
Appendix A. Experimental design

Material

Participants read chapter 9 of Harry Potter and the Sorcerer’s Stone [Rowling, 2012]. We chose this
chapter because it involves many characters and spans multiple locations and scenes. We chose a famous
book series because we hypothesized all subjects already had characteristic mental representations of the
different characters and locations, and that at least a part of this representation would remain constant
throughout the reading of chapter 9. This assumption allows us to use data from the entire chapter to
look for the representation of the different characters, e.g. the protagonist Harry Potter. In contrast,
had we chosen an unfamiliar story in which we learn about the protagonist’s personality throughout the
text, the mental representation of this protagonist will arguably change more than Harry’s would.

Participants

fMRI data was collected from 9 subjects (5 females and 4 males) recruited through Carnegie Mellon
University, aged 18 to 40 years. The participants were all native English speakers and right handed.
They were chosen to be familiar with the material: we made sure they had read the Harry Potter books
or seen the movie series and were familiar with the characters and the story. All the participants were
screened for safety, signed the consent form and were compensated for their participation. Data from
one of the subjects was excluded from the analysis because of an artifact that was not removed by our
preprocessing procedure.

Design

The words of the story were presented in rapid serial visual format [Buchweitz et al., 2009]. Words were
presented one by one at the center of the screen for 0.5 seconds each (see Fig. 5). The background was
gray and the font was black. We used MATLAB and the Psychophysics Toolbox extensions [Brainard,
1997,Pelli, 1997,Kleiner et al., 2007].

The chapter was divided into four runs, of approximately 11 minutes each. Subjects had short breaks
between runs. Each run started with a fixation period of 20 seconds in which the subjects stared at a cross
in the middle of the screen. The words presentation started after the fixation period. The total length
of the runs was 45 minutes, during which about 5200 words were presented. Chapter 9 was presented in
its entirety without modifications and each subject read the chapter only once.

Before the experiment, we supplied the subjects with a summary of the events preceding chapter 9 and
a summary of the main characters and concepts in Harry Potter and the Sorcerer’s Stone to refresh their
memory. We also instructed them to practice rapid serial presentation by viewing a video that replicated
the parameters of our design, but with another story (The Tale of Peter Rabbit [Potter, 2006]). On
the day of the experiment, the subjects were instructed to lay in the scanner and read the chapter as
naturally as possible while remaining alert.

fMRI procedure

Functional images were acquired on a Siemens Verio 3.0T scanner (Siemens, Erlangen, Germany) at the
Scientific Imaging & Brain Imaging Center at Carnegie Mellon University, using a T2* sensitive echo
planar imaging pulse sequence with repetition time (TR)=2s, echo time=29 ms, flip angle=79◦, 36 slices
and 3 × 3 × 3mm voxels. Anatomical volumes were acquired with a T1-weighted 3D-MPRAGE pulse
sequence.
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Figure 5. Illustration of our fMRI experimental protocol. Words from a story are presented serially for
0.5 seconds each while recording brain activity with fMRI at a rate of one entire brain image each 2
seconds. Our goal is to model how fMRI neural activity during reading reflects the perceptual and
conceptual features of the story. Each fMRI activity volume is shown here in 36 horizontal slices. Going
right to left through the slices, then bottom-up, corresponds to looking at slices from the bottom of the
brain up. Within each slice, the top of the slice corresponds to the posterior of the brain, and the right
side of the slice corresponds to the left side of the brain. The images are on a scale from blue to red
where blue indicates negative deviation from baseline and red indicates positive deviations. A TR is the
time needed to record one brain volume, and is 2 seconds in our experiment.
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Data preprocessing

We used the MATLAB suite SPM8 [Ashburner et al., 2008] to preprocess the data. Each subject’s
functional data underwent realignment, slice timing correction and co-registration with the subject’s
anatomical scan, which was segmented into grey and white matter and cerebro-spinal fluid. The subject’s
scans were normalized to the Montreal Neurological Institute (MNI) space and smoothed with a 6× 6×
6mm Gaussian kernel smoother.

Using the Python toolbox PyMVPA [Hanke et al., 2009], we masked the functional data using the
segmented anatomical mask, discarding cerebrospinal-fluid voxels. The data was then detrended in
MATLAB by running a high-pass filter with a cut-off frequency of 0.005Hz. Visual inspection of the time
course of a large number of voxels showed that this threshold was enough to get rid of large block effects
and slow trends in the data.

