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Abstract— In this paper, we present a search-based motion
planning algorithm for manipulation that handles the high
dimensionality of the problem and minimizes the limitations
associated with employing a strict set of pre-defined actions.
Our approach employs a set of adaptive motion primitives
comprised of static motions with variable dimensionality and
on-the-fly motions generated by two analytical solvers. This
method results in a slimmer, multi-dimensional lattice and
offers the ability to satisfy goal constraints with precision. To
validate our approach, we used a 7DOF manipulator to perform
experiments on a real mobile manipulation platform (Willow
Garage’s PR2). Our results demonstrate the effectiveness of the
planner in efficiently navigating cluttered spaces; the method
generates consistent, low-cost motion trajectories, and guaran-
tees the search is complete with bounds on the suboptimality
of the solution.

I. INTRODUCTION
Heuristic searches such as A* search [6] have often been

applied to motion planning problems in robotics. Heuristic
searches offer strong theoretical guarantees such as com-
pleteness and optimality or bounds on suboptimality [11].
When quicker planning times are required, anytime heuristic
searches can be used to find the best solution possible given
a time constraint [5], [13], [14], [10]. Heuristic searches
are advantageous because they allow the incorporation of
complex cost functions and complex constraints while easily
representing arbitrarily shaped obstacles as grid-like data
structures [3], [9].

Our previous work on search-based planning for manip-
ulation [2], has shown that it is possible to systematically
construct a graph and search it with an A* type search,
despite the high dimensionality of the motion planning
problem. The algorithm used a small set of basic motion
primitives to construct a graph on which, every path between
nodes represents a kinematically feasible trajectory that the
manipulator can follow. To search the graph for a solution,
the algorithm used anytime heuristic search, ARA* [10]
in conjunction with informative heuristics that account for
environmental constraints. While finding an optimal solution
is expensive, solutions with provable bounds on the subopti-
mality can often be found drastically faster using an anytime
search.

The algorithm was a step towards applying the strong
theoretical guarantees heuristic search offers to planning

Fig. 1: Manipulating objects in cluttered environments is the
primary motivation of this work.

for manipulation. However, the experimental results showed
the algorithm’s inability to satisfy 6DOF goal constraints
efficiently and accurately. (We define these 6DOF constraints
for the end effector goal to be a a 6-tuple (x, y, z, r, p,
y) consisting of the 3D Cartesian position (x, y, z) and
orientation (roll, pitch, yaw) in the robot’s base frame). These
inefficiencies were caused by the high dimensionality of the
state-space, as well as the restrictions imposed by limiting
the construction of the graph to a pre-defined set of motion
primitives. In this paper, we present the use of adaptive
motion primitives (or alternatively runtime motion primitives,
primitives that are generated on-line) to effectively deal
with the inefficiency and inaccuracy of the search. Adaptive
motion primitives assist the pre-defined set, through the use
of two key additions. First, to combat the inaccuracies of a
predefined set of basic primitives, we employ a combination
of two analytical solvers that generate the on-the-fly motions
necessary to reach the goal constraints. Second, when plan-
ning for high degree of freedom manipulators, we can exploit
the fact that not all of the joints are necessary to reach the
position constraint. Therefore, we propose the use of variable
dimensionality in the set of pre-defined motion primitives,
to improve the efficiency of the search. Our experimental
results confirm that adaptive motion primitives are capable



of planning to 6DOF goal constraints more efficiently and
more precisely.

The paper is organized as follows. First, it briefly describes
some of the existing approaches to motion planning for
manipulation, including sampling-based methods. It then
explains the core components of our algorithm including the
construction of the graph, the heuristic, and the search. In this
section, we also present a new heuristic function which we
combine with our previously developed heuristics to assist in
coping with the previously ignored kinematic complexities
of the manipulator. Section IV presents the experimental
analysis of the planner in a variety of common manipulation
environments as well as a description of our testing on the
PR2 robot. These experimental results, display the benefits
of employing some or all of the adaptive motion primitives.
While our experiments specifically involve the PR2, all the
theoretical results of our work carry over to any robot with
similar kinematic arm structure.

II. RELATED WORK

The most common approach to motion planning for ma-
nipulation are sampling-based methods such as RRT and
PRM [7], [8], [1]. They are simple, fast and have been shown
to consistently solve impressive high-dimensional planning
problems.

