
High-dimensional Planning on the GPU

Mark Henderson, Joseph T. Kider Jr., Maxim Likhachev, and Alla Safonova
SIG Center for Computer Graphics, University of Pennsylvania

1 Introduction

Optimal heuristic searches such as A* search are commonly used for
low-dimensional planning such as 2D path finding. These algorithms
however, typically do not scale well to high-dimensional planning
problems such as motion planning for robotic arms, computing mo-
tion trajectories for non-holonomic robotic vehicles and motion syn-
thesis for humanoid characters. A recently developed randomized
version of A* search, called R* search, scales to higher-dimensional
planning problems by trading off deterministic optimality guarantees
of A* for probabilistic sub-optimality guarantees. In this paper, we
show that in addition to its scalability, R* lends itself well to a par-
allel implementation. In particular, we demonstrate how R* can be
implemented on GPU. On the theoretical side, the GPU version of
R*, called R*GPU, preserves all the theoretical properties of R* in-
cluding its probabilistic bounds on sub-optimality. On the experi-
mental side, we show that R*GPU consistently produces lower cost
solutions, scales better in terms of memory, and runs faster than R*.
These results hold for both motion planning for 6DOF robot arm as
well simple 2D path finding.

2 The Algorithm

R* search: R* search operates by decomposing the usual single-
shot A* search [Nilsson 1971] into a series of properly-scheduled
short-range and easy-to-solve searches, each guided by the heuristic
function towards a randomly chosen goal. More specifically, R* con-
structs a small graph Γ of sparsely placed states, connected to each
other via edges. Each edge in Γ represents a path in the original graph
in between the corresponding states in the original graph.

R* constructs Γ in such a way as to provide explicit minimization of
the solution cost and probabilistic guarantees on the suboptimality of
the solution. To do this, R* grows Γ in the same way A* grows a
search tree [Bleiweiss 2008]. At every iteration iteration, R* selects
the next state s to expand from Γ. However, while normal A* ex-
pands s by generating all of its immediate successors, R* expands s
by generating K random states residing at some domain-dependent
distance ∆ from s. If a goal state is within ∆ from state s then it
is also generated as the successor of s. R* grows Γ by adding these
successors of s and edges from s to them.

A path that R* returns is a path in Γ from the start state to the goal
state. This path consists of edges in Γ. Each such edge, however,
is a path in the original graph. Finding each of these (local) paths
may potentially be a challenging planning task. R* postpones finding
these hard-to-solve paths until necessary and concentrates on finding
the paths that are easy-to-solve instead. R* uses the (short-range)
weighted A* searches with heuristics inflated by ε > 1 to compute
these easy-to-solve paths.

Parallelization of R* search: It turns out that the decomposition of a
single-shot search into a series of easy-to-solve short-range searches
lends itself naturally to a parallel implementation on GPU. In partic-
ular, while the main loop (figuring out what short-range search to run
next) can run on CPU, each of the short-range searches can run on a
thread in CUDA. This results in significant speedups for the following
reasons. First, each short-range search is independent of others which
makes it suitable for running them in parallel. Second, each search is
a short-range and easy-to-solve. This means that each search does not
require vast amounts of memory. This allows for multiple searches to
share states in the DRAM on the GPU so there are no unnecessary ex-
pansions. Finally, each search in R* discards its memory after it exits.
This eliminates the need for time consuming transfers of memory and
makes it ideal for running in the DRAM on the GPU.

(a) motion generated (b) motion generated
by R*GPU (cost=78) by R* (cost=101)

Figure 1: Motions generated for a simulated 6 DOF robot arm after 30 secs of plan-
ning

3 Results

We first evaluate the performance of R*GPU on 53 randomly gener-
ated 2D gridworlds of varying obstacle density and for fast (simple)
and artificially time-consuming (hard) edgecost computations (Ta-
ble 1(a)). The results show that R*GPU outperforms the CPU version
of R* as obstacle density grows and as cost computation becomes
time-consuming, which is often the case when planning for complex
systems.

We also evaluate and compare the performance of R*GPU with the
CPU version of R* on a simulated 6 degree of freedom (DOF) robotic
arm (Figure 1) [Likhachev and Stentz 2008]. The base of the arm is
fixed, and the task is to move its endeffector to the goal (small circle
on the left) while navigating around obstacles (indicated by grey rect-
angles). The resulting state-space is over 3 billion states. The cost of
each change in a joint angle is 1. We test our algorithm using three
settings of ε. The results show that R*GPU consistently produces a
lower “best cost”, and within five minutes we can execute over 38
times more of successful R*GPU searches and over 64 times more of
weighted A* searches than if we choose to run normal R* searches
(Table 1 (b), note that shown numbers are ratios).

(a) 2D planning environment results (b) 6 DOF Robot Arm results

Table 1: Experimental results. Performance Measures: Best Cost - the cost of the best
solution found, # of Succ R* - the number of successful R* searches, # of Local A* - the
number of short-range weighted A* searches executed within time allocated for planning

References

BLEIWEISS, A. 2008. Gpu accelerated pathfinding. In GH ’08: Pro-
ceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS sympo-
sium on Graphics hardware, Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 65–74.

LIKHACHEV, M., AND STENTZ, A. 2008. R* search. In AAAI,
344–350.

NILSSON, N. 1971. Problem-Solving Methods in Artificial Intelli-
gence. McGraw-Hill.


