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Abstract

Object category recognition is a challenging problem in computer vision, which currently receives a growing interest in
the field. This problem is almost ill-posed, because there is no formal definition of what constitutes an object category. While
people largely agree on common, useful categories, it is still not clear which are the objects’ properties that help us group
them into such categories. In this thesis we represent the object category models as graphs of features, and focus mainly
on the second order relationships between them: pairwise category-dependent (e.g. shape ) as well as pairwise perceptual
grouping constraints (e.g. geometrical and color based). The main theme of this thesis is that higher order relationships
between model features are more important for category recognition than local, first order features. We present several novel
algorithms that take full advantage of such pairwise constraints. Firstly, we present our spectral matching algorithm for
the Quadratic Assignment Problem (also known as Graph Matching), along with a novel, efficient method for learning the
pairwise parameters. Secondly, we present a novel optimization method which can handle nonlinear, complex functions, and
present some of its applications in the context of our work. Thirdly, we discuss our object category recognition approach
based on shape alone, which uses pairwise geometric constraints only. Next, we explore ways (based on both color and
geometry) to establish perceptual grouping relationships between pairs of features, which are category independent. And
finally, we talk about how we plan on combining both the category dependent and the perceptual relationships in order to
perform object category recognition.
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Figure 1. Thesis overview: spectral matching (using pairwise constraints) is combined with perceptual grouping (using both geometric and
color based pairwise constraints) for object category recognition. Smoothing-based optimization (Section) can be used for learning the
pairwise constraints used by spectral matching

1. Introduction
Object category recognition is a challenging problem in computer vision, which currently receives a growing interest in

the field. While humans can accurately distinguish between thousands of categories, current state of the art algorithms are
far behind. This problem is almost ill-posed, because there is no formal definition of what constitutes an object category.
Philosophically, any arbitrary definition could characterize an object category (e.g.All things with a white patch), but such
categories are not useful to us, humans. While people largely agree on common, useful categories, it is still not clear which
are the objects’ properties that help us group them into such categories.

In this thesis we represent these object category models as graphs of features, and focus mainly on the second order
(pairwise) relationships between them: category-dependent as well as perceptual grouping constraints. This differs from the
popular bag of words model [18], which concentrates exclusively on local features, ignoring the higher-order interactions
between them. The main theme of this thesis is that higher order relationships between model features are more important
for category recognition than local, first order features. This is consistent with research in cognitive science hypothesizing
that human category recognition is based on pairwise relationships between object parts [33]. Studies in human vision show
that simple, unary features, without higher order relationships (such as geometric constraints or conjunctions of properties),
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are the ones mainly used at the pre-attentive levels, but are not sufficient at higher cognitive levels where object category
recognition takes place [65]. The importance of using pairwise relationships between features was recognized early on,
starting with Ullman’s theory of the correspondence process, which introduced the notion of correspondence strength that
takes into consideration both the local/unary affinities, but also pairwise interactions between features [47]. Interpretation
trees and transformation voting alignment are another example of early work by Lowe [44], Grimson [30], and others [27], [7]
using higher order relationships, but they were limited by an explicit parametric model of the global transformation between
the input and the model. More recent techniques for category recognition based on graphical models [40] also used higher
order constraints, without considering a global transformation.

In this thesis we take full advantage of the power of second order relationships by developing rich constraints between
model parts (as well as input features) that are appropriate for the recognition task. We also present our spectral matching
algorithm [38], based on such pairwise constraints, which is very efficient due to the rarity of accidental alignments. We try
to achieve two goals in approaching the problem:

1. Understand what is significant for solving the task: in this case, understanding that pairwise relationships are very
powerful if used properly

2. Take advantage of particular, unique properties of the actual vision problem in order to develop efficient algorithms,
such as spectral matching.

We present our matching algorithm in Section 2.1, focusing more on its theoretical and empirical properties than on its
application to recognition. In Section 4 we show how to apply this algorithm, within a novel framework, to the object category
learning and recognition problem. While most of the work in this area ignores the geometric relationships between features
and focuses primarily on the features themselves, we instead argue that the geometric/higher-order relationships are often
more powerful than the local features.

We realize that the recognition problem is a high level task, and that it cannot be fully solved by simply matching low-level
features. For improving the matching performance and efficiency one has to consider intermediate cues from geometric and
color based perceptual grouping, which are object category independent, and could provide powerful a priori information
that could direct the higher level recognition process onto the right path. In Section 5.1 we present our proposed work on
how to perform perceptual and segmentation based grouping. As recognized early on [44], the grouping process gives the
recognition algorithm a rough idea of where objects are and how features should be grouped together. After this stage the
matching algorithm can use this lower-level information to ignore most of the background clutter. In Section 5 we propose
a novel method for integrating the lower-level grouping information with the higher level, model dependent, geometric and
appearance-based information into one unified framework.

Figure 1 shows a high level overview of our thesis. Both the matching technique (spectral matching) from Section 2.1 and
the grouping approaches proposed in Section 5 are combined for solving the object category recognition problem. For
learning the matching parameters we use our novel optimization method for complex nonlinear functions, presented in
Section 3.

In Figure 2 we show an alternative overview of our thesis in terms of the completed and the proposed work. The most
significant completed work includes:

1. Spectral Matching: an efficient algorithm for feature matching using second order terms. It is basically a solver for the
Quadratic Assignment Problem applied to computer vision.

2. Object Recognition without Grouping: a novel approach for semi-supervised learning of object categories using higher
order interactions between simple features. The same framework can easily incorporate more complex features

The proposed work (or work in progress) can be summarized as follows (in the order of its importance):

1. Object Recognition with Grouping: a novel, unifying approach for combining object specific information (matching
model parts to image features) and image based (model independent) grouping cues

2. An efficient algorithm for grouping (in a soft way) image features based on color distributions and geometric relation-
ships

3. A new general optimization method for complex functions and its applications to grouping and object recognition

4. An efficient method for learning graph matching, specifically designed for the spectral matching algorithm
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Figure 2. Completed and proposed work

2. Feature Matching using Pairwise Constraints
2.1. Spectral Matching

There are many tasks in computer vision that require efficient techniques for finding consistent correspondences between
two sets of features, such as object recognition, shape matching, wide baseline stereo, 2D and 3D registration. In this thesis
we present an efficient technique that is suitable for such applications. Our method finds consistent correspondences between
two sets of features, by taking in consideration both how well the features’ descriptors match and how well their pairwise
geometric constraints (or any other type of pairwise relationship) are satisfied. Our formulation can accommodate different
kinds of correspondence mapping constraints, such as allowing a data feature to match at most one model feature (commonly
used), or allowing a feature from one set to match several features from the other set (used in shape matching [4]).

The features could consist of points, lines, shape descriptors or interest points, depending on the specific application. For
problems where the features are non-discriminative (e.g. points), it is the features pairwise geometric information that helps
in finding the right correspondence. When discriminative features are extracted (e.g. interest points) then both the geometry
and the properties of each individual feature can be used.

The main difficulty of the correspondence problem is its combinatorial complexity. Our approach avoids the combinatorial
explosion by taking advantage of the spectral properties of the weighted adjacency matrix M of a graph, whose nodes are the
potential assignments a = (i, i′) (Section 2) and weights on edges are the agreements between pairs of potential assignments.
We use the terms assignment and correspondence interchangebly .

Our method is based on the observation that the graph associated with M contains:

1. a main strongly connected cluster formed by the correct assignments that tend to establish agreement links among each
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other. These agreement links are formed when pairs of assignments agree at the level of pairwise relationships (e.g.
geometry) between the features they are putting in correspondence.

2. a lot of incorrect assignments outside of that cluster or weakly connected to it, which do not form strongly connected
clusters due to their small probability of establishing agreement links and random, unstructured way in which they
form these links.

These statistical properties motivate our spectral approach to the problem. We start by first finding the level of association
of each assignment with the main cluster, by inspecting the eigenvector of M corresponding to its largest eigenvalue (prin-
cipal eigenvector). Then we keep rejecting the assignments of low association, until the constraints on the correspondence
mapping are met (Section 3). Spectral methods are commonly used for finding the main clusters of a graph, in tasks such as
segmentation [63], grouping [46], [60], and change detection [58]. Shapiro and Brady [62] also proposed a spectral technique
for correspondence problems, later improved by Carcassoni and Hancock [9], but their formulation is different and it applies
only to matching point sets.

In previous spectral methods, the rows and columns of M correspond to single features, and the value at M(i, i′) is the
affinity of feature i with feature i′. Different from that work, here the rows and columns of M correspond to candidate
correspondences, which are pairs of features. Now, M(a, b) contains the affinity of feature pair a = (i, i′) with feature pair
b = (j, j′). Also, the diagonal terms in the typical formulation are not meaningful (they measure affinity of a single feature i
with itself). However, here the diagonal terms M(a, a) are meaningful, and they represent the individual pair score between
the two features i and i′.

Our problem formulation (Section 2.1.1) also relates to the ones given in [4] and [45]. Maciel and Costeira [45] use the fact
that the integral quadratic formulation of the correspondence problem can be reduced to an equivalent concave minimization
problem, without changing the optima. However, the complexity of concave minimization is still non-polynomial. Berg and
Malik [4], obtain an efficient implementation by specifically designing it to allow several features from one image to match
the same feature from the second image, while approximating the quadratic problem with n+1 linear programming problems
(where n is the number of rows of M ). Those papers formulate the problem as an integer quadratic programming problem
by embedding the mapping constraints in the general form Ax = b. Instead, we relax both the integral and the mapping
constraints on x, and use them only after the optimization step. We show that this relaxation makes sense due to the spectral
properties of M . In this way we achieve a robust performance that is several orders of magnitude faster than those methods
even on small size data sets.

2.1.1 Problem Formulation

Given two sets of features: P , containing nP data features, and Q, having nQ model features, a correspondence mapping is
a set C of pairs (or assignments) (i, i′), where i ∈ P and i′ ∈ Q. The features in P and Q that belong to some pair from C
are the inliers. The features for which there is no such pair in C are the outliers. Different problems impose different kinds
of mapping constraints on C, such as: allowing one feature from P to match at most one feature from Q, or allowing one
feature from one set to match more features from the other. Our formulation of the correspondence problem can accommodate
different kinds of constraints.

