(Homotopy)

xx′ ∼ x′x ∼ ε

Obtain 360◦ views
of regions A, B and
C, in some order
(neither Homotopy
nor Homology)

xx′ ∼ x′x ∼
ε, yyxx ∼ xxyy
(only at goal loca-
tion)

different relations on these sequences, we can enforce various
sorts of topological constraints on the generated path. Table I
demonstrates some of the different kinds of constraints that
can be enforced in this way (see Sec. IV-C for details).

II. METHOD OVERVIEW

We illustrate the idea of planning with virtual sensor
beams by a simple example, illustrated in Fig. 2. Shown
in the figure are the virtual sensor beams (in dotted lines)
and three paths, that represent three of the many possible
paths that will bring the robot from its start position to a
goal position. Each path may be associated with a string
that records the sequence and direction in which it crossed
each of the beams. For path 1, this string would correspond
to ab, while path 3’s string would be cc, and path 2’s string
might be represented as aa′ab, where a′ indicates that a was



Fig. 1. An example reconnaissance mission where a UAV has to loop
around certain regions of interest (marked by dashed lines) and return back
to its base. The circular shaded zones indicate radar installations, whose
strength falls off with distance from the center, that the UAV must try to
avoid.

traversed in the direction contrary to the arrow.
Path 1 and path 3 have clearly different topological prop-

erties, and this is reflected in the fact that their associated
strings are different. Paths 1 and 2 are topologically similar in
the sense that one can be continuously deformed to another,
but this similarity is not reflected in equivalence of their
associated strings. If we choose, however, we can easily
rectify this by considering any string of the form xx′ or x′x
to be equivalent to the empty string. In this case, aa′ab ∼ ab,
where ∼ denotes equivalence. In fact, as we will discuss
later, if we apply this equivalence relation, one path can be
continuously deformed to another iff. their associated strings
are equivalent. Thus, we can search for paths up to this
notion of equivalence by searching for paths with certain
strings of beam crossings. Furthermore, different topological
constraints can be obtained by applying different notions of
equivalence of strings.

Fig. 3 illustrates how different behaviors can be obtained
by applying different sets of equivalence relations. The top
and bottom images show the paths returned by the planner for
homotopy and homology [7] constraints, respectively, when
planning for the same goal string abccdd. One can clearly
see that the homotopy constraint is stricter, since the path
crosses the beams exactly in the order as specified in the
goal string. The homology constraint, on the other hand is a
weaker one, and the planner now searches over all possible
permutations of the goal string and picks the one that yields
the least cost solution. If we identify each ROI with the beam
that emanates from it, the homology constraint abccdd can
be interpreted as “wind counter-clockwise around regions a
and b once, and regions c and d twice, in some order that
minimizes the length of the path”.

Depending on the problem being solved, homotopy con-
straints might be more useful than homology constraints, or
vice versa. One example where the homotopy constraint is
more useful is the UAV reconnaissance problem, where the
UAV is required to obtain unobstructed 360◦ views of the

Goal

Start

a

b

c

Path 1

Path 2

Path 3

Fig. 2. Illustration of how sequences of beam crossings can capture
topological information









(a)

  





(b)

Fig. 3. Effects of manipulating the string of beam crossings: (a) Planning
for the goal string abccdd with relations corresponding to homotopy
constraints. (b) Planning for the same goal string abccdd, but with relations
corresponding to homology constraints

ROI. More generally, planning to obtain 360◦ views of the
ROI can be interpreted as a visibility constraint that requires
the robot to obtain unobstructed views of every point on
the periphery of an ROI. This can be achieved simply by
planning for a sequence of beam crossings corresponding to
the ROI, except that every beam crossing is double counted.
For instance, in the UAV reconnaissance example, if our
task were to obtain unobstructed views of every point on
the boundary of regions a, b, c and d, we would plan with
homotopy constraints for the goal string aabbccdd, as shown
in Fig. 1.