Finally, we selected voxels from each subject, keeping only voxels in 78 cortical Regions Of Interest
(ROIs), defined using the AAL brain atlas [Tzourio-Mazoyer et al., 2002], excluding the cerebellum and
white matter. We ended up with an average of 29227 voxels per subject. The anatomical union (number
of MNI voxel locations for which at least one subject had a voxel) of these 6 subject’s brains was a set of
41073 voxel locations.
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Appendix B. Representing stories in a feature space

We represented our story features as a multivariate discrete time series. We used one TR as a unit of
time. This enables us to have the same time scale for the features and the data time series. We compute
the value of a feature at any TR by aggregating the features of the four words that were read during that
TR (see table 2).

We extracted the story features at multiple levels of representation. Specifically, we obtained simple
perceptual features such as the average word-length in a TR, as well as semantic features of individual
words and sentence level features such as syntactic dependency relationship. We also included discourse
level features such as the presence of different story characters. The list of all the features we used is
provided in tables 1. This table includes the features that were finally used in the model: a few of our
features had too few occurrences and we ended up disregarding them. We also include in table 2 as
illustration a subset of the feature values for the two segments of the story included in Fig. 2(B).

Visual features

• Average Word Length: We compute the average word length in every TR.

• Word Length Variance: We compute the variance of word length in every TR.

Semantic features

An approximation of the meaning of a word can be obtained by the pattern of its occurrence with other
words over a large text corpus. For example, “apple” is likely to occur with other food items or the verb
“eat”, but not so likely to occur with building materials or power tools. These statistics are very large
in dimension and therefore we need to resort to some form of dimensionality reduction.

We used NNSE (Non-Negative Sparse Embedding) [Murphy et al., 2012] a which produces low dimen-
sional representations for word meanings that are interpretable and cognitively plausible. The intuition
is that, when asked to name the semantic properties of an object, one would list the few salient positive
properties (e.g. an apple is a round, usually red, edible object) instead of naming negative properties
(e.g. an apple is not a tool), see [Murphy et al., 2012] for more detail. These are learned from massive
web corpora from which dependency co-occurrences and document co-occurrence counts are computed.
These statistics are then factorized using NNSE.

For every word in our story, we therefore obtain 1000 NNSE features of which we keep the top 100
(these 100 features are picked from the 1000 based on the set of words in the story by choosing the
dimensions with the highest average magnitude for these words, whereas the original 1000 were picked
by the NNSE model based on the set of all words in the corpora). We sum the features of the four words
within each TR.

Syntactic features

Using an automated parser [Nivre et al., 2007] we determined the part of speech of every word in the
story and obtained the dependency role of every word from the parse tree of the sentences.

We obtained a set of 28 unique parts of speech and 17 unique dependency relationships, for a total of
45 syntactic binary features that indicate if a given part of speech or a dependency relationship occurred
within a TR. We also included an additional feature that records the position of a word in the sentence,
i.e. its number starting from the beginning of the sentence. This value is averaged for the four words in
a TR.
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Discourse features

We made the following annotations manually by going through the story text:

• Characters: We resolve all pronouns to the character to whom they refer, and make binary features
to signal which of the 10 characters are mentioned.

• Motions: We identified a set of motions that occurred frequently in the chapter (e.g. fly, manip-
ulate, collide physically, etc.). Because the actions happen in the course of a sentence, we created
two story features for: a punctual feature and a ”sticky” feature. The punctual feature represented
when the verb of the motion was mentioned, and the sticky feature is on for the duration of the
motion (i.e. the sentence). Because we disregarded some of the story features which had few
occurrences, we ended up with some motion features that consist only of the sticky feature.

• Speech: We indicated the parts of the story that corresponded to direct speech between the
characters. We have a punctual feature that indicates the verb that announces which character is
speaking (e.g. “said Harry”), and a sticky feature that indicates ongoing direct speech.

• Emotions: We identified a set of emotions that were felt by the characters in the chapter (e.g.
annoyance, nervousness, pride, etc.). We had punctual features for when the emotion was explicitly
mentioned, and sticky features when it was being felt by the characters.

• Verbs: (non-motion) We identified a set of actions that occurred frequently in the chapter that
were distinct from motion (e.g. hear, know, see, etc.). These typically spanned a shorter time than
motions and we only used punctual features to represent them.
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Table 1. List of all the textual features.