For each candidate assignment a = (i, i′) there is an associated score or affinity that measures how well feature i ∈ P
matches i′ ∈ Q. Also, for each pair of assignments (a, b), where a = (i, i′) and b = (j, j′), there is an affinity that measures
how compatible the data features (i, j) are with the model features (i′, j′). Given a list L of n candidate assignments, we
store the affinities on every assignment a ∈ L and every pair of assignments a, b ∈ L in the n x n matrix M as follows:

1. M(a, a) is the affinity at the level of individual assignments a = (i, i′) from L. It measures how well the data feature
i matches the model feature i′. It is important to note that assignments that are unlikely to be correct (due to a large
distance between the descriptors of i and i′) will be filtered out and not be included in L. Thus, each such rejection
will reduce the number of rows and columns in M by one.

2. M(a, b) describes how well the relative pairwise geometry (or any other type of pairwise relationship) of two model
features (i′, j′) is preserved after putting them in correspondence with the data features (i, j). Here a = (i, i′) and
b = (j, j′). If the two assignments do not agree (e.g. the deformation between (i, j) and (i′, j′) is too large) or if they
are incompatible based on the mapping constraints (e.g i = j) we set M(a, b) = 0. We assume M(a, b) = M(b, a)
without any loss of generality.
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We require these affinities to be non-negative, symmetric (M(a, b) = M(b, a)), and increasing with the quality of the
match (without loss of generality). The candidate assignments a = (i, i′) from L can be seen as nodes forming an undirected
graph, with the pairwise scores M(a, b) as weights on the edges and the individual scores M(a, a) as weights at the nodes.
Then, M represents the affinity matrix of this undirected weighted graph. If the features are highly discriminative, such as
SIFT descriptors, then only a small fraction of all possible pairs (i, i′) are kept as candidate matches. In this case the size
of M and the dimension of the problem search space are considerably reduced. When the features are non-discriminative
(such as 2D or 3D points) and there is no a priori information about candidate matches (e.g. constraints on translation), all
possible pairs (i, i′) can be considered as candidate assignments. In general, M is an n x n, sparse symmetric and positive
matrix where n = knP , and k is the average number of candidate matches for each data feature i ∈ P . Each feature i ∈ P
will usually have a different number of candidate correspondences (i, i′), i′ ∈ Q. Thus the number of nodes in this graph
( = number of elements in L), adapts based on the actual data and it depends mainly on how discriminative the features’s
descriptors are.

The correspondence problem reduces now to finding the cluster C of assignments (i, i′) that maximizes the inter-cluster
score S =

∑
a,b∈C M(a, b) such that the mapping constraints are met. We can represent any cluster C by an indicator vector

x, such that x(a) = 1 if a ∈ C and zero otherwise. We can rewrite the total inter-cluster score as:

S =
∑

a,b∈C

M(a, b) = xT Mx (1)

The optimal solution x∗ is the binary vector that maximizes the score, given the mapping constraints:

x∗ = argmax(xT Mx) (2)

The inter-cluster score xT Mx depends mainly on three things: the number of assignments in the cluster, how intercon-
nected the assignments are (number of links adjacent to each assignment) and how well they agree (weights on the links).
Previous approaches [4], [45], gave a quadratic programming formulation to this problem by embedding the mapping con-
straints on x in the general form of Ax = b. Instead, we relax both the mapping constraints and the integral constraints on
x, such that its elements can take real values in [0, 1]. We interpret x∗(a) as the association of a with the best cluster C∗.
Since only the relative values between the elements of x matter, we can fix the norm of x to 1. Then, by the Raleigh’s ratio
theorem, x∗ that will maximize the inter-cluster score xT Mx is the principal eigenvector of M . Since M has non-negative
elements, by Perron-Frobenius theorem, the elements of x∗ will be in the interval [0, 1]. In Section 3 we describe how we use
the mapping constraints to binarize the eigenvector and obtain a robust approximation to the optimum solution.

One novel aspect of our approach is that we drop the mapping constraints during the optimization step, and use them only
afterwards to binarize the eigenvector. The problem becomes one of finding the main cluster of the assignments graph and
can be solved easily using the well known eigenvector technique. We show that this method is very robust, because the main
cluster in the assignments graph is statistically formed by the correct assignments.

A key insight in the understanding of the statistics of M is that a pair of model features is very likely to agree (in terms of
pairwise relationship between features) with the correct corresponding pair of data features. The same pair is very unlikely
to agree with an incorrect pair of data features. Thus, correct assignments are expected to establish links between them,
while incorrect assignments are not expected to form such links, and when they do, it happens in a random, unstructured
way. This suggests that the correct assignments will form a highly connected cluster with a high association score, while the
wrong assignments will be weakly connected to other assignments and not form strong clusters. The larger the value in the
eigenvector x∗(a), the stronger the association of a with the main cluster. Since this cluster is statistically formed by correct
assignments, it is natural to interpret x∗(a) as the confidence that a is a correct assignment.

2.1.2 Algorithm

We present a greedy algorithm for finding the solution to the correspondence problem. As discussed earlier, we interpret the
eigenvector value corresponding to a particular assignment a = (i, i′) as the confidence that a is a correct assignment. We
start by first accepting as correct the assignment a∗ for which the eigenvector value x∗(a) is maximum, because it is the one
we are most confident of being correct. Next we have to reject all other assignments that are in conflict with a∗, as dictated
by the constraints on the correspondence mapping. In our experiments these are assignments of the form (i, ∗) or (∗, i′) (one
feature i ∈ P can match at most one feature i′ ∈ Q and vice-versa). Note that here one could use different constraints to find
the assignments that are in conflict with a∗. We accept the next correct assignment as the one with the second highest chance
of being correct that has not been rejected and thus it is not in conflict with a∗. We repeat this procedure of accepting new
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assignments of next highest confidence that are not in conflict with the ones accepted already, until all assignments are either
rejected or accepted. This algorithm will split the set of candidate assignments in two: the set of correct assignments C∗ and
rejected assignments R, having the following property: every assignment from R will be in conflict with some assignments
from C∗ of higher confidence. Thus, no element from R can be included in C∗ without having to remove from C∗ an element
of higher confidence.

The overall algorithm can be summarized as follows:

1. Build the symmetric positive n x n matrix M as described in section 2.

2. Let x∗ be the principal eigenvector of M . Initialize the solution vector x with the n x 1 zero vector. Initialize L with
the set of all candidate assignments.

3. Find a∗ = argmaxa∈L(x∗(a)). If x∗(a) = 0 stop and return the solution x. Otherwise set x(a∗) = 1 and remove a∗

from L.

4. Remove from L all potential assignments in conflict with a∗ = (i, i′). These are assignments of the form (i, k) and
(q, i′) for one-to-one correspondence constraints (they will be of the form (i, k) for one-to-many constraints).

5. If L is empty return the solution x. Otherwise go back to step 3.

We note that the outliers are found at steps 3 and 4. They belong to weak assignments incompatible with assignments of
higher confidence, or to those that have a zero corresponding eigenvector value (step 3). Different kinds of constraints on the
correspondence mapping can be used to remove the assignments conflicting with higher confidence assignments (step 4). Our
approach takes advantage of the fact that these constraints are usually easy to check. The algorithm provides a simple way
to enforce the constraints as a post-optimization step, without the need of embedding them in the general form of Ax = b,
required for the more expensive quadratic optimization approach. In practice our algorithm was several orders of magnitude
faster than the linear programming approximation [4] to the quadratic problem , even for medium size data-sets (matching
15-20 points). In turn, the linear optimization approximation is less computationally expensive than the optimal quadratic
programming approach [45], especially as the size of M increases. See [38] for the experimental analysis of the spectral
matching algorithm and its performance comparison to [4].

2.2. First Method for Learning the Pairwise Constraints for Graph Matching (work in progress)

In Section 2.1 we presented our novel spectral matching algorithm, which is an optimization technique for the graph
matching task, also known as the quadratic assignment problem (QAP). This problem is frequently encountered in computer
vision. We briefly reiterate it here: the task is formulated as an optimization problem, with the goal of finding the assignments
that maximize a quadratic score, given the constraints that one feature from one image can match only one other feature from
the other image, and vice-versa:

x∗ = argmax(xT Mx) (3)

Here x∗ must be a binary vector such that x∗ia = 1 if feature i from one image is matched to feature a from the other image,
and x∗ia = 0 otherwise. As stated before, each feature from one image can match only one feature from the other, and vice-
versa. This problem is NP hard, so most research on this topic focused mainly on developing efficient algorithms for finding
approximate solutions, such as the graduated assignment (GA) [28], the spectral matching [38] or linear approximations
[4] algorithms . However, as in graphical models, it is not only important to find the optimal solution, but it is also very
important to have the right function to optimize. In this case the matrix M contains the second order potentials, such that
M(ia, jb) measures how well the pair of features (i, j) from one image agrees in terms of geometry and/or appearance
with their matched counterparts (a, b) from the other image. Using the right function M(ia, jb) is crucial for obtaining
correct correspondences. Most work on this problem uses pairwise scores M(ia, jb) that are designed manually. In the
graphical models literature where the learning issue is addressed abundantly, but on learning the pairwise constraints for
Graph Matching there is only one paper published [8], to the best of our knowledge. This is mainly because learning for
graph matching is a harder problem than learning for graphical models, because the matching scores used in QAP are not
normalized probability distributions.

The pairwise matching constraints Mia;jb(w) are functions of some parameter vector w, which will ultimately influence
the matching performance. The parameter vector depends on the actual implementation and it is irrelevant for our discussion
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Figure 3. After learning the pairwise constraints for spectral matching, all the features in the first image are correctly matched to the features
from the last image (House sequence)

here, since our optimization method is general and can handle any function Mia;jb(w) (unlike [8]). The performance of the
matching algorithm is the function depending on w (which cannot be written in closed form) that we want to optimize during
learning (it is similar to the one in [8]):

f(w) =
m∑

i=1

n
(i)
c (w)

n
(i)
t

(4)

Here n
(i)
c is the number of correct matches for image pair i, n

(i)
t is the total number of ground truth possible matches (for

the same image pair i) and w is the vector of parameters that define the pairwise scores. Then, the optimization problem is
formulated as:

w∗ = argmax(f(w)) (5)

To solve it we use our optimization algorithm for non-negative functions presented in Section 3.

2.3. Second Method for Learning the Pairwise Constraints for Graph Matching (work in progress)

We have shown how we can use our general optimization method for optimizing the true score function (relative number
of correct matches). Next we present a different learning method that is specifically designed for our spectral matching
algorithm. While this second approach is based on a local optimization scheme, it is in practice very efficient. In this case
the cost function that we minimize is the sum of squared errors between the approximate principal eigenvector v (used by
the spectral matching algorithm) and the ground truth normalized indicator vector xt, summed over all training image pairs.