III. RELATED WORK

As mentioned in the introduction, our work is related to
existing search-based methods for planning with winding
constraints [1, 9, 5, 13]. However, we achieve planning
for a strictly more general class of topological constraints.
Furthermore, we note that some of these previous methods
are imprecise in that they conflate the notions of homotopy
(in which winding order matters) and homology (in which
order does not matter) [7]; the methods [1, 9, 5, 13] can
only enforce homology constraints, which are not as useful
for certain types of problems. We will see that our method
can enforce either type of constraint (as well as many others)
simply by applying different equivalence relations on the
strings of beam crossings.

Our method is inspired by the work on combinatorial
filters by Tovar et al. [12], in which a sensor beam model
is used to reconstruct paths of moving bodies, up to various
topological resolutions, just using information from the beam
crossings. This work makes explicit the relationship be-
tween sequences of beam crossings and homotopy/homology
classes. We will revisit this topic in Sec. IV-A. A similar ray
construction method appears in the context of planning in [8],
but that work solves a simple planar navigation problem
without topological constraints; homotopy information is
used in an attempt to accelerate planning for this problem.

Finding shortest paths subject to homotopy constraints is
a well-known topic in computational geometry, and efficient
algorithms exist to solve special cases of the problem [3, 4].
The search-based method presented here is more general in
that it handles a wide variety of constraints; additionally, our
method is better suited to planning for robotics applications,
as it can easily handle additional complications such as path
curvature constraints and cost functions that vary arbitrarily
in space and time.

IV. TECHNICAL DETAILS

We now discuss the technical details associated with the
construction of virtual beams and the beam-graph.

A. Virtual Beams Construction

A key component of our method is the construction of an
appropriate set of virtual sensor beams. Although these may
be constructed in an arbitrary fashion, constructing them in a
particular way will allow us to later relate sequences of beam
crossings to the aforementioned topological notions of ho-
mology and homotopy classes. This construction, illustrated
in Fig. 4(a), consists simply of drawing a vertical line from
the lowest point on each ROI (ties broken arbitrarily) until it
intersects another ROI or the boundary of the environment.
The set of lines so obtained constitutes the set of virtual
sensor beams. Each beam is also associated with a nor-
mal direction—hereby assumed to be the direction pointing
directly to the right—and a unique character c. Moving
across the beam with character c in the normal direction
is associated with the beam crossing string c, while moving
across the beam in the opposite direction is associated with
the string c′.

b

a

c

d

e

f

(a)

b

da

e

c

f

(b)

Fig. 4. Construction of virtual beams: (a) The shaded regions represent
the ROI, and the dotted lines are the virtual beams corresponding to those
ROI. (b) The beam tree corresponding to the virtual beams construction in
(a)

In order to establish the aforementioned topological con-
nections, it will be useful to regard the set of virtual beams
as a spanning tree on the set of nodes consisting of ROI and
the boundary, as illustrated in Fig. 4(b). The spanning tree
property is demonstrated in the following theorem.

Theorem 1. Assume we have a set of ROI R in general
position. Then the previous construction yields a spanning
tree on R and the boundary, where the boundary and
the elements of R are considered nodes, and beams are
considered edges of a graph.

Proof. Let y(p) denote the vertical position of point p. We
declare that ROI A is lower than ROI B iff. ∃p ∈ A |
y(p) < y(q), ∀q ∈ B. This defines a total order on R
by the assumption of general position. We then proceed
by induction, assuming that at step k of the construction,
we have constructed a spanning tree on the k lowest ROI
(plus the boundary). This is trivially true for k = 0, as the
graph consists of a single node (the boundary). Assuming
the hypothesis is true at step k, we then drop a beam from
the lowest point on the k + 1-lowest ROI. This beam can
only intersect a lower ROI, which must be in the spanning
tree on the k lowest ROI by the inductive hypothesis. The
resulting graph therefore consists of a single leaf added to
the existing spanning tree, yielding a spanning tree on the
k + 1-lowest ROI. �

B. Beam-Graph Construction

Each state s in the graph is a combination of x(s), the
geometric configuration of the robot in the environment; and
b(s), a string that keeps track of the topological information.
As a common example, x(s) could be a vector containing
the position and heading of a robot on the plane. A state
ŝ is declared a successor of state s iff. there exists a
motion m taking the robot from x(s) to x(ŝ), and b(ŝ) =
b(s)+w(s,m), where w(s,m) is the ordered string of beam
crossings associated with the motion m (with + denoting
string concatenation).