Semantics 1...100 Syntax 150 Sentence Length
Speech 101 speak - sticky -parts of speech 151 ,

102 speak - puntual 152 .
Motion 103 fly - sticky 153 :

104 manipulate - sticky 154 Coordinating conjunction
105 move - sticky 155 Cardinal number
106 collide physically - sticky 156 Determiner
107 fly - punctual 157 Preposition / sub. conjunction
108 manipulate - punctual 158 Adjective
109 move - puntual 159 Modal

Emotion 110 annoyed - puntual 160 Noun, singular or mass
111 commanding - puntual 161 Noun, plural
112 dislike - puntual 162 Proper noun, singular
113 fear - puntual 163 Proper noun, plural
114 like - punctual 164 Personal pronoun
115 nervousness - puntual 165 Possessive pronoun
116 questioning - punctual 166 Adverb
117 wonder - punctual 167 Particle
118 annoyed - sticky 168 to
119 commanding - sticky 169 Interjection
120 cynical - sticky 170 Verb, base form
121 dislike - sticky 171 Verb, past tense
122 fear - sticky 172 Verb, gerung or present part.
123 mental hurting - sticky 173 Verb, past part.
124 physical hurting - sticky 174 Verb, non-3rd person sing. present
125 like - sticky 175 Verb, 3rd person sing. present
126 nervoussness - sticky 176 Wh-determiner
127 pleading - sticky 177 Wh-pronoun
128 praising - sticky 178 Wh-adverb
129 pride - sticky -dependency roles 179 Unclassified adverbial
130 questioning - sticky 180 Modifier or adjective or adverb
131 relief - sticky 181 Coordination
132 wonder - sticky 182 Coordination

Verbs 133 be 183 Other dependent (default label)
134 hear 184 Indirect object
135 know 185 Modifier of noun
136 see 186 Object
137 tell 187 Punctuation

Characters 138 Draco 188 Modifier of preposition
139 Filch 189 Predicative complement
140 Harry 190 Parenthetical
141 Hermione 191 Particle
142 Mrs. Hooch 192 Root
143 Mrs. McGonagall 193 Subject
144 Neville 194 Verb chain
145 Peeves 195 Modifier of verb
146 Ron
147 Wood

Visual 148 Average Word Length
149 Variance of Word Length
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Table 2. Example of the time course of the different types of story features for two story passages.
Stories have to be represented in a feature space that allows for learning the brain response to
individual features. The neural response to a novel part of the story can then be predicted as the
combination of the responses associated with its features.
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Semantic 1 0 0 0.12 0 0.13 0.11 0 0.01
speak - sticky 0 0 0 0 0 0 0 0

fly - sticky 0 0 0 0 0 0 0 0
manipulate - sticky 0 0 0 0 0 0 0 0

move - sticky 0 0 0 0 0 0 0 0
collide physically - sticky 0 0 0 0 0 0 0 0

hear 0 0 0 0 1 0 0 0
Draco 0 0 1 0 0 0 0 0
Filch 0 0 0 0 0 0 0 0
Harry 1 0 0 0 1 0 0 0

Hermione 0 0 0 0 0 0 0 0
Mrs. Hooch 0 0 0 0 0 0 0 0

Mrs. McGonagall 0 0 0 1 0 0 0 0
Average Word Length 4.5 3 6 5.75 4.25 6 5.25 4

Personal pronoun 1 0 0 0 0 0 0 0
Possessive pronoun 0 0 0 0 0 0 0 0

Object 0 0 1 0 0 1 0 0
Verb chain 1 0 0 1 1 0 0 0

7



Appendix C. Modeling the time dynamics of the neural activity

We aim to find the mapping between the different types of features we presented above and the neural
activity yv of a voxel v. We want to learn the response of this voxel v to every feature j.

We first assume that each feature j has a signature activity in voxel i that is consistently repeated
every time the brain encounters this feature (for the regions that do not encode this feature, we will
ideally learn a signature activity equal to 0). Fig. 1(a) shows a hypothetical pattern of activation elicited
by the semantic feature j in a given voxel. Due to the TR = 2 seconds we use in our experiment, and
the typical latency of the hemodynamic response, we are only interested in the points of the response
signature that are sampled 2, 4, 6 and 8 seconds after the onset of feature j (wvj

1 , wvj
2 , wvj

3 and wvj
4 ).

It is important to note that we do not constrain the shape of the learned response signature. We also
tried estimating the response with 5 time points (2 to 10 seconds after onset) and 6 time points (2 to 12
seconds). However this manipulation did not significantly change the performance and therefore we use
4 time points for computational and statistical reasons (see Appendix F).

The second assumption is that the signature activity is scaled by the value of feature j at the time
the feature is presented. See Fig. 1(b).