J(w) =
m∑

i=1

(v(i)(w)− xt
(i))2 (6)

Notice that this error function is the soft version of the previous one and minimizing it is the same as maximizing the sum
of correlations between the eigenvectors and the ground truth indicator solutions. We choose to minimize J(w) by gradient
descent:
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Figure 4. First three plots: the eigenvector (blue) vs the ground truth indicator vector during learning. After 300 gradient steps the
eigenvector is very close to the ground truth (0.88 correlation). Last plot: the error monotonically decreases with each gradient step

wt+1 = wt − η
m∑

i=1

(v(i)(w)− xt
(i))∇v(i)(w) (7)

The usual way of taking the partial derivatives of an eigenvector v is [15]:

v′ = (λI −M)†(λ′I −M ′)v (8)

where

λ′ =
vT M ′v
vT v

(9)

Since M is in our case a very large matrix (it can sometimes be up to 5000 by 5000) computing the required pseudo-
inverse can be very tricky and expensive in practice. Below we present a new, much more efficient method for obtaining
the derivatives of v, which takes full advantage of the fact that v is the principal eigenvector of M (as opposed to any
eigenvector).
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Figure 5. Experiments on our second method for learning for graph matching on the House sequence. The plots show the correlation
coefficient between the eigenvector (used by spectral matching) and the ground truth solution vector for different number of recursive
iterations n used to compute the approximative derivative of the eigenvector (the plots represent are averages over all our experiments).
Notice that for a very wide range of n ( even for n as small as 5) the learning method behaves in the same way, returning the same result.
From a qualitative point of view even small n are equally good. However, from a computational point of view, the time increases linearly
with n

In our implementation, we obtain v by using the power method for a fixed number n of iterations (maximum 100, but in
most cases 10 − 20 are enough). So v is in fact not the true eigenvector, but an approximation of it: v = Mn1√

(Mn1)T (Mn1)
.

We use this formula to take partial derivatives of v:

v′ =
(Mn1)′(‖Mn1‖)−Mn1/‖Mn1‖((Mn1)T (Mn1)′)

‖Mn1‖2
(10)

We notice that in order to obtain the derivative of v, we first need to compute the derivative of Mn1, which can be easily
obtained recursively:

(Mn1)′ = M ′(Mn−11) + M(Mn−11)′ (11)

Notice that, in this formulation, the approximation v to the true eigenvector is differentiable whenever the elements of M
are differentiable.
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Table 1. Matching performance on the hotel and house datasets. In the first three columns the same 5 training images from the House
dataset were used. For the fourth column 106 training images from the House sequence were used. SC stands for Shape Context

Datasest Ours (I) Ours (II) [8] [8]
No SC (5) No SC(5) SC (5) SC (106)

House 99.8% 99.8% < 84% ≈ 95%
Hotel 94.8% 94.8% < 87% < 90%

In Figure 4 we show how the approximate eigenvector v indeed approaches the ground truth indicator vector (for a specific
image pair) as the parameters are learned using gradient descent. Even though the method is local, in practice it is very fast
and effective.

To get a better feeling of how much more efficient our method is than [15], we performed some quantitative experiments
to measure empirically the relative computational cost between them. To implement [15] in Matlab one can use the function
pinv, which computes the pseudo-inverse of a matrix. Also, one can use a more efficient alternative, the Matlab matrix
division operator, but that one is more efficient only if the matrix (λI−M) is non-singular. Unfortunately, in our experiments
on matching, the matrix was most of the time singular, so the implementation of [15] became very inefficient. In turn, our
method works with singular matrices in the same fashion as with non-singular ones, and it also has the option of tuning the
number of iterations n for increasing efficiency. If our method for n = 10 takes 1 unit of time to compute a gradient step then
the one in [15] takes over 60 times longer if the matrix (λI−M) is non-singular (which was a rare case) and over 1500 times
longer when the matrix was singular (which happened much more often). Both methods perform equally well qualitatively.
In turn, our method is linear in n and as Figure 5 shows, qualitatively insensitive to n (it works equally well with n as low as
5). These results are averaged over all gradient steps, in all our experiments on 900 by 900 matrices.

Experiments We perform experiments on two tasks that are the same as the ones in [8]. We used exactly the same image
sequences both for training and testing [32, 31], and the same features, which were manually selected by [8]. For solving the
quadratic assignment problem we used the spectral matching algorithm [38], instead of the the graduated assignment [28],
because it is faster. The goal of these experiments were not to directly compare the two learning algorithms, but rather to
show that our algorithm is suitable for this problem also. The algorithm in [8] is specifically designed for a certain class
of score functions, but both our algorithms can work with any pairwise score M(ia, jb) . The algorithm in [8] optimizes a
convex upper bound to the cost function, while in our case we attempt to optimize directly the score/error functions.

The type of pairwise scores that we want to learn is:

Mia;jb = exp(w0 + w1
|dij − dab|
|dij + dab|

+ w2|αij − αab|) (12)

Here dij and dab are the distances between features (i, j) and (a, b) respectively, while αij and αab are the angles between
the X axis and the vectors ~ij and ~ab, respectively. As in [8] we first obtain a Delaunay triangulation and allow non-zero
pairwise scores Mia;jb if and only if both (i, j) and (a, b) are connected in their corresponding triangulation. The pair-wise
scores we work with are different than the ones in [8] because we wanted to put more emphasis on the second order scores.
The authors of [8] make the point that after learning there is no real added benefit for using the second order scores, and
that linear assignment using appearance only terms (based on Shape Context) suffices. We make the counter argument by
showing that in fact the second order terms are much stronger once distance and angle information is used (which they did
not use). Our performance is significantly better even when we do not use any appearance terms (Figure 1). With only 5
training images used, we obtain almost 100% accuracy, more than 15% better than what they obtain using the same exact
training and testing pairs of images. Our belief that the second order terms are much more powerful than the local appearance
terms is a common theme throughout this thesis, as can also be seen (to a larger extent) in Section 4.

3. Smoothing-based Optimization (work in progress)
Some of the problems that we want to solve in this thesis, such as learning for graph matching, require the optimization of

complex, non-linear, possibly non-differentiable functions. In fact, there are many such problems in computer vision. Here
we propose a novel, efficient method for such tasks. Probably the two most popular algorithms used in such cases are Markov
Chain Monte Carlo (MCMC) and Simulated Annealing (and their variants). While these algorithms have global optimality
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Figure 6. Many different vision tasks invlove the optimization of complex functions: A. Learning the parameters for graph matching
(Quadratic Assignments Problem) B. Automatically extracting object masks, given an input bounding box

properties, in practice they lack efficiency as they require a large number of samples. Variants of MCMC are commonly
used in various vision applications such as segmentation [66], object recognition [67] and human body pose estimation [64].
Other difficult optimization problems such as learning graph matching [8] are approached by optimizing an upper bound of
the original cost function.

We propose an efficient method for such optimization problems. One of our main ideas is that searching for the global
maximum through the scale space of a function [42] is equivalent to looking for the optimum of the original function, but with
the added benefit that we have to avoid fewer local optima. Our method works with any non-negative, possibly non-smooth
function, and requires only the ability of evaluating the function at any specific point. In order to better explain our algorithm
we first discuss the inspirations that stand behind it.

3.1. First Motivation: Smoothing for Optimization

There are two main ideas that inspired the design of our algorithm. Even though at a first glance they seem unrelated, their
connection becomes obvious once we explicitly present our algorithm.

Functions with many local optima have been always a problem in optimization. Most optimization algorithms are local and
prone to get stuck in local optima. Compared to the area of convex optimization, there are relatively much fewer choices of
algorithms that attempt to find the global optimum, or even an important optimum, of highly nonlinear and non-differentiable
functions. Algorithms such as Graduated Non-convexity [5] address the non-convexity problem by modifying the original
function and adding to it a large convex component such that the sum will also be convex. Starting from an initial global
optimum, and tracking it as the influence of the convex component is slowly reduced, the procedure hopes to finally converge
to the original global optimum. Our idea of smoothing is similar: the more we smooth a function (the larger the variance of
the Gaussian kernel) the less local optima the function will have. Instead of corrupting the original function by adding to it a
foreign convex function such as it is the case with Graduated Non-convexity [5], blurring uses the function’s own values to
obtain a similar and most probably a better effect (Figure 7). There is only one caveat with the smoothing approach. Since the
Gaussian kernel has infinite support, for smoothing the function at a single point one would have to visit the entire space, and
would thus find the global optimum by exhaustive search! So even though the idea sounds interesting, it is in fact impossible
to apply in its pure form. Fortunately, as we will show later, in practice things are not even nearly as impractical as they might
seem. But before we focus on the practical aspects of our algorithm, let us first convince ourselves that we have the theory to
support it.
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Figure 7. At higher levels of smoothing less and less local optima survive. Even for a relatively small variance (=10), most of the noisy
local optima disappear while the significant ones survive

The results from scale space theory [42] show that for most functions local optima disappear very fast as we increase the
variance of the Gaussian blurring. Also, the local optima that survive at higher levels of smoothing can be usually traced
back to significant local optima in the original function. Moreover, any nonnegative function with compact support will end
up with a single global maximum for a large enough variance of smoothing [43].

In Figure 7 the original function is extremely wiggly and any gradient based technique would immediately get stuck
in a local maximum. However, as soon as we blur the function with a relatively small sigma, most noisy local optima
vanish. Finally, for a large enough sigma there is only one global optimum which could be traced back to the original global
optimum. The unique global maximum of a blurred function cannot always be traced back to the original global optimum,
nevertheless, for most functions, it will be traced back to a significant local optimum, which constitutes an important progress
compared to local optimization techniques. So, if we could somehow have access to the values of our smoothed function in
the neighborhood of our current position, we would know where to move next to approach a more important optimum.