The cost of moving from state s to ŝ, c(s, ŝ), could be a
function of the length of the motion m, the risk associated

with moving to state ŝ, or any arbitrary cost function depend-
ing on the problem being solved. One should note that the
beam-graph is infinite, owing to the fact that the string b(s)
for a state s can be of arbitrary length. However, if the graph
is constructed incrementally by interleaving construction and
search, we can adopt a variety of pruning strategies (Sec. IV-
E) to ensure that the graph search is tractable.

A summary of the successor function used to generate the
graph is given in Algorithm 1. The ApplyRelations function
is described in more detail in Sec. IV-C.

Algorithm 1
GetSuccs(s)

1: S = {}
2: for all motion m ∈M(s) do
3: if m is a collision-free motion starting at s then
4: x̂ = configuration of m applied to x(s)
5: b̂ = b(s) + w(s,m)
6: b̂ = ApplyRelations(b̂)
7: if b̂ is a valid string then
8: ŝ = {x̂, b̂}
9: S = S ∪ ŝ

10: end if
11: end if
12: end for
13: return S

C. String Relations

As observed previously, we can plan with different kinds
of topological constraints by considering some beam crossing
strings to be equivalent under different relations. Many such
relations can be expressed in terms of equivalent substrings.
For example, we might say that the substrings cc′ and c′c
are equivalent to the empty substring; this would imply that
beam crossings in opposite directions cancel each other.
This property is one intuitive characteristic of a winding
constraint: if we wind a string five times around a pole in
one direction, and then wind five times again in the opposite
direction, the string is effectively wound zero times around
the pole.

If we apply just this equivalence relation in
ApplyRelations, then it can be shown that there exists a
bijection between equivalence classes of strings under this
relation and homotopy classes of paths with fixed endpoints;
i.e., one path can be continuously deformed to another iff.
they have equivalent strings under this relation. If we further
introduce the substring equivalence ab ∼ ba, a bijection
exists between the equivalence classes and homology classes
of paths with fixed endpoints; i.e., two paths have equivalent
winding angles for all ROI iff. they have equivalent strings
under this relation. We will elaborate on this point shortly.

Finally, we can plan for a spectrum of topological con-
straints consisting neither of homology nor homotopy con-
straints by defining other equivalence relations. Table I shows
some different possibilities.

D. Equivalence of String Relations and Topological Con-
straints

A particularly interesting topological space X for robot
navigation is the multiply punctured plane X = R2\O,
O ⊂ R2. This is simply the plane R2 with |O| points
removed from it (thereby the name “multiply punctured”).
One can think of the multiply punctured plane as the robot’s
environment, with the holes corresponding to ROI in the
environment. The fundamental group or first homotopy group
π1(X) [11, 7, 10] for a topological space X is the set of all
loops (paths with identical start and end points) based at
some x0 ∈ X , defined over the concatenation operation.

The fundamental group π1(X) for the multiply punctured
plane with n holes is the free group on n letters, Fn. The
free group is so called, because it can be constructed using
only a set of generators and the group axioms, with no other
relations. For the set of generators Σ = {σ1, σ2, . . . , σn},
Fn is simply the set of all words that can be formed by
concatenating elements of the set Σ ∪ Σ−1 ∪ {ε}, where
Σ−1 = {σ−11 , σ−12 , . . . , σ−1n } and ε is the empty string. The
identity element for the free group is ε and the concatenation
operation is defined such that σσ−1 = σ−1σ = ε. A reduced
word in Fn is a word than cannot be simplified any further
by applying the group axioms.

In the terminology of [12], a minimally sufficient collection
of sensor beams is one that forms a spanning tree on the
graph of all ROI and the boundary of the environment.

Lemma 1. For a minimally sufficient collection of n sensor
beams, there exists a unique mapping from beam crossings to
generators of the fundamental group Fn, under some basis
representation [12].

Theorem 2. The construction of virtual beams described
in Sec. IV-A provides a one-to-one mapping from words
formed from the alphabet of beam-crossings to elements of
the fundamental group Fn for a n-punctured plane, where n
is the number of ROI in the environment.