Therefore, if we assume that the responses created by successive occurrences of a feature are additive
then the activity at time t in voxel v is:

yv(t) =

4∑

k=1

fj(t− k)× wvj
k (1)

where fj(t) is the value of feature j at time t. Another way to think about this is that the activity created
by the feature is the convolution of the response signature with the time course of the feature. Above we
considered the brain activity to be created by one story feature. Now we include the activities created
by all of the features we have defined above, again assuming they are additive. This gives the model:

yv(t) =

F∑

j=1

4∑

k=1

fj(t− k)× wvj
k (2)

We therefore model the voxel’s activity yv(t) as a linear combination of the values of all the features
at times t− 4 to t− 1. We know the time courses of the feature values and the voxel’s activity, and we
need to predict the set of response signatures.

Our approach is similar to Hidden Process Models [Hutchinson et al., 2009] that also use a multiple
regression setup. The neural activity there is also assumed to be generated by linearly additive processes
and all instantiations of the same process share the same response, but unlike the case of our model, the
delay in the onset of the response is variable.
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Appendix D. Learning the Response Signatures

In equation 2, we did not consider different subjects, and only considered a hypothetical voxel i. However,

in reality, we have S subjects, and V
(s)
T voxels for each subject. The regression in equation 2 can therefore

be rewritten as:

y(s)
v = F×w(s)

v + ε(s)v (3)

where:

• s is the index of a given subject (1 ≤ s ≤ S)

• n is the number of TRs (or time points)

• y
(s)
v is the n× 1 vector of activity of voxel v of subject s

• F is the n ×K matrix of time shifted features (every row contains the features of the 4 previous
TR, i.e. K = 4× F )

• w
(s)
v is the K × 1 vector of response signatures in voxel v of subject s

• ε(s)v ∼ N(0, σ2
vIn) is the n× 1 vector of errors (n is the number of TRs) caused by noise in voxel v

of subject s (σ2
v is the noise variance at voxel v and In is the n× n identity matrix).

To learn the responses w
(s)
v , we solve the following `2 regularized regression:

min
wv

||y(s)
v − F×w(s)

v ||22 + λ(s)v ||w(s)
v ||22 (4)

independently, for each voxel v and each subject s. This equation has a closed form solution

ŵ(s)
v = (F>F + λ(s)v IK)−1F>y(s)

v (5)

where IK is the K × K identity matrix, and we choose the λ
(s)
v parameter using generalized cross

validation [Golub et al., 1979] to estimate the average leave one out cross validation error for each

value of λ
(s)
v . Note that at each voxel we are estimating a value for the best regularization parameter

independently of the other voxels.
One additional detail is that, for each experimental block, we throw out the first 10 TRs corresponding

to the fixation period and the following 1 TR. This 1 TR correspond to the start of the text display and
because of the time shift of the features, the feature matrix at that TR has no content (it corresponds to
the story features from the 4 following TRs, i.e. the fixation period).
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Appendix E. Learned Waveforms

After learning the set of parameters, we look at the four points we learned for a feature j at a voxel v
and examine their relative shape. We find that the responses learned are very noisy. However when only
looking at the average response for a given feature type at the regions that represent this feature type (we
obtain these regions via the classification task explained in detail in the next section), we end up with
4 points that can usually be fitted on a concave waveform that resemble the characteristic shape of the
hemodynamic response. We present the average waveforms we learned in Fig. 6. It should be noted that
these plots are the averages by feature set, for one of the subjects, of parameters learned across the voxels
whose accuracy is in the top 95% percentile, and therefore they are only provided as an illustration.
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Appendix F. Classification

Cross-Validation Procedure

To learn the response signatures we time-shift the story feature matrix: we make matrix F in which
every row t contains the values of all the features at times t − 4, t − 3, t − 2 and t − 1 .We
also create an fMRI data matrix containing in each row t the concatenation of the entire brain
images for all subjects, at TR t.

We introduce here the matrix W, which is the concatenation of all the vectors w
(s)
v , i.e.

W = [W(1),W(2)...W(S)] (6)

where

W(s) = [w
(s)
1 ,w

(s)
2 , ...,w

(s)
V s
T

] (7)

To test the validity of the learned response signatures, we constructed a binary classifier that decodes
which passage of the story is being read from a given fMRI data frame. We start by partitioning the
timeline into 10 cross-validation folds. Then for every fold i:

1. Decorrelate the test (fold i) and training data (other 9 folds) by discarding the data corresponding
to the 5 TRs before and after fold i.

2. Use the training data to estimate the response signatures of all features in all voxels and all subjects
(W), using the method in Appendix D. It is important to note that the responses are learned
independently for each voxel and each subject. Also note that the penalty parameter for
each voxel that is described in Appendix D is chosen using only the training data.