3.2. Second Motivation: Updating our Knowledge

Our second motivation, which is seemingly unrelated to the smoothing idea, is to represent our knowledge of where
the optimum of our complex function is with a multidimensional Gaussian. At any point in time, we want to evaluate the
complex function at points where this Gaussian (which represents our current knowledge) has high probability mass and
use those evaluations for updating our current Gaussian in a way that will get us closer to the optimum we are looking for.
In Figure 8 we present this idea by running our algorithm on a one dimensional function. The function is sampled in a
region where the Gaussian has high probability. Based on those evaluation the variance can increase or decrease. At the final
iteration we are indeed very close to the true optimum and our search (sampling) space is minimal (very small variance).
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Figure 8. Refining our knowledge (red dashed line) about the optimum of the function we want to optimize (blue line). At each iteration
the mean of the Gaussian represents our current guess, while its variance the uncertainty. By the tenth iteration we are very close to the
true optimum and also very certain about where it is (very small variance)

This idea is related to the Cross Entropy Method for optimization [57]. Even though technically very different, both ideas are
based on sampling from a distribution that is sequentially refined until it converges around the optimum. Other more distantly
related work includes importance sampling algorithms for Bayesian Networks [11, 61], where a function, that is relatively
inexpensive to draw samples from, is sampled in order to estimate marginals (expressed as integrals that are hard to compute
exactly). The samples obtained are used for continuously refining the sampling function in order to obtain better and better
estimates of these marginals.

3.3. Algorithm

The two motivations described above are seemingly unrelated, but the connection between them becomes clear once we
look in detail at our algorithm. Before describing the algorithm, we present the following theorem on which it is based:

Theorem 1: Let f : Rn → R+ be a non-negative multi-dimensional function. Let its scale space function (its smoothed
version) be defined as F (µ, σ2I) =

∫
g(x;µ, σ2I)f(x)dx, where g is a multidimensional Gaussian (of dimension n) with

mean µ and covariance matrix σ2I . Given the pair (µ(t), σ(t)) at time step t, we define (µ(t+1), σ(t+1)), at the next time step
t + 1, by the following update rules (i refers to dimension indices, and g(t)(x) = g(x;µ(t), σ(t))):

1. µ(t+1) =
∫

xg(t)(x)f(x)dx∫
g(t)(x)f(x)dx

2. σ(t+1) =
√

1
n

∫
(
∑n

i=1(xi−µi)2)g(t)(x)f(x)dx∫
g(t)(x)f(x)dx

Then, the following conclusions hold:
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a). F (µ(t+1), σ(t)) ≥ F (µ(t), σ(t))

b). F (µ(t), σ(t+1)) ≥ F (µ(t), σ(t))

Proof: see Sections 7.1 and 7.2.
This theorem basically states that the update steps 1 and 2 represent growth transformations [2, 35] for the function F .

They provide a specific way of updating the Gaussian which represents our knowledge about the optimum at any specific
time step. This gives us the connection to our second motivation. Also, the updating steps are in the direction of the gradient
of the scale space function F , and thus provide us with a way of traveling not only through the original search space but also
through scale. This gives us the link to the first motivation based on smoothing.

The smaller σ the more F approaches the original function f . It is clear that the global optimum of F is the same as the
global optimum of f . So optimizing f is practically equivalent to optimizing F . The difference is, as we discussed in Section
3.1, that in F it is much easier to avoid the local optima. The theorem above is the basis of our method. Probably its most
interesting feature (as we found in our experiments in Section 3.4) is its ability of updating automatically σ, which grows if
we need to escape from valleys and shrinks if we reach the top of an important mountain on the function’s surface (we know
from scale space theory that σ will indeed shrink once we are close to such optima). As mentioned before, the main issue of
this idea is how to compute the update steps 1 and 2.

Since they cannot be computed exactly (because we can only evaluate f at a given point and do not want to search the
whole space) we will resort to methods commonly used for estimating integrals. One well-known possibility is the Monte
Carlo Integration method [48], another one is by Gaussian quadrature [20], which could be more efficient in practice in spaces
of lower dimensions, because it requires less function evaluations.

Our algorithm is an implementation of the above theorem. Below we present the version of the algorithm that uses Monte
Carlo Integration sampling, but, as we mentioned above, Gaussian quadratures could also be used and are often more efficient
in practice:

1. Start with initial values of µ(0) and σ(0), set t = 0

2. Draw samples s1, s2, ..., sm from the normal distribution N(µ(t), (σ(t))2I)

3. Set: µ(t+1) =
∑m

k=1 skf(sk)∑m
k=1 f(sk)

4. Set: σ(t+1) =

√
1
n

∑m
k=1(

∑n
i=1(s

(k)
i −µ

(t)
i )2)f(sk)∑m

k=1 f(sk)

5. if σ(t+1) < ε stop.

6. t = t+1. Go back to step 2

Notice that we apply the update steps for µ and σ at the same time, even though our theorem gives theoretical guarantees
only if we apply them sequentially. Even if that is of theoretical concern, we found that in practice this does not hurt the
performance, but on the contrary, it actually makes the algorithm more efficient.

Our algorithm is also related to the Mean Shift algorithm [14], [13], since both algorithms can adapt the mean and the
kernel size. However, the difference between the two algorithms is substantial. Mean Shift does not work with f directly, but
with data samples (drawn from some unknown f , that cannot be evaluated at a given point) and uses a kernel k to weigh the
samples. Therefore, Mean Shift cannot be used for optimization of arbitrary functions. In our case, we cannot draw samples
from f , because the functions we want to optimize are very complex, so instead we draw samples from our Gaussian kernel g
and use instead the specific values of f to weigh these samples. It seems like the two algorithms are complementary to each
other.

3.4. Experiments on Synthetic Data

In the first set of experiments we compare the performance of our algorithm to two well established methods commonly
used in complex optimization problems: Markov Chain Monte Carlo (MCMC) and Simulated Annealing (SA). While MCMC
is not specifically designed for optimization, it has been successfully used for this purpose in the vision literature. SA on
the other hand has guaranteed optimality properties in a statistical sense. Given enough samples, both MCMC and SA are
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Figure 9. Except for D, all are plots showing histograms of the scores obtained over 300 experiments A. all algorithms can run for a
maximum of 3000 function evaluations (samples). B. the algorithms were run for a maximum of 30000 function evaluations (samples).
C. Our algorithm, without the ability of changing its initial covariance matrix, for different initial σ(0). D. Our algorithm, with different
starting σ(0) (shown on the X axis in degrees), being able to adapt it. The mean scores obtained over 300 experiments is shown in plot D.

guaranteed to find the global maximum, but often the number of samples required is very large, thus neither method is
particularly efficient.

For this experiment we used synthetic data. Given a rectangle of known dimensions, known location (in 3D) of its center,
we rotate it in 3D by θt = (θx, θy, θz) and obtain its projection on the XY plane as a binary mask Iθt

. The algorithms are
provided only with this mask, their task being of finding the θ∗ which maximizes the overlap between the mask given Iθt and
Iθ∗ . More precisely, the score that needs to be maximized is:

f(θ∗) = (
N(Iθt

∩ Iθ∗)
N(Iθt ∪ Iθ∗)

)10 (13)

Here N(Iθt ∩ Iθ∗) is the area of the intersection of the two masks, and N(Iθt ∪ Iθ∗) is the area of their union. We raised
the score function to the 10th power because it is too flat otherwise.

This score function is periodical with infinitely many local and, of course, global maxima. The global maxima have
obviously the known value of 1. The resolution of the image mask is such that an exhaustive search of the angles space in the
intervals [0, 90] would require around 1010 samples (the function is sensitive to changes in angles as little as 0.02 degrees).

In Figure 9 , plot A, we compare our method against MCMC, standard Simulated Annealing (SA), Metropolis-SA (MSA),
and Nelder-Mead method as the fminsearch (FMIN) function from the Matlab optimization toolbox (for fminsearch we used
as the cost function 1 − f(θ) since it is a minimizing procedure, but the results showed here were only in terms of f(θ)).
All algorithms except fminsearch are limited to a maximum of 3000 function evaluations (samples). The plot shows the
histogram of the maximum scores obtained over 300 experiments. Each algorithm ran on the same problems, with the same
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Figure 10. Left: the score function evaluated every 0.02 degrees of θz in [0, 90]. The other angles were kept constant. Notice how wiggly
the function is due to the fact that the mask is discrete in practice. Right: the value of the smoothed function for each iteration of our
algorithm. Notice that it is mainly monotonic which agrees with the theory. Sometimes it fails, but this happens only because the updating
steps are approximations to the ones in the theorem. The plots belong to the first 10 random experiments

starting points and ground truth θt. For each experiment, both the starting point and the ground truth were chosen randomly
in the degree space [0, 360] (in each dimension of θ). For MCMC, SA and MSA we chose the variance of the proposal
distribution that gave the best performance. The worst performer was fminsearch, as expected, since it is a local method and
the score function has a lot of local optima (see Figure 10). Our algorithm outperformed all the others (Figure 9. Even when
we allowed MCMC, SA and MSA to run for 10 times more samples, their performance was still inferior to ours (plot B). Of
course, for a sufficiently large number of samples MCMC, SA and MSA will always find the right solution, but the point of
this experiment was to consider the efficiency of the different algorithms.

In the next experiment (plot C) we wanted to emphasize that one of the main strengths of our algorithm is its capacity
to change the covariance of its sampling distribution. On the one hand we see that if we keep this covariance fixed its
performance degrades considerably, for a wide range of σ(the starting covariance matrix was diagonal, with diagonal elements
equal to σ) (Figure 9, plot C). On the other hand, if we allow this covariance to change, the starting value of σ is not very
relevant (Figure 9, plot D). Except when the starting σ is very small (< 5 degrees), the mean score obtained over the same
300 experiments does not vary much. From this we can draw the conclusion that our algorithm is most often able to adapt its
covariance correctly during the search, regardless of its starting value.

4. Object Recognition without Grouping
4.1. Introduction

In this Section we describe an algorithm for object category recognition (not using grouping cues) [39], which is based
on the observation that for a wide variety of common object categories, it is the shape that matters more than their local
appearance. For example, it is the shape, not the color or texture, that enables a plane to fly, an animal to run or a human
hand to manipulate objects. Many categories are defined by their function and it is typically the case that function dictates an
object’s shape rather than its low level surface appearance.

Although shape alone was previously used for category recognition [52, 24] we demonstrate for the first time (to the
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best of our knowledge) that simple geometric relationships with no local appearance features can be used successfully in a
semi-supervised setting.

The importance of shape for object recognition was previously emphasized by Belongie et al. [3] and later by Berg et
al. [4]. In [3] the shape context descriptor is introduced, which is a local, unary (one per feature) descriptor that loosely
captures global shape transformations, but, by nature, is also sensitive to background clutter. Later, Berg et al. used second-
order geometric relationships between features, but the main focus was still on the local geometric information (using the
geometric blur descriptor). In this thesis we emphasize the importance of pairwise geometric relationships by dropping the
local information and using a more extensive set of parameters (see Section 11) for representing the pairwise geometric
relationships ([4] uses only the pairwise distance and a single angle). Also, unlike [4], we learn these parameters in order to
better capture the space of pairwise deformations (Section 4.3).