There are a few key differences between our approach and
sampling based approaches. First, the paradigm underlying
sampling based planners does not, by itself enforce any
form of solution optimization. Searching for a feasible path
may often result in solutions of unpredictable length, with
superfluous motions, and motions that graze the obstacles.
While trajectory smoothing techniques are helpful, they may
fail to help in cluttered environments. Recently developed
RRT∗ [4] provides guarantees in the limit of samples on
completeness and the optimality of the solution. Second,
sampling based planners do not generate consistent solu-
tions due to randomization. In contrast, graph search-based
planning tries to find solutions with minimal cost and pro-
vides guarantees on solution suboptimality and completeness
(under the constraints of state space and action space).
And as with any deterministic graph search-based planning,
our approach provides consistency in the solutions: similar
solutions are found for similar scenarios.

CHOMP [12], is a method of trajectory optimization that
works by creating a naive initial trajectory from the start
position to the goal, and then running a modified version
of gradient descent on the cost function. CHOMP offers a
few major advantages over sampling-based approaches such
as the ability to optimize trajectories for smoothness and to
stay away from obstacles when possible. Our approach is
similar to CHOMP in that we also recognize the importance
of cost minimization but, in addition, we provide guarantees
on the global solution suboptimality.

Last year we presented a novel search-based motion
planner for manipulation that used motion primitives to sys-
tematically construct a graph and search it with an anytime
algorithm [2]. The experimental results showed that planning

was feasible but lacked efficiency, especially for 6DOF goals.
Planning to 6DOF goal constraints even often failed at
returning solutions within a few minutes. A large tolerance
on the goal orientation was needed because the search was
limited to a pre-defined set of primitives that struggled to
reach an arbitrary orientation. In this paper, we introduce
the use of adaptive motion primitives. As our experimental
results show, this substantially improved the efficiency of
planning to 6DOF goal constraints while maintaining the
same strong theoretical guarantees on the completeness of
the search, consistency in the solution and guarantees on the
solution suboptimality, given the state space and action space
constraints.

III. ALGORITHM

The algorithm we describe in this paper operates by
constructing and searching a graph [2] based on predefined
and dynamically created motion primitives of varying dimen-
sionality. The graph search must use the constructed graph
to find a path from a state that corresponds to the current
configuration of the manipulator to a state for which the
pose of the end-effector satisfies the goal conditions. In other
words, we consider the problem of finding a motion that
gets the manipulator from its current configuration to any
configuration with the end-effector at the desired 6D pose.

In the following sections, we explain the graph con-
struction, focusing on adaptive motion primitives, the cost
function used to assign edge costs in the graph, the heuristics
that guide the graph search in finding the solution, and finally
the graph search itself.

A. Graph Construction

The graph is constructed using a lattice-based representa-
tion. A lattice is a discretization of the configuration space
into a set of states, and connections between these states,
where every connection represents a feasible path. Let us
use the notation G = (S,E) to denote the graph G we
construct, where S denotes the set of states of the graph and
E is the set of transitions between the states. The states in S
are the set of possible (discretized) joint configurations and
the transitions in E are a set of feasible motion primitives.
A motion primitive is the difference in the global joint
angles of neighbouring states. We define a state s as an
n-tuple (θ1, θ2, ..., θn) for a manipulator with n joints. A
motion primitive is defined as a vector of joint velocities,
(v1, v2, ..., vn) for a subset or for all n joints. The graph is
dynamically constructed by the graph search as it expands
states, as pre-allocation of memory for the entire graph would
be infeasible for an n-DOF manipulator with any reasonable
n. We now present three different types of motion primitives
that connect state s to its succeeding states, succ(s).

1) Static Motion Primitives with Variable Dimensionality:
Planning in a high dimensional lattice is computationally ex-
pensive and requires a lot of system resources. An important
observation, however, is that when planning for manipulation
with a high dimensional manipulator, not all of the available
degrees of freedom are actually needed to find a safe path to



the goal region or even to the goal position itself. Frequently,
using a subset of the joints is fully adequate for computing
a feasible path to the vicinity of the desired end-effector
pose. The reason is that there are many more choices for the
motion of the arm when it is constrained to a particular end-
effector pose. In the vicinity of the goal pose, the planner
may have to exercise other joints such as the wrist joint to
satisfy certain orientation constraints.