3. Divide the timeline of fold i into non-overlapping time windows, each of length B TRs. Then, for
every pair of B TRs segments:

(a) Take the two test story-frames (S1 and S2) and predict the corresponding brain activity using
the learned responses W, as shown in Fig. 7.

(b) Use the two predictions P1 and P2 to classify each of the two test data-frames T1 and T2

independently: i.e. assign to each data-frame the story-frame with the closest prediction, using
a distance function explained in the following subsection.
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Figure 7. Diagram of the classification task. The task is to assign to each held-out K TRs fMRI
segment (T1 and T2) the K × 2 seconds portion of the story to which it corresponds (one of the the
two dark blue segments). This is done by predicting the activity using the learned weights, then
computing the distance between the two predicted responses (P1 and P2) and the real segment. The
classification of T1 and T2 is done independently, i.e. for T1, the story passage S1 or S2 is chosen, and
then, in a different test, for T2, the story passage S1 or S2 is chosen.

We average the results of all the cross-validation folds and obtain an overall classification accuracy.
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Classification Procedure

Here we describe how the distances between a test segment T and the two predicted segments P1 and
P2 that we compare it to are computed (see Fig. 7). We use two methods:

• Whole-Brain classification:

The simplest way to perform classification is to use all the voxels from all the subjects in order
to determine the distance between the predicted segments and the true segment. Because we are
working with single trial data, concatenating the voxels from different subjects in a row acts as a
substitute for multiple repetitions. We compute the Euclidean distance between the two images:
||T−P1||2 and ||T−P2||2.

Importantly, this test method combine data from multiple subjects without averaging data over
subjects in either the learning step (as we saw above) or the classification step. The multi-TR
segment that we are classify is actually a multi-TR concatenation of brain images from all subjects,
instead of a multi-TR segment of one brain’s images. Since every voxel in that data is trained
independently, and contributes to the Euclidean distance independently, then this concatenation
does not make any assumptions on the subject’s alignment.

As discussed in Appendix G and the main text, when using the data that has been smoothed in
preprocessing, the classification accuracy is lower than when using un-smoothed data. Therefore
we boost the accuracy when using smoothed data by voxel selection. This is done in the following
way: at every cross-validation fold, we use the training data in order to find the best subset of
voxels to use. This is done via a nested cross-validation step on the training data what determines
which voxels have the best accuracy and how many of the top voxels to use to obtain the best
combined accuracy. These voxels are then used to classify the untouched test data: we compute
the Euclidean distance using only the columns that correspond to these voxels.

• Concatenated Searchlight classification:

Whole-Brain accuracies do not tell us about which parts of the brain are contributing to the
classification accuracy. In order to assess this, we perform the classification “locally”, looking in
one region of the brain at a time. Regions are defined as k× k× k-voxel cubes centered around one
MNI voxel location, k being an odd integer. This method is similar to the Searchlight approach
commonly used in neuroimaging [Kriegeskorte et al., 2006], however we expand it to include data
from multiple subjects:

– We pick a cube size k: for example, k = 5 gives a 5× 5× 5 voxels cube (to look at one voxel
at a time we take a 1× 1× 1 voxel cube)

– For every voxel location (xi, yi, zi), we select the set of voxels whose coordinates fall in the
k × k × k voxels cube centered around that location. This can be done for each subject
independently, in the case where we are interested to look for regions with high accuracy on a
single subject basis. It can also be done by selecting the union of voxels from all subjects that
fall in this cube. We call the set of voxels selected at this step Vi.

Because we are working with single trial data, concatenating the corresponding voxels from
different subjects in a row acts as a substitute for multiple repetitions. Additionally, since the
alignment of the subjects to the same anatomical space is not perfect, taking a k× k× k voxel
cube with k > 1, allows us to circumvent small variations in the anatomical configuration of
the subjects brains.

– For each of these sets Vi of voxels, we compute the Euclidean distances:

||T(all rows, voxels in Vi)−P1(all rows, voxels in Vi)||2 and

||T(all rows, voxels in Vi)−P2(all rows, voxels in Vi)||2
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Note: we are performing this computation at every voxel, so we are actually performing Nv

classifications, where Nv is the total number of voxels.