The idea of using geometric constraints with shape features (e.g., edges and surfaces) for object recognition dates back
to 1980’s . For instance, Grimson and Lozano Perez [19] propose matching using an interpretation tree that enforces a
global geometric transformation and requires a combinatorial search space. Our work focuses solely on pairwise geometric
relationships that gives us flexibility in matching deformable objects. We address the combinatorial problem by employing a
fast approximate algorithm.

There are two popular trends in object recognition. The first trend is to formulate it as a matching problem, and use either
the nearest neighbor approach [4] or the SVM classifier [29]. The second trend is to formulate it as an inference problem
and use the machinery of graphical models [22, 23, 10, 17]. In our work we use ideas from matching using second-order
geometric relationships [4, 38], but, unlike current approaches in matching, we build a category model that is a compact
representation of the training set (similar to approaches using Conditional Random Fields).

We integrate several training images into a single abstract shape model that captures both common information shared by
several training images as well as useful information that is unique to each training image. We also automatically discover
and remove the irrelevant clutter from training images, keeping only the features that are indeed useful for recognition. This
gives us a more compact representation, which reduces the computational and memory cost, and improves generalization.

The use of second-order geometric relationships enables our algorithm to successfully overcome problems often encoun-
tered by previous methods from the literature:

1. During training our algorithm is translation invariant, robust to clutter, and does not require aligned training images.
This is in contrast with previous work such as [4, 51, 49, 25].

2. We efficiently learn models consisting of hundreds of fully interconnected parts (capturing both short and long range
dependencies). Most previous work handles models only up to 30 sparsely inter-connected parts, such as the star
shaped [23, 16], k-fan, [17] or hierarchical models [21, 6]. There has been work [10] handling hundreds of parts, but
their model is not translation invariant and each object part is connected only to its k-nearest neighbors.

3. We select features based on how well they work together as a team rather than individually (as it is the case in [17, 51]).
This gives us a larger pool of very useful features, which are discriminative together, not necessarily on an individual
basis.

We formulate the problem as follows: given a set of negative images (not containing the object) and weakly-labeled
positive images (containing an object of a given category somewhere in the image), the task is to learn a category shape
model (Section 4.3) that can be used both for the localization and recognition of objects from the same category in novel
images (Section 11). This problem is challenging because we do not have any prior knowledge about the object’s location in
the training images. Also these images can contain a substantial amount of clutter that is irrelevant to the category we want
to model. All we know at training time is that the object is somewhere in the positive training images and nowhere in the
negative ones.

4.2. The Category Shape Model

The category shape model is represented as a graph of interconnected parts (nodes) whose geometric interactions are
modeled using pairwise potentials inspired from Conditional Random Fields (CRF) [37, 36] (see Section 4.2.1). The nodes
in this graph are fully interconnected (they form a clique) with a single exception: there is no link between two parts that
have not occurred together in the training images. These model parts have a very simple representation: they consist of
sparse, abstract points together with their associated normals. Of course we could add local information in addition to their
normals, but our objective is to assess the power of the geometric relationships between these simple features. We represent
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Figure 11. The model is a graph whose edges are abstract pairwise geometric relationships. It integrates generic configurations common to
most objects from a category as well as more specific configurations that capture different poses and aspects

the pairwise relationships by an over-complete set of parameters (see Section 4.2.1). The parts as well as their geometric
relationships are learned (see Section 4.3) from actual boundary fragments extracted from training images as described in
[39].

Our model is a graph whose edges are abstract pairwise geometric relationships. It is a compact representation of a
category shape, achieved by sharing generic geometric configurations common to most objects from a category and also by
integrating specific configurations that capture different aspects or poses (Figure 11). In Section 4.3 we discuss and also
exemplify (Figure 14) the ability of our learning stage to reuse common configurations and also integrate new ones.

In order to explain in detail the pairwise geometric relationships we start with the localization problem, that is matching
the object parts to the image features.

4.2.1 Object Localization

We define the object localization problem as finding which feature in the image best matches each model part. We formulate
it as a quadratic assignment problem (QAP), due to our use of second-order relationships. The matching score E is written
as:

Ex =
∑
ia;jb

xiaxibGia;jb (14)

Here x is an indicator vector with an entry for each pair (i, a) such that xia = 1 if model part i is matched to image feature a
and 0 otherwise. With a slight abuse of notation we consider ia to be a unique index for the pair (i, a). We also enforce the
mapping constraints that one model part can match only one model feature and vice versa:

∑
i xia = 1 and

∑
a xia = 1.

The pairwise potential Gia;jb (terminology borrowed from graphical models) reflects how well the parts i and j preserve
their geometric relationship when being matched to features a, b in the image. Similar to previous approaches taken in the
context of CRFs [36] we model these potentials using logistic classifiers :

Gia;jb =
1

1 + exp(−wT gij(a, b))
(15)

Here gij(a, b) is a vector describing the geometric deformations between the parts (i, j) and their matched features (a, b).
We now explain in greater detail the type of features used and their pairwise relationships. As mentioned already, each object
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Figure 12. Parameters that capture the pair-wise geometric relationships between object parts

part can be seen as an abstract point and its associated normal (with no absolute location). For a pair of model parts (i, j)
we capture their translation invariant relationship in the vector eij = {θi, θj , σij , σji, αij , βij , dij}, where dij represents the
distance between them, βij is the angle between their normals and the rest are angles described in Figure 12.

The same type of information is extracted from input images, each image feature corresponding to a point sampled from
some boundary fragment extracted from that image (see Section ??). We consider a similar pairwise relationship eab for
the pair (a, b) of image features that were matched to (i, j). Then we express the pairwise geometric deformation vector as
gij(a, b) = [1, ε21, ..., ε

2
7], where ε = eij − eab. Notice that the geometric parameters eij form an overcomplete set of values,

some highly dependent on each other. Considering all of them becomes very useful for geometric matching and recognition
because it makes Gia;jb more robust to changes in the individual elements of gij(a, b).

In order to localize the object in the image, we find the assignment x∗ that maximizes the matching score E (written in
matrix notation by setting G(ia; jb) = Gia;jb):

x∗ = argmax(xT Gx) (16)

For one-to-one constraints (each model part can match only one image feature and vice-versa) this combinatorial optimization
problem is known as the quadratic assignment problem (QAP). For many-to-one constraints it is also known in the graphical
models literature as MAP inference for pairwise Markov networks. In general, both problems are intractable. We enforce the
one-to-one constraints and use the spectral matching algorithm presented earlier [38].

4.2.2 Discriminative Object Recognition

In the previous section we have presented how we localize the object by efficiently solving a quadratic assignment problem.
However, this does not solve the recognition problem, since the matching algorithm will return an assignment even if the
input image does not contain the object. In order to decide whether the object is present at the specific location x∗ given
by our localization step, we need to model the posterior P (C|x∗, D) (where the class C = 1 if the object is present at
location x∗ and C = 0 otherwise). Modeling the true posterior would require modeling the likelihood of the data D given
the background category (basically, the rest of the world), which is infeasible in practice. Instead, we take a discriminative
approach and try to model this posterior directly as described below.

We consider that P (C|x∗, D) should be a function of several factors. First, it should depend on the quality of the match
(localization) as given by the pairwise potentials Gia;jb for the optimal solution x∗. Second, it should depend only on those
model parts that indeed belong to the category of interest and are discriminative against the negative class. It is not obvious
which are those parts, since we learn the model in a semi-supervised fashion . For this reason we introduce the relevance
parameter ri for each part i (in Section 4.3 we explain how it is learned), which has high value if part i is discriminative
against the background, and low value otherwise. We approximate the posterior with the following logistic classifier:

S(Go, r) =
1

1 + exp(−q0 − q1σ(r)T Goσ(r))
(17)
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Figure 13. Learning algorithm overview

The matrix Go(i, j) = Gia∗;jb∗ contains all the pairwise potentials for the optimal localization x∗. In the equation above,
each pairwise potential Gij is weighted by the product σ(ri)σ(rj), where:

σ(ri) =
1

1 + exp(−ri)
(18)

The primary reason for passing the relevance parameters through a sigmoid function is the following: letting the relevances be
unconstrained real-valued parameters would not help us conclusively establish which parts indeed belong to the category and
which ones do not. What we really want is a binary relevance variable that is 1 if the model part belongs to the category model
and 0 otherwise. Having a binary variable would allow us to consider only those parts that truly belong to the object category
and discard the irrelevant clutter. Our intuition is that if we squash the unconstrained relevances ri we effectively turn them
into soft binary variables, and during training we force them to be either relevant (σ(ri) ≈ 1) or irrelevant (σ(ri) ≈ 0).
This is exactly what happens in practice. The squashed relevances of most parts either go to 1 or 0, thus making it possible
to remove the irrelevant ones (σ(ri) ≈ 0) without affecting the approximate posterior S(Go, r). An additional benefit of
squashing the relevance parameters is that it basically damps the effect of very large or very small negative values of ri,
reducing overfitting without the need for a regularization term.

The higher the relevances ri and rj , the more Go(i, j) contributes to the posterior. It is important to note that the
relevance of one part is considered with respect to its pairwise relationships with all other parts together with their relevances.
Therefore, parts are evaluated based on how well they work together as a team, rather than individually. Also, it is important
to understand that we interpret the logistic classifier S(Go, r) not as the true posterior, which is impractical to compute, but
rather as a distance function specifically tuned for classification.

4.3. Learning

The model parameters to be learned consist of: the pairwise geometric relationships eij between all pairs of parts, the
sensitivity to deformations w (which defines the pairwise potentials), the relevance parameters r and q0, q1 (which define the
classification function S). The learning steps are described below (Figure 13):
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4.3.1 Initialization

We first initialize the pairwise geometric parameters (eij) for each pair of model parts by simply copying them from a
positive training image. Thus, our initial model will have as many parts as the first training image used and the same pairwise
relationships. We initialize the rest of the parameters to a set of default values. For each part i we set the default value of its
ri to 0 (σ(ri) = 0.5). The default parameters of the pairwise potentials (w) are learned independently as described in Section
4.4.