This observation motivated us to generate a multi-
dimensional set of static motion primitives. A subset of
motion primitives can be used to quickly search for a path to
the goal region. These motion primitives are chosen with the
goal of achieving a lower-dimensional state-space. Once the
search enters a potentially cluttered goal region, the planner
uses the complete set of full dimensional primitives to search
for a path to the goal pose in a full-dimensional state-space.
The end result is a more efficient search through a multi-
dimensional lattice.

We define MPlowD to be a subset of the predefined
set of primitives such that each can only change a subset
of joints. This means that in the regions where only the
motion primitives from MPlowD are used, the state-space
is lower-dimensional (its dimensionality is the number of
joints that are modified by the motion primitives that are
in MPlowD). MPfullD is the complete set of primitives
that are capable of changing all of the joints, creating a
high dimensional state-space. We apply motion primitives
from MPfullD only to those states s whose end-effector
is within dfullD distance from the goal end-effector po-
sition. Mathematically, we say that for any state s in the
graph: if dist(efxyz(s), efxyz(sgoal)) > dfullD, then the
set succs(s) = (θ1(s), θ2(s), ..., θn(s)) +mp for all motion
primitives mp ∈ MPlowD, otherwise the set succs(s) =
(θ1(s), θ2(s), ..., θn(s))+mp for all motion primitives mp ∈
MPfullD. We compute dist(efxyz(s), efxyz(sgoal)) for all
states s by running a single 3D Dijkstra’s away from the goal
end-effector position accounting for obstacles (as described
later in the section on heuristics).

The motion primitives we used are multi-resolution as well
as multi-dimensional. All mp ∈MPlowD are larger motions,
allowing the search to reach the goal region quicker. Hence,
MPlowD and MPfullD are two different sets, and MPfullD

contains smaller motion primitives to allow the search to find
a motion to the goal end-effector more precisely. To provide
the connections between regions of different resolution in
the graph, each joint change for each motion primitive in
MPlowD must be of magnitude a that is a multiple of the
magnitude by which the joint is changed by motion primi-
tives in MPfullD. Otherwise, the full and low-dimensional
regions of the graph may not be connected to each other well
enough or even at all.

In our experiments, MPlowD contained eight 4D motion
primitives and MPfullD contained fourteen 7D primitives.
Figure 2 shows three motion primitives from MPlowD. Each
one moves one joint by 8o.

2) Inverse Kinematics-based Motion Primitives: When a
state s is expanded whose end-effector position is within a

Fig. 2: Three motion primitives from MPlowD are shown here.
Each one of these primitives moves one of the joints.

pre-defined distance to the goal end-effector position, dik, we
use an inverse kinematics solver to generate an additional
motion primitive, mpik(s, sgoal) for state s. Formally, we
state that for any state s with dist(efxyz(s), efxyz(sgoal)) <
dik, and the set of successor states, succs(s) = (succs(s) ∪
sgoal) if mpik(s, sgoal) exists and is collision free.

The redundant joint found in most manipulators requires
us to feed the IK solver with an initial guess for one of the
joint angles. Thus, when computing mpik(s, sgoal), we feed
IK with one of the angles defined in s. IK then computes an
analytical solution for the remaining joints. If the solution
does not exist, IK iterates by searching over the entire
reachable space for the initially specified joint. It is possible
that the IK solution may exhibit divergence, returning a joint
configuration that is far away from the seeded configuration.
In practice though, the goal region is generally small enough
that the solution returned by the solver does not require a
large motion to be performed to reach the seed configuration.
If IK succeeds, we then construct mpik(s, sgoal) as an
interpolated path (in the configuration space) from s to the
solution returned by IK and also check it for collisions. If
it is collision-free, then mpik(s, sgoal) is valid and sgoal is
added to the set of successors of s.

In our experiments, we defined the threshold dik to be
10cm. Just as with multi-dimensional motion primitives, to
compute dist(efxyz(s), efxyz(sgoal)) we use the results of
3D Dijkstra’s search originally computed for hendeff . It
accounts for obstacles, therefore preventing IK from being
called too frequently when the end effector is close to the
goal but the direct motion to the goal is blocked.