Significance Testing

• Whole-Brain Classification Accuracy

To show that Whole-Brain classification accuracy is significantly higher than chance accuracy, which
is 50% in this balanced binary classification task, we compute an empirical null distribution. The
null distribution that story features cannot predict neural activity is approximated empirically. A
common approach to estimate the null distribution is by running a permutation test: the order
of the features is permuted before classification and the procedure is repeated a large number of
time. However, the different samples (different TRs) of our experiment are not identically and
independently distributed (IID) given that the data is from a time series. The time series of data
and of features varies smoothly and therefore the classifier might detect dependencies between them
when there is none, because they happen to vary similarly in this finite sample. The commonly
used permutation test will not contain such dependencies and therefore will not correct for them,
therefore leading to an optimistically biased answer. To solve this problem we use a solution
inspired by [Chwialkowski and Gretton, 2014]: we shift the feature time series by N TRs such that
a < N < b and compute the classification accuracy. For a and b large enough (we use a = 500 and
b = 750), there will be no real relationship between the time series of data and the time series of
features, however the time smoothness will be conserved, leading to better estimates of the variance
of chance classification accuracy, which guarantees less false positives.

• Identifying Brain Regions Correlated with Different Feature Types:

To find out where in the brain each type of story feature is useful, we followed a similar training
approach as previously, except that (1) only one type of feature (Word Length, Story Characters
etc...) was used at a time and (2) we used a concatenated Searchlight procedure at test time with
k = 5 and using data from all subjects. Precisely, for every voxel location i, we took the cube of
5×5×5 voxel coordinates centered around that location. The union of voxels from all subjects that
have coordinates included in this cube were selected. Therefore, for every location, we performed
the classification of 2 segments of size 20× |Vi|.
For every one of these combination of type of story feature/subset of data, we obtain a local
classification accuracy. We measure significance by computing an empirical null distribution in
the same way as for the whole-brain accuracy, then correcting for multiple comparisons using the
Benjamini-Hochberg-Yekutieli False Discovery Rate (FDR) [Benjamini and Yekutieli, 2001]. This
procedure controls the FDR at level q under arbitrary dependence and therefore we did not need
to make independence assumptions about the accuracies of different voxels. The procedure is, for
N comparisons:

– Sort the N p-values.

– Find the largest j such that

p(j) ≤
j

N
× q

(
∑N

i=1
1
i )
.

– Reject the null hypothesis for the j comparisons with the smallest p-values.
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Testing the number of time-points

After computing the accuracy and the chance distribution at every voxel and for every feature, we repeat
the entire experiment with more estimated time points per response signature: 5 and 6, corresponding
respectively to points 2 to 10s and 2 to 12s after feature presentation. While the obtained patterns of
representation vary slightly, we do not find any region in which there is a significant improvement for
using either type of window. Since the performance is not different, we chose to use 4 because of statistical
concerns: we have a training set of about 1100 points and 195 features, it is more advisable to limit the
amount of covariates when estimating the model.
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Appendix G. Additional results

We present here the 3D map we obtain for syntactic features exclusively, divided into the contribution
from our three types of syntactic features: sentence length, part of speech and dependency roles.

Dependency"
role"

Part"of"
Speech"

Sentence"
Length"

Figure 8. Results obtained by our generative model for different syntax features, showing where
sentence length, part of speech, and dependency roles are encoded by neural activity. Each voxel
location represents the classification when using a cube of 5× 5× 5 voxel coordinates, centered at that
location, such that the union of voxels from all subjects whose coordinates are in that cube are used.
Voxel locations are colored according to the feature set that can be used to yield significantly higher
than chance accuracy.

We have also ran the entire experiment with the same setup, using however the data without spatial
smoothing. The results vary to a considerable degree in the boundaries of each region, while the main
location of each feature representation stays the same. Figures 9 and 10 show the resulting maps.

Author's personal copy

E. Fedorenko et al. / Neuropsychologia 50 (2012) 499– 513 505

Fig. 5. Top: A probabilistic overlap map  showing in each voxel how many of the 25 individual subjects show a significant (at p < .05, FDR-corrected) effect for the Sen-
tences  > Nonwords contrast. Bottom: The main functional parcels derived from the probabilistic overlap map  using an image parcellation (watershed) algorithm, as described
in  more detail in Fedorenko et al. (2010).

nonword-list a memory probe was presented (a word in the sentences and word-list
conditions, and a nonword in the jabberwocky and nonword-list conditions), and
participants had to decide whether the probe was  present in the preceding stimulus.
As discussed in Fedorenko et al. (2010), the two versions of the task (passive reading
vs. reading with a memory probe at the end) produced similar activation patterns;
we  therefore collapsed across the two subsets of the subjects in our analyses in that
paper and we  do the same here. Each participant completed between 6 and 8 runs
(i.e., between 24 and 32 blocks per condition; see Fedorenko et al., 2010, for details
of the timing).