4.3.2 Updating the Parameters

Starting from the previous values, we update the parameters by minimizing the familiar sum-of-squares error function (typ-
ically used for training neural networks) using sequential gradient descent. The objective function is differentiable with
respect to r, q0 and q1 since they do not affect the optimum x∗ (for the other parameters we differentiate assuming fixed x*):

J =
N∑

n=1

bn(S(Go
(n), r)− t(n))2 (19)

Here t(n) represents the ground truth for the nth image (1 if the object is present in the image, 0 otherwise). The weights
bn are fixed to mN/mP if t(n) = 1 and 0 otherwise, where mN and mP are the number of negative and positive images,
respectively. These weights balance the relative contributions to the error function between positive and negative examples.
The matrix Go

(n) contains the pairwise potentials for the optimal localization for the nth image.
We update the parameters using sequential gradient descent, looping over all training images for a fixed number of itera-

tions, in practice always leading to convergence. The learning update for any given model parameter λ for the nth example
has the general form of:

λ← λ− ρbn(S(Go
(n), r)− t(n))

∂S(Go
(n), r)

∂λ
(20)

Using this general rule we can easily write the update rules for all of the model parameters. The pairwise potentials (Go) do
not depend on the parameters r, q0, q1. It follows that the optimal labeling x∗ of the localization problem remains constant if
we update only r, q0, q1. In practice we update only r, q0, q1 and the pairwise distances dij , while assuming that x∗ does not
change, thus avoiding the computationally expensive step of matching after each gradient descent update.

4.3.3 Removing Irrelevant Parts

As mentioned earlier, in general the relevance values σ(ri) for each part i tend to converge towards either 1 or 0, with very
few parts staying in between. This is due to the fact that the derivative of J with respect to the free relevance parameters ri is
zero only when the output S(Go

(n), r) is either 0 or 1, or the relevance σ(ri) is either 0 or 1, the latter being much easier to
achieve. This is the key factor that allows us to discard irrelevant parts without significantly affecting the output S(Go

(n), r).
Therefore, all parts with σ(ri) ≈ 0 are discarded. In our experiments we have observed that the relevant features found were
most of the time belonging to the true object of interest (Figure 15).

4.3.4 Adding New Parts

We proceed by merging the current model with a newly selected training image (randomly selected from the ones on which
the recognition output was not close enough to 1): we first localize the current model in the new image, thus finding the
subset of features in the image that shares similar pairwise geometric relationships with the current model. Next, we add
to the model new parts corresponding to all the image features that did not match the current model parts. As before, we
initialize all the corresponding parameters involving newly added parts, by copying the geometric relationships between the
corresponding features and using default values for the rest. At this stage, different view-points or shapes of our category can
be merged together (Figure 14). The geometric configurations that different aspects share are already in the model (that is
why we first perform matching) and only the novel configurations are added (from the parts that did not match). After adding
new parts we return to the stage of updating the parameters (see Figure 13). We continue this loop until we are satisfied with
the error rate.
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Figure 14. The model integrates geometric configurations belonging to different aspects (view-points) within the same category. Training
images (left) and the boundary fragments containing the relevant parts learned from different view-points and integrated in the same model
(right). Note that the algorithm automatically determined the features that belonged to the object rather than the background

The approach of adding training images one by one is related to incremental semi-supervised learning methods [53]. In
our case, we later discard the information that is not useful for recognition (the parts of zero relevance). By removing and
adding parts we allow our model to grow or shrink dynamically, as needed for the recognition task.

4.4. Learning the Default Pair-wise Geometric Potentials

We learn a default set of parameters w for the pairwise potentials independently of the object parts (i, j) and the object
class C. Learned independently, the pairwise potentials are logistic classifiers designed to model the posterior that a given
pair of assignments is correct given the geometric deformation g, regardless of the object class C or the specific parts (i, j).
We learn the default w, from a set of manually selected correct correspondences and randomly selected set of incorrect
ones, using the iteratively re-weighted least-squares algorithm. The correspondences are selected from different databases
used in the literature: CALTECH-5 (faces, motorbikes, airplanes, motorcycles, cars, leaves, background), INRIA-horses and
GRAZ-02 (person, bikes, cars, background). Then we used the same set of default w for all our recognition experiments.

Data points gij(xi, xj) are collected for both the positive (pair of correct correspondences) and the negative class (at least
one assignment is wrong), where image feature xi from one image is matched to the image feature i from the other image.
For randomly-selected pairs of images containing the same object category, we manually selected approximately 8000 correct
correspondences per database (whenever the poses were similar enough so that finding exact correspondences between the
contours of the two images was possible). We selected 16000 wrong correspondences per database.

In Table 2 we show how the geometry based pair-wise classifier can generalize across different object categories (note
that this is the pairwise potential classifier on pairs of assignments and not a classifier of object categories). In this set of
experiments we trained the classifier on pairs of candidate assignments from one database and tested it on pairs of assignments
from all three databases. We repeated this ten times for different random splits of the training and testing sets and averaged the
results. The interesting fact is that the performance of the classifier is roughly the same (within 1%) for the same test database
(indexed by rows), regardless of which database was used for training (indexed by columns). This strongly suggests that the
same classifier was basically learned each time, which further implies that the space of geometric second-order deformations
is more or less the same for a large variety of solid objects. It follows that the pairwise geometry can be used with confidence
on a wide variety of objects even using a single set of default parameters. In our recognition experiments we actually used the
default parameters learned only from the Caltech-5 database. The results in Table 2 seem to confirm the idea that accidental
alignments are rare events regardless of the object class.
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Figure 15. Training images (Left) and the contours on which the relevant features were found during training (Right)
Table 2. The classification rates (at equal error rate) of the geometry based pair-wise classifier trained and tested on different databases:
row indicates the test database and the column indicates the training database. Results are averaged over 10 runs.

Database Caltech-5 INRIA GRAZ-02
(train) (train) (train)

Caltech-5 (test) 97.42 97.65 97.23
INRIA (test) 94.66 95.33 94.31

GRAZ-02 (test) 92.93 93.73 93.24

Learning the Pair-wise Potential (proposed work) In the previous section we learned the pair-wise parameters indepen-
dently of the final recognition task, which is dependent on the specific category model and the performance of our spectral
matching method. We intend to use the optimization algorithm presented in Section 3 for learning the pair-wise potentials
in a way that will directly improve the recognition performance. The function that we want to maximize (similar to the
recognition error function presented previously) quantifies the recognition performance over the training set for a specific
object category C and it depends on the parameters w that define the pair-wise potentials.

JC(w) =
N∑

n=1

bn(1− |S(w)(n) − t(n)|) (21)

Here JC(w) increases as the overall recognition error decreases, and as before, S(w)(n) is the output of the recognition
algorithm on the nth image.
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4.5. Experiments

We compare the performance of our method with the one by Winn et al. [68] on the Pascal challenge training dataset1 (587
images) (Table 4). We think this is an interesting experiment because our method focuses only on geometry, ignoring the local
appearance, while, in contrast, [68] focuses on local texture information, while ignoring the geometry. We followed the same
experimental setup, splitting the dataset randomly in two equal training and testing sets. In the first set of experiments we
used the bounding box provided (also used by [68]). We outperform the texture based classifier [68] by more than 10%, which
confirms our intuition that shape is a stronger cue than local appearance for these types of object categories. Surprisingly,
bikes and motorcycles were not confused as much as we expected, given that they have similar shapes. In the second set of
experiments we did not use the bounding boxes2 (in both training and testing) in order to demonstrate that our algorithm can
learn in a weakly supervised fashion. The performance dropped by approximately 5%, which is significant, but relatively
low considering that in this experiment the objects of interest sometimes occupy less than 25% of the training and testing
images. An even more serious problem is that some positive images for one class contained objects from the other classes
(e.g. there are people present in some of the motorcycle and car positive images), which we did not take into account (a
motorbike positive image containing a person and classified as person was considered an error).

Table 3. Confusion Matrix for Pascal Dataset (using the bounding boxes)
Category Bikes Cars Motorbikes People

Bikes 80.7% 0% 7% 12.3%
Cars 5.7% 88.6% 5.7% 0%

Motorbikes 4.7% 0% 95.3% 0%
People 7.1% 0% 0% 92.9%

Table 4. Average multiclass recognition rates on the Pascal Dataset
Algorithm Ours Ours Winn [68]

(bbox) (no bbox) (bbox)
Pascal Dataset 89.4% 84.8% 76.9%

As mentioned earlier the models we learn are compact representations of the relevant features present in the positive
training set. The algorithm is able to discover relevant parts that, in our experiments, belong in a large majority to the true
object of interest, despite the background clutter present sometimes in large amounts in the training images (Figure 15).
An interesting and useful feature of our method is that it is able to integrate different view-points, aspects or shapes within
the same category (Figure 14). This happens automatically, when new parts are added from positive images on which the
recognition output was not high enough.

The computational cost of classifying a single image does not depend on the number of training images: the model is
a compact representation of the relevant features in the training images, usually containing between 40 to 100 parts. It is
important to note that the size of the model is not fixed manually, it comes out automatically from the learning stage.

5. Object Recognition with Grouping (proposed work)
In Section 4 ([39]) we presented an object category recognition algorithm that did not use any grouping cues to help

the matching and recognition of specific categories. The matching part of the algorithm considered all pairs of features
(pieces of contours) from an image, as if all pairs were equally likely to belong to the same object. Grouping is a way
of constraining the matching/recognition search space by considering only pairs of features that are likely to come from
the same object. We believe that grouping is essential in improving the recognition rate because it uses general, category
independent information to prune the search space and guide the recognition process on the right path. In Figure 17 we show
two examples that intuitively explain this idea. The images in the left column contain edges extracted from a scene. We
notice that without grouping the objects are not easily distinguished (e.g. the bus, or the horse). However, after using color

1http://www.pascal-network.org/challenges/VOC/voc2005/index.html. We also ignored the gray level UIUC car images
2For very few images in which the object was too small we selected a bounding box 4 to 5 times larger in area than the original one
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Figure 16. The grouping stage enforces pairwise constraints that could significantly prune our matching/recognition search space. The
contours in white (for second and third image) are the ones likely to be on the same object as the red circle, given the geometric or color
cues

information for perceptual grouping we are able to retain only the edges that are likely to belong to the same object as the
edge pointed out by the red circle (right column). Perceptual grouping could also bring a second benefit to the recognition
process, because, without it, matching could be very expensive especially when the image contains a lot of background
features/clutter. As Grimson [30] has shown, the complexity of the matching process when the search is constrained is
reduced from an exponential to a low order polynomial. Therefore, it is important to be able to establish a priori which pairs
of features are likely to be part of the same object, and discard all the other pairs. To summarize, perceptual grouping does
not only improve the recognition performance but it also reduces the computational complexity.