3) Orientation Solver-based Motion Primitives: When a
state s is expanded whose end effector position satisfies
the position constraint of the goal, efxyz(sgoal), we use an
orientation solver to generate an additional motion primi-
tive, mpos for that state. The orientation solver analytically
computes the motions necessary to satisfy the orientation
constraint, efrpy(sgoal) (roll, pitch, yaw angles of the desired
end-effector pose), without moving the end effector out of
its position, efxyz(s). The solver computes mpos based on
the joint configuration of state s as well as efrpy(sgoal).
Formally, we state that for any state s, with efxyz(s) =
efxyz(sgoal), succs(s) = succs(s) ∪ sgoal if mpos exists
and is collision free.

The orientation solver is based on the premise that the end
effector can be reoriented in place, i.e. without displacing
the wrist. For example, the orientation solver will work
in case of a robot with a ball and socket wrist, because
all possible orientations can be achieved by making use of



the joints in the wrist alone. Since an arbitrary orientation
is specified in RPY coordinates as (roll, pitch, yaw), the
output of the orientation solver must consist of increments in
three independent joints angles. These incremented changes
alter the end effector orientation without displacing the
wrist. When the joint space of the robot allows for such
reorientation, there are infinite ways in which reorientation
can be implemented. The following paragraphs describe how
the orientation solver generates the proper motions for the
7DOF arm on the PR2 robot. A very similar strategy can
be applied to kinematically comparable robotic arms such as
Barrett’s WAM.

For the PR2, we restrict the output of the orientation solver
to the ordered 3-tuple (forearm roll, wrist flex, wrist roll) of
motions due to simplicity of expression and the fact that with
this convention, the orientation solver can be implemented
by an analytical routine. Firstly, consider figure 3, which
demonstrates the functionality of the orientation solver. In
this example, the robot arm is stretched out straight ahead,
and the end effector is in its zero RPY orientation i.e. along
the forearm with a roll of zero. Let us say that the desired
orientation for the end effector in RPY is (0, 0, 30o). Since
the PR2 wrist cannot yaw, the desired orientation cannot
be achieved by purely yawing the wrist. The figure shows
how the ordered 3-tuple (forearm roll, wrist flex, wrist roll)
of motions can be used to attain the desired end effector
orientation. Before we proceed to demonstrate the algorithm
of the orientation solver, we present a two 3D geometric
claims, through which we shall also introduce some notation.

Fig. 3: Orientation solver example, going from RPY (0, 0, 0) to
(0, 0, 300) l to r; Sequence consists of forearm roll= 900, wrist
flex= 300, and wrist roll= 900.

Claim 1 – An arbitrary orientation specified in RPY
coordinates (ψ, θ, φ) can be represented by two unit vectors
v1 and v2 as shown in figure 4. v1 accounts for pitch θ
and yaw φ, whereas v2 holds information about roll ψ. The
transformation is a straight-forward result and is given by
the following equations. This representation is analogous to
the axis-angle representation.

v1 = (cos(θ) cos(φ), cos(θ) sin(φ), sin(θ))

v2a = (sin(φ), − cos(φ), 0)

v2 = Rv2a, where
R is the rotation matrix about the axis v1 and can be

obtained by applying the Rodriguez formula.

Claim 2 – The change in RPY coordinates of the end
effector due to an ordered 3-tuple of motions (forearm roll,

Fig. 4: Converting RPY representation into a 2-vector representa-
tion, v2 shown dotted as it is below the xy plane.

wrist flex, wrist roll) depends upon the orientation of the
forearm in the base frame B of the robot. The claim makes
no statement about the exact nature of the dependence, but
rather asserts that there is one. To see the reasoning behind
this claim, consider figure 5. The forearm and end effector
are denoted by their 2-vector representations, with the sub-
scripts F and E respectively. In both the configurations C1

and C2 of the arm, the RPY of the end effector is zero in
the base frame shown, through C1 and C2 differ in their
wrist flex. Thus, a change in the RPY coordinates of the
end effector does not uniquely map onto the joint space of
the arm. However, if the forearm orientation were to be held
fixed, then the RPY coordinates of the end effector in the
base frame would correspond uniquely to the 3 joint angles
forearm roll, wrist flex and wrist roll.

Fig. 5: Same RPY, different arm configurations.