In Section 3, we report the results of: (a) region-of-interest-based (ROI-based)
MVPA analyses on a set of key language-sensitive regions and (b) whole-brain
searchlight-style analyses (Kriegeskorte et al., 2006).

2.1. ROI-based analyses

We  chose to use as ROIs for our MVPA analyses the thirteen group-level func-
tional parcels6 (Fig. 5, bottom) that were derived from the probabilistic overlap
map  for the Sentences > Nonword-lists activations7 (Fig. 5, top), as described in
Fedorenko et al. (2010).  These group-based ROIs represent the locations where
individual activations tend to be found most consistently across subjects. So, for
any  given subject, a parcel will include some voxels that respond reliably more
strongly to Sentences than Nonwords, and some voxels that do not show this prop-
erty. We chose to use these group-level parcels instead of subject-specific functional
ROIs  in these analyses for two reasons. First, it has been previously demonstrated

6 These parcels were created in order to systematize and automate the proce-
dure for defining subject-specific functional ROIs (fROIs): in particular, for any given
region, an individual subject’s fROI is defined by intersecting the relevant parcel with
the  subject’s thresholded activation map. In other words, these functional parcels
serve as spatial constraints on the selection of subject-specific voxels, akin to using
borders of anatomical regions (see Julian, Fedorenko, & Kanwisher, submitted, for
an  extension of this method to ventral visual regions).

7 Although these group-level functional parcels were created from the 25 subjects
whose data we examine here, non-independence issues (Vul & Kanwisher, 2009) do
not  arise in examining the discriminability between word lists and jabberwocky
sentences because the data from those conditions were not used in creating the
parcels. Some non-independence is present when we examine the discriminability
among all four conditions (Section 3.1). This non-independence should be taken into
consideration when interpreting the results from the ROI-based analyses. However,
the fact that the results of the whole-brain searchlight analyses, which do not suf-
fer  from such non-independence problems, look similar to those of the ROI-based
analyses largely alleviates the concerns.

(Haxby et al., 2001; Kriegeskorte et al., 2006) that even voxels that do not show a
particular functional signature relevant to the to-be-discriminated conditions can
contribute to classification accuracy. For example, Haxby et al. (2001) showed that
removing voxels from the ventral visual regions that respond most strongly to some
visual category does not strongly affect the ability to discriminate that category
from  other categories. Consequently, voxels in the vicinity of language-sensitive
regions in each individual subject may contain information about various aspects
of  linguistic knowledge even though they do not show the functional signature of
language-sensitive voxels. And second, because we wanted to examine neural activ-
ity  patterns across all four conditions, we could not use any of the conditions for
defining subject-specific fROIs. (However, in addition to these whole-parcel-based
analyses, we did conduct one analysis where we looked at the ability of subject-
specific functional ROIs (fROIs), defined by the Sentences > Nonword-lists contrast,
to discriminate between word lists and jabberwocky sentences. The results of this
analysis are reported in Appendix A.)

For each condition we divided the data into odd-numbered and even-numbered
runs (each subject performed between 6 and 8 runs total). Then, for each subject
and for each ROI, and across the two independent halves of the data, we computed
the within- vs. between-condition spatial correlations for each pair of conditions (as
schematically shown in Fig. 4 above), considering all the voxels within the parcel.
For  example, to see how well the pattern of activity for the Sentences condition is
discriminated from the pattern of activity for the Word-lists condition, we computed
(i)  a within-condition correlation value for the Sentences condition by comparing the
pattern of activity for the Sentences condition in the odd vs. even runs (all the r values
are  Fisher-transformed); (ii) a within-condition correlation value for the Word-lists
condition by comparing the pattern of activity for the Word-lists condition in the
odd  vs. even runs; and (iii) a between-condition correlation value by comparing the
pattern of activation for the Sentences condition in the odd/even runs and for the
Word-lists condition in the even/odd runs (these two  values are averaged to create
one between-condition value). Finally, for each ROI we performed an F-test on the
within vs. between-condition correlation values across subjects to see whether the
within-condition values are reliably higher than the between-condition values. If
so,  this would suggest that the distinction between the two  conditions in question
is  represented in the relevant ROI.

We  deviated from Haxby’s analysis strategies in one way. In particular, Haxby
applied centering to his data by subtracting the mean level of activation of a voxel
from  the activation level for each of the conditions. This is equivalent to considering
the  activation from each condition with respect to a baseline activation level com-
puted as the average activation across all conditions, instead of using an independent
fixation baseline as we used in our analyses. The centering procedure potentially
increases sensitivity of the MVPAs by removing one source of variance from across
the voxels and leaving only between-condition differences in play. However, cen-
tering also introduces between-condition dependencies in the estimation of the
within-condition similarity measures, which complicates their interpretation.
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Figure 9. Same as figure 4 with non-smoothed data (at FDR α = 0.01).