5.1. Pairwise Grouping of Features

Grouping is the task of establishing which features in the image are likely to belong to the same object, based on cues that
do not include the knowledge about the specific object or object category. In his pioneering book [47] Marr argued, based on
medical human studies, that a vision system should be able to recover the 3D shape of objects without knowledge about the
objects’ class or about the scene. In support of this idea come simple facts from everyday life. Humans are able to see a car
parked in a room, even though that would be totally unexpected based on prior experience. Also, humans are able to perceive
the shape of an abstract sculpture from a single image, even if they have never seen it before and have no clue about what
it might represent. It seems clear that for humans both knowledge about the object class and the scene is not necessary for
shape perception. But if one is able to perceive the 3D shape of the scene with respect to its own reference frame, then in most
cases it would be relatively easy to figure out which features in the scene should belong together. In fact perceptual grouping
most probably helps humans in the process of 3D shape recovery and not the other way around. We consider grouping as a
process that happens entirely before the object recognition stage, and uses cues such as color, texture, shape, and perceptual
principles that apply to most objects in general, regardless of their category or specific identity.

Unlike prior work in grouping [46], [59], [1], [34], [54], [50], [44], we do not make a hard decision about which features
belong together. And that is for an important reason: it is sometimes impossible to divide features into their correct groups
without the knowledge of the specific category (or the desired level of detail): for example, is the wheel of a car a separate
object or is it part of the whole car? We believe that both situations can be true at the same time, depending on what we
are looking for. If we are looking for whole cars, than the wheel is definitely a part of it. If we are looking just for wheels
then (at least conceptually) it is not. While perceptual grouping alone should most of the time separate correctly most objects
(the ones that are clearly at different depths, such as a flying plane from a close car), it sometimes does not have access to
enough information to make the correct hard decisions. We immediately see why it is important to keep most the grouping
information around and transmit it to the higher recognition processes (without making hard decisions, except for pruning
the cases when the pairwise grouping relationship is extremely weak). Instead of being interested on forming exact feature
groups based on perceptual information alone, we rather focus on the quality of pair-wise grouping relationships and how to
integrate them into our recognition step. Since we use pair-wise relationships at both the grouping and the recognition levels,
the two could be naturally integrated.
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Figure 17. If grouping is not used it is very hard to distinguish the separate objects (left column). After grouping (right column) it is
perceptually easier to distinguish them (the bus and the horse)

Our pair-wise grouping relationships are soft weights that should reflect the likelihood that the two features belong together
(prior to recognition, that is before using any category specific knowledge). We focus on two types of perceptual pair-wise
grouping:

1. Geometric based, Gestalt-like cues (between line segments or contours), such as proximity, good continuation, paral-
lelism/perpendicularity (see Section 5.2 and Figure 18 for more details)

2. Color based: objects tend to have unique and relatively homogenous color distributions. We propose a novel and
powerful way of using color histograms for inferring pair-wise grouping relationships (Section 5.3)
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5.2. Pairwise Grouping using the Geometry of Line Segments

Figure 18. Geometric perceptual cues used for grouping pairs of line features

Table 5. Perceptual cues used to describe the relationship between pairs of lines. Based on these cues we estimate the likelihood that pairs
of lines belong to the same object or not

Cue Description

Proximity dp

li+lj

Distance di+dj

li+lj

Overlap doi+doj

li+lj

Continuity c
Parallelism α

Perpendicularity β
Color1 difference in mean colors
Color2 difference in color histograms
Color3 difference in color entropies
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Figure 19. Pairwise grouping constraints based on geometry. The contours in white are the ones that establish a pairwise grouping rela-
tionship with the contour pointed out by the red circle

In the task of feature grouping it is important to use as many cues as possible. Geometric perceptual cues are particularly
important because of their connection to important studies in human vision (mainly from the Gestalt school). Our main
features for object recognition are pieces of contours extracted from the image. In the grouping stage we approximate these
contours by fitted line segments. The geometric grouping cues we propose to use consist of specific relationships between
pairs of such line segments (i, j): proximity, distance, overlap, continuity, parallelism and perpendicularity as shown in
Figure 18. We also use some local appearance cues (which are different than the global color histograms used in the next
section), which are computed over the super-pixels adjacent to the pair of lines, such as: difference between the mean colors
of the super-pixels belonging to each line, as well as the differences in color histogram and color entropy. All these cues, both
geometric and appearance based, form a relation vector r(i, j) for any pair of lines (i, j) whose elements are described in
Table 5 (each row of the table corresponds to an element of r(i, j)). We have already performed some preliminary experiments
with a basic implementation of this idea. We have manually collected about 300 positive pairs of lines (lines that belong to the
same object) and 1000 negative ones (pairs of lines which do not belong to the same object), and learned a binary classifier
on the corresponding relation vectors r, using the logistic regression version of Adaboost [12] with weak learners based on
decision trees [26]. We intend to use the soft output of this classifier (the likelihood that a pair of lines belongs to the same
object) later in the object recognition part of our proposed work.

In Figure 19 we present some results. The contours shown in red belong to line segments that were classified as being
part of the same object as the line segment pointed by the white circle. We notice that in general only lines that are relatively
close to the white circle are positively classified. This is due to the fact that in general geometric perceptual grouping is
a local process and is not able to link directly pairs of faraway lines. Such pairs could be ultimately connected indirectly
thorough intermediate lines. Of course, these are only preliminary results, and more thorough experimentation is needed.
More specifically, we would probably need to:

1. Consider the output of the classifier as a pairwise weighing function and use it to connect pairs of lines through other
intermediate lines

2. Train the classifier on larger training sets.
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Figure 20. Automatically discovering the foreground mask

3. Instead of training the classifier on independent pairs of lines, tune its output such that the final goal (soft segmentation
of line segments) is optimized

5.3. Pairwise Grouping using Global Color Statistics

Color histograms are simple but powerful global statistics about objects’ appearances that have been successfully used
in some recognition applications. We present a novel algorithm for automatically discovering soft object masks (based on
their color distributions), without knowledge about their locations or shapes. This method becomes very useful for pairwise
grouping of features, because two features that belong (in a soft way) to the same (soft) mask are more likely to belong to the
same object then pairs of features that belong to different (soft) masks.

In order to emphasize the power of color histograms and understand better how we approach the pairwise grouping based
on color, we first present a toy foreground/background segmentation application (Figures 21, 6) that is inspired by GrabCuts
[55] and Lazy Snapping [41]. This application is based on our optimization algorithm presented in 3. For now we assume
that we know the ground truth bounding box and then automatically obtain the object mask (which will help, as explained
later, with how pairs of features connect based on color). Later on we will also show that, since it is not crucial to know
the exact size, shape and location of the bounding box, one can obtain fairly accurate soft masks of the objects in the scene,
without knowledge of their ground truth bounding boxes.

The user is asked to provide the bounding box of an object, and the algorithm has to return a polygon which should be
as close as possible to the true object boundary. This is just another instance of the foreground-background segmentation
problem. In computer vision most segmentation algorithms approach this task from bottom up. The problem is usually
formulated as a Markov Random Field [40] with unary and pairwise terms that use information only from a low, local level,
and do not integrate a global view of the object, which would be needed for a better segmentation. Here we present a simple
algorithm for obtaining object masks, that is based on the global statistics of the foreground vs. the background. The main
idea is that a good segmentation is the one that finds the best separation (in terms of certain global statistics) between the
foreground and the background. In this case we use color likelihoods derived from color histograms (of the initial foreground
and background, defined by the bounding box given) as their global statistics (we have successfully applied a very similar
idea to object tracking [56]) . Starting from the bounding box provided by the user, the algorithm has to find the polygon that
best separates the color likelihood histogram computed over the interior of the polygon (foreground) from the corresponding
histogram computed over its exterior (background). The function to optimize looks very simple but it is non-differentiable,
highly non-linear and has high dimensionality, so the task could be very difficult:

f(x, I) = 1− hf (x, I)T
hb(x, I) (22)
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Figure 21. The masks of objects are automatically found, given their ground truth bounding boxes

Here x are the vertices of the polygon, hf (x, I) and hb(x, I) are the foreground and background normalized color likeli-
hood histograms, given the image I . The likelihood of color c is computed as l(c) = Nf (c)

N(c) , where Nf (c) is the number of
pixels of color c inside the initial bounding box and N(c) is the total number of pixels of color c in the image.

Our segmentation algorithm is very simple and can be briefly described as follows (it is a toy implementation used only
to prove the power of our optimization method):

1. initialize x with the bounding box provided by the user

2. find x∗ = argmaxf(x), by using the algorithm from Section 3.3 without changing the number of polygon vertices

3. if x∗ does not improve significantly over the previous solution stop.

4. add new vertices at the midpoints of the edges of x∗

5. go back to step 2
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As long as the color distribution of the foreground is different from the background, this algorithm works well, being very
robust to local variations in color or texture, unlike MRF based algorithms whose unary and pairwise terms are more sensitive
to such local changes (see Figures 21, 6 ).

Unsupervised discovery of the foreground mask As the previous application showed, color histograms alone are often
powerful enough to segment the foreground vs the background, without using any local intensity information or edges. In
the previous application we used the ground truth bounding box of the object (provided by the user), but in most recognition
applications we do not have access to such bounding boxes. We want to be able to use the power of color histograms without
knowing the mask (or bounding box) of the foreground. But this seems almost impossible. How can we compute the color
histogram of the foreground if we have no clue about the foreground size and rough shape?

During our experiments with a given bounding box we found that the algorithm was surprisingly robust to the exact size
and location of the bounding box. More precisely in most cases one could find a fairly good foreground mask based on color
distributions starting from a bounding box centered on the object, but of completely wrong shape, size and location. These
apparently surprising experimental findings can actually be easily explained theoretically. In Figure 20 the foreground is
shown in blue and the bounding box in red. The bounding box’s center is on the foreground, but its size and location are
obviously wrong. We make the following assumptions, which are very reasonable in practice:

1. The area of the foreground is smaller than that of the background: this is true for most objects in images

2. The majority of pixels inside the bounding box belong to the true foreground: this is also often true in practice since
the center of the bounding box is considered to be on the foreground object by (our own) definition. (This definition
is sound in the context of our thesis since we are considering pairs of features, so two features that belong to the same
object are considered in the foreground for some bounding box centers).

3. The color distributions of the true background and foreground inside the bounding box are the same as the ones outside
it: this assumption is reasonable in practice, but harder to meet than the first two.