Now, we discuss the algorithm of the orientation solver.
Firstly, since the two inputs to the orientation solver are
the initial and final orientations of the end effector in RPY
coordinates, in the base frame B, it becomes necessary to
convert these inputs from frame B to a frame F attached to
the forearm, as indicated by the claim 2 above. The frame F
is such that the x-axis is along the forearm, and the vector
v2F (see figure 5), which corresponds to forearm roll is along
the y-axis. This conversion can be implemented through two
transformations. 1) Convert end effector RPY in the base
frame into the corresponding 2-vector representation in the
base frame. Let us say that these vectors are vi1B , vi2B , vf1B
and vf2B . Here, the subscript i stands for initial, f for final
and B for base frame. 2) Given the rotation matrix RFB of
frame F relative to frame B, we convert these four vectors
into the corresponding ones vi1F , vi2F , vf1F and vf2F , in



frame F . The ordered 3-tuple of motions can now be found
by manipulating these four vectors.

Fig. 6: Explanatory sketch of the orientation solver.

Figure 6 illustrates the functionality of the orientation
solver. The forearm and the calculated 2-vectors for the end
effector are shown in the reference frame F . Because our
desired motion is an ordered 3-tuple (forearm roll, wrist flex,
wrist roll), the first motion that we need to calculate is the
forearm roll (r1). Since in frame F , a forearm roll causes
the projection of a vector on the yz plane to rotate about
the x-axis, the magnitude of the forearm roll motion from
one orientation to another can be calculated as the angle
between the projections of the vectors v1 corresponding to
these orientations. In figure 6, these projections of vi1F and
vf1F are denoted by lines L1 and L2. The forearm roll is
then given as r1 = arccos(uL1

· uL2
), where uL is a unit

vector along line L, and p · q is the dot product between
vectors p and q.

Next, we need to evaluate wrist flex (r2). Let us denote
the rotation matrix corresponding to forearm roll as Rfr. The
vectors vi1F and vi2F are transformed to vm1F = Rfr vi1F
and vm2F = Rfr vi2F respectively, after the forearm roll.
(These intermediate vectors are not shown in figure 6 to avoid
cluttering the diagram.) The wrist flex is then evaluated as
r2 = arccos(vm1F · vf1F ). The rotation matrix Rwf , which
corresponds to wrist flex, is about the axis along the vector
vm1FXvf1F . This rotation transforms vm1F into vf1F , and
vm2F into vf ′2F = Rwf vm2F . Thus, after executing the
rotations r1 and r2, the yaw and the pitch of the end effector
will be equal to the final desired values. However, the roll
will be different, in general. The wrist roll (r3) is evaluated
as r3 = arccos(vf ′2F ·vf2F ). The concise algorithm is stated
below.

1) Compute vi1B , vi2B , vf1B and vf2B
2) Using RFB , compute vi1F , vi2F , vf1F and vf2F
3) Compute uL1 and uL2

4) r1 = arccos(uL1
· uL2

)
5) Compute Rfr as rotation about (1, 0, 0) of angle r1
6) Compute vm1F = Rfr vi1F and vm2F = Rfr vi2F
7) r2 = arccos(vm1F · vf1F )
8) Compute Rwf as rotation about vm1FXvf1F of angle

r2
9) vf ′2F = Rwf vm2F

10) r3 = arccos(vf ′2F · vf2F )

The reach of the end effector in RPY space is restricted
by joint limits in forearm roll, wrist flex and wrist roll. In the
PR2, forearm and wrist roll are continuous but the wrist flex
has a finite limit of 126o on one side and 0o on the other.
Given these limits, there are exactly 2 solutions to the ordered
3-tuple, which differ only in forearm roll. More precisely,
forearm rolls in the two 3-tuples are of opposite direction;
their absolute values sum to 360o. In the example in figure
3, the two first sequences are (90o, 30o, 90o) depicted in
the figure, and (−2700, 300, 90o). Our orientation solver is
designed to check for both sequences, taking advantage of
the fact that even if one sequence will cause a collision, the
other sequence may be viable.

B. Cost Function

The cost function is designed to minimize the path length
while maximizing the distance between the manipulator and
nearby obstacles along the path. Thus the cost of traversing
any transition between states s and s′ in graph G can be
represented as c(s, s′) = ccell(s

′)+caction(s, s
′). The action

cost, caction, is the cost of the motion primitive which is
generally determined by the user. The soft padding cost, ccell,
is a cost applied to cells close to obstacles to discourage
the search from planning a path that drives any part of the
manipulator close to nearby obstacles.