Proof. By Theorem 1, the construction of virtual beams
yields a spanning tree on the set of all ROI and the boundary.
Therefore, the virtual beams form a minimally sufficient
collection of sensor beams. The theorem then follows as a
consequence of Lemma 1. �

The correspondence between beam crossings and gener-
ators of the fundamental group completely establishes the
aforementioned relations to homology and homotopy. The
reader may refer to [12] for more details.

E. Pruning Strategies

As discussed in Sec. IV-B, the beam-graph can grow
infinitely, making the search intractable. One way to over-
come the problem is by pruning states as and when they
are created. In our implementation, we use two different
pruning strategies, based on the topological constraint being
handled. For the homotopy constraint, a state s is pruned,
i.e., declared an invalid successor, if b(s) is not a prefix
of b(sgoal). For instance, if a newly generated successor

state s had b(s) = ab′c, and if b(sgoal) = ab′de, then s
would be pruned away. On the other hand, if b(sgoal) were
ab′cde, s would be a valid successor. This pruning strategy
has the effect of guiding the search in the exact order of
beam crossings that appear in the goal string. Although this
speeds up the search significantly, it has the downside of
making the search incomplete—i.e., we might miss solutions
that require the robot to exhibit abnormal behaviors such as
crossing a beam (which is not part of the goal string) back
and forth. When planning with homology constraints, a state
s is pruned if b(s) is not a subsequence of b(sgoal). The effect
is the same, except that we now provide leeway in the order
of beam crossings, as required by the homology constraint.
Note that all pruning is performed only after applying the
string relations. One can also come up with several other
pruning strategies based on the length of the string b(s), or
tolerance in the number of “stray beam crossings” that b(s)
is allowed to contain.

V. EXPERIMENTS

We tested our implementation of planning with beam-
graphs in simulation, as well as on a real robot. As for the
graph search itself, we used the A* search algorithm [6].
The heuristics for the search were computed by running a
16-connected 2D Dijkstra search from the goal to all the
(x, y) cells in the environment, assuming the robot to be
circular with a radius equal to the actual robot’s inscribed
radius. Since the 2D search essentially assumes that the robot
can turn in place at no cost, the heuristic underestimates the
actual cost to the goal and is hence admissible. A video
that shows the results of planning for UAV surveillance in
dynamic environments, and experiments on the PR2 robot
is available at http://www.andrew.cmu.edu/user/
venkatrn/icra13/beam_graphs.mp4.

A. UAV surveillance in dynamic environments

We adapted our beam-graph for planning with topological
constraints in dynamic environments, where time was a
state variable. The planning was done in a (x, y, θ, b, t)
5-dimensional state space, with the variables standing for
their usual meaning (θ - heading for the robot). We setup
hypothetical surveillance scenarios, in which a UAV had
to gather information about particular ROI in the envi-
ronment, in the presence of hostile patrol units and static
radar installations. The UAV was constrained to follow a
minimum cost path, where the cost was determined by the
length of the path and the risk associated with traveling too
close to a radar installation. Additionally, the UAV had to
completely avoid the fields of view of the moving patrol
units, whose trajectories were assumed to be known. Fig. 5
depicts a scenario where the UAV follows a minimum cost
loop that encloses the ROI. The figure shows two interesting
behaviors— initially, the path cuts through a radar zone in
order to avoid a patroller moving towards the UAV, and later,
the path forms a sub-loop that serves as a waiting maneuver
for the UAV to let a patroller pass before getting back to the
base.

Fig. 5. UAV surveillance in dynamic environments: The UAV (enlarged)
is tasked with gathering information about the ROI (marked by dashed
lines) by finding an enclosing loop. The striped areas are no pass regions,
the circular shaded zones are radar installations, with higher intensities
corresponding to higher costs, and the wedges represent the fields of view
of hostile patrollers that the UAV must avoid. The dashed line is the solution
path taken by the UAV, and the dash-dot line is the path followed by the
hostile patrollers.