Even though the three assumptions above are not necessarily true all the time in practice, most of the time they do not
need to be perfectly true for the following result to hold (they represent only loose sufficient conditions): let bg and fg
be the true foreground and background distributions, and FG and BG the ones computed using the (wrong) bounding box
satisfying the assumptions above. Then one can easily prove that for any color c such that fg(c) > bg(c) we must also have
FG(c) > BG(c). This result enables us to use color histograms as if we knew the true object mask, by using any bounding
box satisfying the assumptions above.

In Figure 22 we present some results using this idea. We compute the objects’ masks over four different bounding boxes
of increasing sizes (the sizes are fixed, the same for all examples) and return as the final result the average bounding box
(last column). In Figure 23 we show that the mask obtained is robust to the location of the bounding boxes, so long as the
bounding boxes’ centers are on the object of interest.

As we mentioned already, the idea of automatically discovering foreground masks at given locations can be easily used
for pairwise grouping of features. To prove our point, we present a simple approach for using such masks for color grouping.
Given two features (i, j) one can compute the associated soft masks mi and mj by centering the bounding boxes at the
features locations (xi, yi) and (xj , yj) and follow the procedure explained previously, using bounding boxes of those four
fixed different sizes. The values mi(yj , xj) and mj(yi, xi) can then be used by a classifier to establish the likelihood that the
two features belong to the same object. In Figure 24 we present some preliminary results of this idea. The red circles represent
the location of some contour (feature) i. In white we show all those contours (features) j that were automatically classified
as likely to belong to the object of i. Here the classifier was simply thresholding the average (mi(yj , xj) + mj(yi, xi))/2
at 0.5 (everything above 0.5 was considered positive and vice-versa. The images show weighted contours for the positive
examples, and no contours for the negative). It is important to note that the shape and extent of the foreground is not known,
and that all internal parameters are fixed (such as the four fixed bounding box sizes).

In Figure 25 we present some failure examples of the color pairwise constraints. The algorithm does fail in the sense that
it connects contours from the house to contours from the car, but it also connects car contours among themselves, so it should
still improve the recognition performance (because most clutter is removed). The main reason for this lower quality results
is that the house and the car have similar colors (relative to the histogram bin-ing). This issue could probably be solved to a
certain extent by improving the color histogram-ing. We also want to point out that these failures are the exception and not
the rule. In fact the vast majority of our results are of similar quality with those in Figure 24. However, as future work, we
need to quantitatively measure the grouping performance.
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Figure 22. Object masks obtained from completely wrong bounding boxes, centered on the object of interest. Averaging over several fixed
scales improves the result. The masks shown are computed from color likelihood histograms based on the bounding boxes (completely
wrong) shown, which are centered on the object of interest. The interior of the boxes is considered to be the foreground, while their exterior
is the background. The posterior color likelihood image is obtained, threshold-ed at 0.5 and the largest connected component touching the
interior of the bonding box is retained. We notice the even when the boxes have a wrong location and size (their center and size do not
correspond to the true object center and size) the masks obtained are close to the ground truth. Different bounding boxes sizes (which are
fixed for every image, starting at 8 pixels and growing at a rate of 1.6) are tried and the average mask is shown in the rightmost column.
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Figure 23. As in the previous Figure, finding reasonable object masks is robust to the location of the bounding box, even for objects with a
complex color distribution.

5.4. Combining Matching with Grouping

We propose to combine the grouping constraints with the category specific constraints, by augmenting the initial pairwise
scores M(ia; jb) as follows:

M(ia; jb) = M0(ia; jb)P (a, b) (23)

Here M0(ia; jb) is the score previously used in Section 4, that measures how well the geometry (and possibly the local
appearances) of model features (i, j) agrees with the geometry of image features (a, b). Using the grouping cues we include
the perceptual grouping score P (a, b) that uses a priori pairwise grouping information to quantify how likely the image
features (a, b) are to be part of the same object:

P (a, b) = exp(w0 + w1g(a, b) + w2c(a, b)) (24)

Here P (a, b) includes both geometric (g(a, b)) and color based (c(a, b)) cues obtained as suggested previously. Both
g(a, b) and p(a, b) are the output of the classifiers trained on their corresponding cues. In Figure 16 we present the potential
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Figure 24. Pairwise grouping relationships (constraints) based on color distribution. The contours shown in white are the ones establishing
a pairwise grouping relationship based on color with the contour pointed out by the red circle. Notice some difficult cases from very
cluttered scenes. The second column (next to the original image) shows all the contours extracted, while the next images show the contours
that form a positive grouping relationship with the contour shown by the red circles.

advantage of using grouping. On the left we show all the pieces of contours (in white) that are likely to be part of the same
object as the contour indicated by the red circle, as considered by the previous work 4. Since no grouping information was
used, all contours are considered. In the middle we show the contours likely to be grouped with circle if we use the current
implementation of the geometrically driven grouping method. On the right, we show the same type of results if we are
using the color histogram based grouping. As already discussed, it is clear that grouping could significantly improve the
performance of our recognition algorithm, since most pairs that should not be considered can be automatically discarded as
shown in Figure 16. At this point we do not know precisely what is the way of optimally combining pairwise grouping with
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Figure 25. Examples when color grouping does not work so well. Upper left corner: original image. Upper middle: all the contours
extracted. The rest: the results are shown in the same style as in Figure 24. The results are of worse quality than the ones from Figure 24.
We can see that parts of the house are weakly connected to contours from the car. This happened mainly because the house and the car
have similar colors, and the differences were lost during histogram bin-ing.

feature matching, but it should be clear that even a straight forward, natural solution, such as the one we presented in this
Section, should improve the recognition performance.

6. Conclusions
Our completed work (Spectral Matching and Object Category Recognition without Grouping) clearly demonstrates that

there is a lot of potential in using pairwise constraints for object recognition. By improving our matching algorithm, through
both learning (Learning for Spectral Matching) and integrating grouping cues (both Geometric and Color based) we hope to
significantly improve the recognition performance. Below we reiterate the main parts of this thesis in terms of completed and
proposed work:

The most significant completed work includes:

1. Spectral Matching, Section 2: an efficient algorithm for feature matching using second order terms. It is basically a
solver for the Quadratic Assignment Problem applied to computer vision.

2. Object Recognition without Grouping, Section 4: a novel approach for semi-supervised learning of object categories
using higher order interactions between simple features. The same framework can easily incorporate more complex
features

The proposed work (or work in progress) can be summarized as follows (in the order of its importance):

1. Object Recognition with Grouping, Section 5: a novel, unifying approach for combining object specific information
(matching model parts to image features) and image based (model independent) grouping cues (by May 2009)
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2. An efficient algorithm for grouping (in a soft way) image features based on color distributions and geometric relation-
ships, Section 5 (by December 2008)

3. A new general optimization method for complex functions and its applications to grouping and object recognition,
Section 3 (by May 2008)

4. An efficient method for learning graph matching, specifically designed for the spectral matching algorithm, Section 2
(by May 2008)
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7. Appendix
7.1. Proof of Theorem 1, Conclusion a

Let the inverse covariance matrix be Λ = Σ−1. Then we have

g(t)(x) = e−
1
2 (x−µ(t))T Λ(x−µ(t))

To simplifying notations we dropped the normalizing constant since it does not depend on µ. We will use the following
inequality which holds for any u and v:

eu+v ≥ (1 + u)ev
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Let us define: δ = µ(t+1) − µ(t), then:

g(t+1)(x) = e−
1
2 (x−µ(t+1))T Λ(x−µ(t+1))

= e−
1
2 (x−µ(t)−δ)T Λ(x−µ(t+1)−δ)

Now using our inequality we have:

g(t+1)(x) ≥ (1 + (x− µ(t))T Λδ − 1
2
δT Λδ)g(t)(x)

Since f is non-negative the inequality carries over to F :

F (µ(t+1)) ≥
∫

(1 + (x− µ(t))T Λδ − 1
2
δT Λδ)g(t)(x)f(x)dx

Remembering that δ =
∫

(x−µ(t))g(t)(x)f(x)dx∫
g(t)(x)f(x)dx

we have:

∫
(x− µ(t))T Λδg(t)(x)f(x)dx =

(
∫

(x− µ(t))g(t)(x)f(x)dx)T Λ(
∫

(x− µ(t))g(t)(x)f(x)dx)∫
g(t)(x)f(x)dx

=

δT Λδ

∫
g(t)(x)f(x)

Substituting this into the initial inequality in F we obtain:

F (µ(t+1)) ≥
∫

(1 +
1
2
δT Λδ)g(t)(x)f(x)

This concludes the proof:

F (µ(t+1)) ≥
∫

g(t)(x)f(x) = F (µ(t))

7.2. Proof of Theorem 1, Conclusion b

It can be easily shown that the partial derivative ∂F (µ,σ)
∂σ = 0 when σ is a fixed point of the update step 2 of the theorem, and

thus satisfies the equation σ =
√

1
n

∫
(
∑

i=1n(xi−µi)2)g(x;σ)f(x)dx∫
g(x;σ)f(x)dx

. Also, it is straightforward to check that the update step 2 of
the theorem is taken in the direction of the gradient. Therefore, conclusion b will be satisfied if the partial derivative mentioned
above is never 0 in the interval between σ(t) and σ(t+1). (Without loss of generality we can assume that σ(t+1) > σ(t)).

We give here the sketch of a proof by reduction ad absurdum. Let us assume that there exists σ∗ ∈ (σ(t), σ(t+1)) such that

σ∗ = S(σ∗) =

√
1
n

∫
(
∑n

i=1(xi − µi)2)g(x;σ∗)f(x)dx∫
g(x;σ∗)f(x)dx

(25)

To simplify notations, we omit µ, which remains constant during this step. Here S(σ) is basically the update function; it
tells us which is the next sigma given σ. From the assumption made it is clear that S(σ∗) = σ∗ and S(σ(t)) = σ(t+1), while
σ∗ ∈ (σ(t), σ(t+1)). It follows that:

S(σ∗)− S(σ(t))
σ∗ − σ(t)

=
σ∗ − σ(t+1)

σ∗ − σ(t)
< 0 (26)

From the intermediate value theorem it follows that the derivative of S with respect to σ has to be negative somewhere
inside (σ(t), σ(t+1)). That means there exists a point σ− where:
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∫
(

n∑
i=1

(xi − µi)2)2g(x;σ−)f(x)dx

∫
g(x;σ−)f(x)dx−

(
∫

(
n∑

i=1

(xi − µi)2)g(x;σ−)f(x)dx)2 < 0

But this is impossible by Cauchy-Schwarz inequality, which gives us the contradiction that concludes the proof.
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