C. Heuristic

The purpose of a heuristic function is to improve the
efficiency of the search by guiding it in promising directions.
Heuristic-based search algorithms require that the heuris-
tic function is admissible and consistent. In the following
sections, we describe the two components of our heuristic
function as well as our method for combining them to
form a unified admissible heuristic. The first component
hendeff has been presented previously [2], whereas the
second component helbow is novel.

1) hendeff : As the ability to plan robustly in cluttered
environments is the primary focus of our research, we need
a heuristic function that efficiently circumvents obstacles. We
use a 3D Dijkstra’s search to compute the cost of the least-
cost path from the end effector position at a given state to
the end effector position at the goal state. Exact details can
be found in [2].
hendeff proves to be an informative heuristic in directing

the graph search around obstacles in a cluttered workspace.
However, hendeff is computed under the assumption that the
end effector is a point robot with radius rendeff , the radius
of the actual end effector. In doing so, we are treating the
arm as an untethered point robot on a 26-connected grid,
thus allowing for least-cost paths to be computed that may
be infeasible for an end effector limited by the kinematics
of the attached manipulator.

Figure 7 displays one such scenario where the starting
position of the end effector is below a narrow table and the
goal pose is above the table. In the figure it can be seen
that the least-cost path from the start configuration leads the
end effector around the tabletop to the goal. Considering



the length of the manipulator and its kinematics, such a
path is impossible for the end effector to follow. In such a
case, hendeff will misguide the search considerably. A more
effective search would require a combination of hendeff
and some additional kinematic information. The following
paragraph explains our method for alleviating this problem.

Fig. 7: This is an example when hendeff is capable of guiding the
search in a direction that is infeasible for a manipulator to follow.
Shown in purple is the least-cost path suggested by hendeff from
the start configuration to the goal pose.

2) helbow: Since the shoulder position is fixed and the
lengths of the arm links are known, we can solve for the
complete set of possible elbow locations, Egoal, such that
the end effector satisfies the goal position constraint. The
purpose of helbow is to drive the elbow towards the closest
point e ∈ Egoal. helbow is computed in the same way as
hendeff , using a 3D Dijkstra’s search to compute the cost
of the least-cost path from the elbow coordinate, (x, y, z) at
state s to the closest e ∈ Egoal while accounting for obstacles
in the path.

The following paragraphs discuss the computation of the
locus of elbow points for a three link manipulator1 such as
one of the PR2’s arms or the Barrett Arm. In short, the
locus of points can be solved geometrically by computing
the intersection of a circle with a sphere.

Fig. 8: Given a shoulder pan angle, the upper arm is constrained
to move in a vertical plane containing the shoulder link creating a
vertical circle with the horizontal axis.

See figure 8, which shows a sketch of the PR2 arm. SH
indicates the shoulder link, UA the upper arm and FA the
forearm. θSH represents shoulder pan, and is only a subset

1Three links not including the end effector. A link connecting the shoulder
pan and shoulder pitch joints, the upper arm and the forearm

Fig. 9: Elbow locus for end effector goal position constraint (0.60,-
0.40,0.8).

of (0o, 360o) due to joint limits. The point G represents the
end effector goal position, and the sphere S, centered at G
with a radius equal to the length of the forearm, represents
the locus of all geometrically feasible elbow positions E.

Now, given θSH , UA is constrained to move in a vertical
plane containing SH . The locus of the elbow is then a
vertical circle V , with the horizontal axis as shown. Since
our aim is to find elbow positions such that the end effector
is at G, we need to compute the intersection of V and S.
Given SH as shown in figure, this intersection results in
two elbow positions, namely E1 and E2. Note that there
are many θSH such that the corresponding circle V and the
sphere S do not intersect. Altogether, a collection of elbow
points such as E1 and E2 for all θSH within joint limits
forms the elbow locus.

In Figure 9, we compute Egoal for the end effector goal
shown in black. Egoal is filtered to eliminate points that
violate joint limits, those which put the arm in collision, and
those which make it impossible for the goal orientation to
be attained while keeping the wrist flex joint angle within its
limits. In the figure, blue and red points are elbow positions
rejected due to upperarm roll joint limits and shoulder lift
joint limits, respectively, whereas green points represent
acceptable elbow positions. This analysis can be carried out
with other robot arm structures.