Our results do not only depend on processing methods, but they also require the significance threshold-
ing of different classification tasks which might not be of equal difficulty. For instance, different features
might lead to high or low classification because of the statistical properties of the features and not the
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Figure 10. Same as figure 8 with non-smoothed data.

way they are represented in the brain. We present below the comparison of the whole brain classification
when different types of features are used. We compare these accuracies with the entropy of each feature
set. We want to see if the difference in classification accuracy is due to differences in the entropy of each
feature: it is harder to learn a model with features that change rarely in a story (low entropy), than it is
to learn a model with features that occur very frequently. In our feature creation phase, we did explicitly
exclude features with low entropy (for example, the location of scenes didn’t vary much and we didn’t
include it). However, the features we did keep still vary in their frequency and we wanted to compare
their entropies to their accuracies.

For each feature set we compute the entropy of each feature, and then use the maximum entropy. The
results are shown in the first row of tables 3 and 4. In the following rows, we show classification accuracy
by feature set. For the smoothed data, the accuracy was initially low and was boosted by voxel selection
as explained in Appendix F.

NNSE Average WL Variance WL Sentence Length
entropy 1.84 4.01 5.22 5.46
accuracy (smoothed) 0.58 0.69 0.57 0.53
boosted accuracy (smoothed) 0.63 0.87 0.80 0.62
accuracy (unsmoothed) 0.75 0.71 0.71 0.67

Table 3. Non-binary features.

speak move emotions verbs characters POS dependency
entropy 0.69 0.50 0.25 0.28 0.28 0.62 0.78
accuracy (smoothed) 0.55 0.51 0.50 0.51 0.56 0.61 0.62
boosted accuracy (smoothed) 0.66 0.61 0.50 0.65 0.52 0.71 0.71
accuracy (unsmoothed) 0.69 0.61 0.48 0.65 0.56 0.84 0.83

Table 4. Binary features.

There seems to be a modest relationship between the entropy of the features and how accurate
classification is, in which feature sets with higher entropy lead to a higher accuracy. There might be
other factors also affecting how easy the classification with different feature sets are. To avoid comparing
the results of classification tasks that vary in difficulty, and as a way of leveling the playing field, we plot
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in Fig. 11 the top 1000 voxels when using each of the feature sets. The voxels that are colored do not
therefore necessarily have a higher than chance classification accuracy.

Emo(ons"Characters" Verbs"

Dialog" Mo(on"

Seman(cs"Syntax"Visual"

Figure 11. Top 1000 voxels for each feature type (smoothed data). Instead of picking the significantly
higher than chance voxels, we chose to color the 1000 voxels with the highest (normalized) accuracy for
each feature type. The accuracies were normalized using the empirical null distribution as explained in
Appendix F. In the lower, right figure, the brain is sliced to reveal in the medial frontal cortex a cluster
of voxels that in which emotions lead to relatively high accuracy.
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Appendix H. Combining Subjects Spatially

Our concatenated Searchlight is not equivalent to spatial or cross-participant smoothing because, again,
the voxels associated with each subject are treated independently. The only requirement is that the
subjects are all normalized to the MNI space; we do not co-register the subjects and we learn the
response of every voxel independently.

Assume we are interested in an area A that is distributed around a certain mean location (x, y, z)
in all subjects. Then despite the subjects’ anatomical variability and given an adequate model and an
appropriate cube-size, the cube centered at (x, y, z) will contain in it the voxels from area A of all subjects.
Running the classification at this cube should then hypothetically yield the best accuracy. This would
be possible because, inside the cube, the voxels from all subjects are concatenated and they contribute
independently to the Euclidean distance we compute in classification. The voxels’ precise alignment is
irrelevant at this step, it only matters that they are all taken into consideration. Therefore, this method
identifies regions of a given size (in this case 15mm×15mm×15mm) in which the subjects are processing
the same information. It avoids the problem usually encountered in averaging multiple subjects, which
is that the only regions that are identified are the regions in which the subjects highly overlap. This
problem is widely debated in the literature [Fedorenko et al., 2010].

Furthermore, despite the linearity of the model, this approach does not yield the same results as
spatially smoothing the data in the cubes, because we have a multivariate input (the different story
features) and while nearby voxels might be processing the same type of information (e.g. story characters),
they are hypothetically coding different instances of this information (e.g. different story characters) with
different patterns of activity for each instance.
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