B. Loop planning for object modeling

To demonstrate a practical application of planning with
homotopy constraints, we used our planner for the task of
automated 3D object modeling using a depth sensor mounted
on a mobile robot. The task is to build 3D representations
of objects of interest in partially structured environments.
For instance, if the objects of interest are placed on isolated
tables in the environment, the mobile robot would be able to
build a 3D representation or point cloud by circumnavigating
the tables, and then using a simple plane fitting algorithm or
other sophisticated techniques to extract the individual object
models from the point cloud. This calls for a path that would
loop around each table (or ROI) in the environment. The

(a) (b)

Fig. 6. Object modeling using loop planning: (a) The lines a and b show
the virtual beams in the environment, and the curved path represents the
solution returned by the planner for the goal string aabb. (b) The point
cloud built using the RGB-D sensor while the robot traversed the path.

Fig. 7. The PR2 robot autonomously modeling objects on a table using a
RGB-D sensor, by planning with visibility constraints

planning was done in a (x, y, θ, b) 4-dimensional state space,
with the variables standing for their usual meaning.

The constraint of looping around each ROI individually is
the same as planning with visibility constraints discussed in
Sec. II, where the goal string is composed of double counted
letters from the alphabet of beam-crossings. For instance,
consider the example in Fig. 6 where a robot has to loop
around two tables in the environment. Beams a and b are
constructed in accordance with the method described earlier,
giving rise to the alphabet of beam-crossings {a, b, a′, b′}.
By setting the goal string b(sgoal) = aabb, we ensure that
the path loops around each table at least once.

We implemented the planner in ROS (Robot Operating
System) and tested it on Willow Garage’s PR2 robot. The
PR2 robot is a mobile manipulation platform with two 7-
DOF mechanically counterbalanced arms, an omnidirectional
base and a multitude of sensors such as stereo and high

a c e g i

j h f d b

(a)

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Number of Regionsof Interest (ROI)

Pl
an
ni
ng

Ti
m
e
(s
)

Homology
Constraints

Homotopy
Constraints

(b)

Fig. 8. (a) The synthetic environment used in the experiments. The
solid line shows the solution returned by the planner for the goal string
abcdefghij, when planning with the homotopy constraint (b) Plot show-
ing the scaling of planning times with the number of ROI, for ordered
(homotopy), and unordered (homology) beam crossing constraints

definition cameras, two lidars, and an IMU. In addition,
we mounted an RGB-D sensor (Microsoft Kinect) on the
PR2’s head, to facilitate building of 3D object models.
The implementation involved writing a global planner node
that plugged into the ROS navigation stack. The navigation
stack provides the robot’s current pose and a map of the
environment to the global planner, and expects a path in
return. The global planner node that we wrote also contained
an additional feature for interactively selecting ROI to loop
around. Additionally, we wrote a simple head behavior node
that directed the PR2’s head towards the nearest ROI in
the environment, thereby ensuring that the RGB-D sensor
could obtain full 360◦ views of objects on the tables. Fig. 7
contains frames from the linked video that shows the PR2
robot modeling objects on tables by looping around them.
Finally, we note that the construction of virtual beams
requires prior knowledge of ROI in the environment.

C. Computational Efficiency

To obtain insight into the computational complexity of
planning with different topological constraints, we ran ex-
periments to collect the planning times for scenarios with
increasing number of ROI. The planning was done in 4D—
(x, y, θ, b), and the environments used for the experiments
were discretized into 230x280 cells. The orientation θ was
discretized into 16 angles. We used the A* algorithm for the

graph search, and the pruning strategies described in Sec. IV-
E to keep the graph tractable. Fig. 8(a) shows the synthetic
environment that was used for the scaling experiments. The
number of ROI was increased by successively introducing
obstacles in the order corresponding to the beam names in
Fig. 8(a). The goal string for each case was the concatenation
of all beam crossings, i.e, the goal string was a for one
ROI, and abcdefghij for ten ROI. Fig. 8(b) reflects how
the planning times scaled with the number of ROI. As we
expected, the planning times seem to scale linearly when
planning with homotopy constraints, since it imposes a strict
order on the beam crossings. On the other hand, the planning
times seem to grow exponentially with the number of ROI
for homology constraints. This is also expected, since the
algorithm has to search for the optimal solution among
all possible permutations of the goal string, suggesting a
factorial dependency. However, the use of pruning strategies
provides better planning times, when compared to the method
described in [13] for winding-constrained problems.