3) Combination: Each of these heuristics have strong and
sometimes complementary benefits. We combine them by
constructing a new heuristic that, for each state s, returns
the value h(s) = max(hendeff (s), helbow(s)). Since both
hendeff (s) and helbow(s) are admissible and consistent, the
combined heuristic is also admissible and consistent [11].
Experimentation confirmed the utility of the combined h(s)
as described above, however it is more efficient to use
h(s) = hendeff (s)+helbow(s). While the summation of the
heuristics is not admissible, it is inadmissible by a factor of
at most two and can therefore be shown to provide a bound
on the suboptimality of the paths returned by a factor of
two [11].

In our experimentation, we perform two parallel instances
of Dijkstra’s algorithm on a 80x70x80 grid prior to every
search. One instance computes the distance from the each
cell to the end effector goal cell. The other computes the



cost of the path from each cell to the nearest elbow goal
cell. The two Dijkstra’s searches compute the costs-to-goal
for all of the cells in the grid, providing all of the required
hendeff and helbow values. Both the elbow and the end-
effector’s individual workspaces can be chosen appropriately
to maximize efficiency. During testing, we have found that
both instances complete in roughly 700ms on the PR2 robot
itself.

D. Search

Any standard graph search algorithm can be used to
search the constructed graph G. Given the graph’s size,
however, optimal graph search algorithms such as A* [6] are
inapplicable. Instead, we employ an anytime version of A*
- Anytime Repairing A* (ARA*) [10].This algorithm gener-
ates an initial, possibly suboptimal solution quickly and then
concentrates on improving this solution while deliberation
time allows. The algorithm guarantees completeness for a
given graph G and provides a bound ε on the suboptimality
of the solution at any point in time during the search. ARA*
speeds up the typical A* search by inflating the heuristic
values by a desired inflation factor, ε. An ε greater than 1.0
will produce a solution guaranteed to cost no more than ε
times the cost of an optimal solution.

IV. EXPERIMENTAL RESULTS

To test the capabilities of the motion planner we randomly
generated a battery of tests representing different types of
realistic manipulation scenarios. We use the 7DOF arm of
the PR2 robot as our test platform in these environments.
All of the tests require the planner to plan to 6DOF end-
effector pose constraints, with a 1cm tolerance around the
goal position constraint and an absolute tolerance of 0.05
radians in the roll, pitch, and yaw angles of the end effector.
In all of the experiments mentioned in this paper, the planner
was given a maximum planning time of two seconds.

See figure 10, which shows the five different types of
environments. The tabletop tests are intended to mimic
manipulation scenarios. In these tests, the initial arm con-
figuration is randomly generated within a confined region
below the right shoulder of the robot. All of the end-effector
goal poses are within 16cm of the tabletop, and require roll
and pitch angles of zero but differ in the yaw constraint.
During the experiments, we varied both the height of the
table and the distance of the robot to the edge of the table.
The over-under table tests require that the manipulator go
from above the table to below and vice versa. The bookshelf
tests require that the end effector start on either side of
the bookshelf or on a different shelf than the goal pose.
The obstacle tests were created by randomly placing cubic
obstacles in the workspace of the arm and then randomly
generating start configurations and goals. The final set of
tests, the cluttered environments, proved to be some of the
most difficult, because of the minimal lateral clearance for
the elbow. We could not generate a sufficient set of valid
cluttered environments to include a table of statistics. From
all of the environments we generated, we chose the most

difficult and interesting ones and comprised a set of 80 tests
we called ”Assorted Tests”. The cluttered environments were
included in the assorted tests and used for the comparison
to the sampling-based planner.

Fig. 10: Shown here are five types of test environments used
in our experimental analysis. (1) tabletop manipulation (2) over-
under tabletop (3) bookshelf (4) random obstacles (5) cluttered
environment

Part of our analysis entailed comparing the effectiveness
of using only the orientation solver-based motion primitives,
using only inverse kinematics-based motion primitives and
combining the two approaches (in addition to the static
and multi-resolution motion primitives). Refer to Table I for
detailed results. For these tests, we started the planner with an
ε = 100, setting a maximum planning time of two seconds.
The planning times reported in the table do not include
the time to compute the heuristics, which was consistently
between 0.65 and 0.75 seconds. From these results, we de-
termined that adding inverse kinematics-based motion prim-
itives is better than adding orientation solver-based motion
primitives in less cluttered environments, however, the failure
rate of using only IK-based motion primitives increases as
the environments become more cluttered. The orientation
solver-based motion primitives function better in cluttered
environments because they generate smaller motions that
minimize the risk of collision.

Furthermore, we analysed the effect of switching from
the set of coarse 4DOF motion primitives to fine 7DOF
motion primitives at different distances from the final goal.
Table II shows the effect of this switching distance, d, on
the assorted tests. We concluded that although switching
farther away from the goal is more costly, it provides a
stronger guarantee on completeness. The higher failure rate
for a greater switching distance is due to the inability of the
planner to finish planning in a timely manner.

Finally, we concluded our analysis by comparing our
methods to a sampling-based planner. A cluttered environ-
ment was randomly chosen for testing, and we compared the
paths returned by multiple calls to a sampling-based planner
against those returned by ours. Table III shows comparisons
based on the distance metric, which is the ratio of the path



Random Obstacle Tests (128 trials)

solver cost expan. εfinal
seconds to 1st sol. failuresavg std max

OS 33288 4164 10.69 0.114 0.290 1.840 3(2.3%)
IK 21126 2026 4.50 0.042 0.153 1.490 1(0.8%)
Both 20945 2016 4.30 0.042 0.156 1.550 0

Tabletop Manipulation Tests (18 trials)

solver cost expan. εfinal
seconds to 1st sol. failuresavg std max

OS 71000 4798 16.62 0.168 0.218 0.820 2(11.1%)
IK 57875 3548 11.50 0.303 0.553 2.020 2(11.1%)
Both 67333 3463 13.78 0.306 0.495 1.850 0

Table Over-Under Tests(38 trials)

solver cost expan. εfinal
seconds to 1st sol. failuresavg std max

OS 72194 4419 14.94 0.334 0.362 1.900 1(2.6%)
IK 52731 3493 10.61 0.307 0.431 2.000 12(31.6%)
Both 62368 3408 10.26 0.267 0.207 0.750 0

Bookshelf Tests(8 trials)

solver cost expan. εfinal
seconds to 1st sol. failuresavg std max

OS 75250 4965 16.00 0.086 0.050 0.200 1(2.6%)
IK 41143 3486 6.86 0.039 0.012 0.060 12(31.6%)
Both 42750 3619 7.50 0.059 0.031 0.110 0

TABLE I: Summary of experimental results.

length to the Euclidean distance from the start position of the
end effector to the goal pose. While our search-based planner
is deterministic and always gives the same score, the scores
of the sampling-based planner vary drastically. We believe
that such variability can be counter-productive in situations
where repeatability is a requirement.

Assorted tests (80 trials)
d cost expan. εfinal failures
20cm 68016 2760 14.19 18(22.5%)
40cm 89128 2865 17.83 33(41.2%)

TABLE II: The effect of changing distance d, the threshold for
switching between MPlowD and MPhighD , on the efficacy of the
planner.

Cluttered test (search-based planner score: 4.46)
avg std max min
6.43 3.29 13.23 1.65

TABLE III: Showing variability of paths returned by sampling
based planners, based on the distance metric. The test used was a
randomly chosen highly cluttered environment.

V. CONCLUSION
In this paper we have presented a search-based motion

planning algorithm for manipulation that is capable of
planning efficiently for manipulators with many degrees of
freedom. In our approach, we introduced adaptive motion
primitives that plan efficiently and precisely using both pre-
defined multi-dimensional actions and primitives that are
generated on the fly by analytical solvers. The algorithm
relies on an anytime graph search to generate solutions
quickly, as well as provide theoretical guarantees on the
completeness, consistency and provides a bounds on the sub-
optimality of the solution cost, under state space and action

space constraints. The search is facilitated by a combination
of two heuristics that aid in coping with obstacles in the
environment. While the algorithm was tested on the PR2, it
is general enough to apply to other robots with kinematically
similar arm structures. Our experimental analysis shows
that the use of adaptive motion primitives in search-based
planning for manipulation can lead to very efficient planning.
In particular, these adaptive motion primitives significantly
improve search performance, while maintaining the same
theoretical guarantees as our planner that used static motion
primitives.
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