VI. CONCLUSIONS

We have presented a framework for planning with a
variety of topological constraints, using a graph construction
called the beam-graph. Example scenarios of planning with
topological constraints were discussed in the context of
autonomous surveillance and object modeling through loop
planning. In the domain of autonomous surveillance, we are
able to enforce topological constraints to obtain full 360◦

views of regions of interest (ROI), and also to control the
sequence of ROI surveilled. We also demonstrated the flexi-
bility offered by our framework, by planning for surveillance
in dynamic environments with time-varying costs. On the
theoretical side, we proved that planning under the beam-
graph framework using specific string relations is equivalent
to planning with homotopy and homology constraints.

In future work, we would like to leverage more informative
heuristics to make the graph search more efficient. One way
of doing this could be to solve a low dimensional (x, y, b)
problem and use it as a heuristic for high dimensional
(x, y, θ, b) or (x, y, θ, b, t) planning problems. Additionally,
we would like to investigate the notion of topological con-
straints in an environment where the ROI themselves are
dynamic.

ACKNOWLEDGMENT

LaValle is supported in part by NSF grants 0904501
(IIS Robotics) and 1035345 (Cyberphysical Systems), and
MURI/ONR grant N00014-09-1-1052. The other authors
were partially supported by MURI/ONR grant N00014-09-
1-1052.

REFERENCES

[1] S. Bhattacharya, M. Likhachev, and V. Kumar. Topolog-
ical constraints in search-based robot path planning. Au-
tonomous Robots, 33:273–290, 2012. 10.1007/s10514-
012-9304-1. I, III

[2] M. Blum and D. Kozen. On the power of the compass
(or, why mazes are easier to search than graphs).
In Proceedings Annual Symposium on Foundations of
Computer Science, pages 132–142, 1978. I

[3] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing
homotopy for paths in the plane. In Proceedings of
the eighteenth annual symposium on Computational
geometry, pages 160–169. ACM, 2002. I, III

[4] A. Efrat, S. Kobourov, and A. Lubiw. Computing
homotopic shortest paths efficiently. Computational
Geometry, 35(3):162–172, October 2006. I, III

[5] H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-
hypothesis motion planning for visual object tracking.
In Thirteenth International Conference on Computer
Vision, 2011. I, III

[6] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
Systems Science and Cybernetics, IEEE Transactions
on, 4(2):100 –107, july 1968. V

[7] A. Hatcher. Algebraic Topology. Cambridge
University Press, Cambridge, U.K., 2002. Available at
http://www.math.cornell.edu/∼hatcher/AT/ATpage.html.
II, III, IV-D

[8] E. Hernandez, M. Carreras, J. Antich, P. Ridao, and
A. Ortiz. A topologically guided path planner for an
auv using homotopy classes. In ICRA’11, pages 2337–
2343, 2011. III

[9] T. Igarashi and M. Stilman. Homotopic path planning
on manifolds for cabled mobile robots. In Workshop on
the Algorithmic Foundations of Robotics (WAFR’10),
December 2010. I, III

[10] S. M. LaValle. Planning Algorithms. Cambridge
University Press, Cambridge, U.K., 2006. Available at
http://planning.cs.uiuc.edu/. IV-D

[11] J.R. Munkres. Topology: a first course. Prentice Hall,
1975. IV-D

[12] B. Tovar, F. Cohen, and S. M. LaValle. Sensor
beams, obstacles, and possible paths. In G. Chirikjian,
H. Choset, M. Morales, and T. Murphey, editors, Algo-
rithmic Foundations of Robotics, VIII. Springer-Verlag,
Berlin, 2009. I, III, IV-D, 1, IV-D

[13] P. Vernaza, V. Narayanan, and M. Likhachev. Efficiently
finding optimal winding-constrained loops in the plane.
In Proceedings of Robotics: Science and Systems, Syd-
ney, Australia, July 2012. I, III, V-C

