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ABSTRACT

Discriminative training schemes, such as Maximum Mutual Infor-
mation Estimation (MMIE), have been used to improve the accu-
racy of speech recognition systems trained using Maximum Likeli-
hood Estimation (MLE). In this paper, we present the implementa-
tion details of MMIE training in SphinxTrain and baseline results
for MMIE training on the Wall Street Journal (WSJ) SI84 and S1284
data sets. This paper also introduces an efficient lattice pruning tech-
nique that both speeds up the process and increases the impact of
MMIE training on recognition accuracy. The proposed pruning tech-
nique, based on posterior probability pruning, is shown to provide
better performance than MMIE using standard pruning techniques.

Index Terms— SphinxTrain, MMIE training, word lattice, lat-
tice pruning

1. INTRODUCTION

CMU Sphinx is a popular open source speech recognition system
[1]. It is currently used by researchers and developers in many lo-
cations world-wide, including universities, research institutions and
in industry. SphinxTrain is the acoustic model trainer component
which provides a variety of tools for creating acoustic models. To
date, SphinxTrain did not include an implementation of discrimi-
native training, such as Maximum Mutual Information Estimation
(MMIE) training [2].

MMIE training has been used to provide better performance than
maximum likelihood estimation (MLE) in speech recognition sys-
tems. Naively applied, MMIE attempts to maximize the posterior
probability of the correct word sequence given all possible word se-
quences, but this requires a prohibitive amount of computation to es-
timate confusable hypotheses and perform parameter estimation and
so is impractical. The computational bottleneck can be eliminated by
performing lattice-based MMIE training [3]. In such lattice-based
training framework, the word lattice, which contains a set of word
hypotheses with boundary times and transitions, is used as a compact
representation of competing hypotheses [4]. And then parameter op-
timization is conducted using the extended Baum-Welch (EBW) al-
gorithm [5].

Sphinx lattices contain many individual hypotheses with the
same word, differentiated by entry or exit times. When doing MMIE
training on such lattices, most of time a model just competes with
itself but not other confusable models. The end result is that acoustic
modeling can’t fully benefit from MMIE training. We investigated
the effect of MMIE training on pruned lattices, which contain fewer
duplicate and unnecessary word hypotheses. One of the most ef-
fective lattice pruning methods is beam pruning during decoding

[6]. There are also many other lattice pruning methods that are
usually used to prune lattices as part of multi-pass decoding. In
those methods, a word lattice is usually converted to a word graph
and all time alignment information is discarded. This includes finite
state automata (FSA) determination and minimization [7] and the
confusion networks approach [8].

Unfortunately the above lattice pruning methods are not appro-
priate for the purpose of lattice pruning for discriminative training.
The word lattice used in MMIE training is quite different from the
lattice used for decoding: 1) normally a unigram language model
is used for calculating the language model score for word hypothe-
ses [9][10], 2) the time alignment information needs to be preserved
for EBW computation 3) the Gaussian occupation count is weighted
by the posterior probability of the word hypothesis, therefore beam
pruning which only considers the forward likelihood is insufficient.
We propose a new lattice pruning method that keeps the boundary
times of word hypotheses in the lattice and prunes unnecessary word
hypotheses by considering their posterior probabilities. The poste-
rior probability of a word hypothesis is calculated in the same way as
in EBW by doing the forward-backward computation on the lattice.
Using this method, word hypotheses which do not contribute much
to Gaussian count accumulation are removed from the lattice. Fur-
thermore, in our posterior probability pruning method, we also try
to reduce the number of duplicate word hypotheses. This allows us
to get greater improvement from MMIE training on such pruned lat-
tices. Another advantage of MMIE training on pruned lattices is that
it reduces computation in both the generation of word lattices and in
the EBW computation. Such improvements make particular sense
for SphinxTrain which is intended to be useful even in environments
with relatively modest computational resources. A similar idea of
performing discriminative training on pruned lattice to save compu-
tation was mentioned in [11]. However, in this paper, we try to both
reduce the computation cost and improve the recognition accuracy.

The remainder of this paper is organized as follows. In section
2, implementation details of MMIE training in SphinxTrain are pro-
vided. Then Section 3 describes the beam pruning method. The
details of the posterior probability lattice pruning algorithm are pre-
sented in Section 4. And in Section 5 and 6 the experiment setup and
results are provided. Concluding remarks are provided in Section 7.

2. MAXIMUM MUTUAL INFORMATION ESTIMATION

As an alternative of the MLE training of HMMs, MMIE training
attempts to optimize the correctness of a model by formulating an
objective function that penalizes the confusable models relative to



Fig. 1. A lattice corresponding to “<s> YES </s>”

the true model,
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where A represents the acoustic model parameters, O, are the train-
ing utterances, M is the model corresponding to a word sequence s,
and s, is the correct transcription for the rth utterance, while P(S)
is a weakened language model such as a unigram language model.
Thus, MMIE tries to maximize the likelihood of the correct tran-
scription and simultaneously minimize the likelihood of the compet-
ing word hypotheses.

The MMIE objective function can be optimized using the EBW
algorithm, and the mean and variance of a particular dimension of
the Gaussian mixture component m for state j can be re-estimated
as follows
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where 7; ,, is the occupation count of the Gaussian mixture com-
ponent, and 0;,,,,(O) and ; ,,, (O?) are the standard weighted sums
over feature z(t) and z(t)? respectively. The Gaussian-specific
learning rate constant Dj ,, is used to control the speed of the
parameter update and is set to be large enough to ensure that all
Gaussian variances remain positive. The superscripts num and den
refer to statistics collected on the numerator lattices and denomina-
tor lattices, respectively. The numerator lattice can be generated by
aligning the acoustic data against a network of HMMs built accord-
ing to the correct transcription. The denominator lattice corresponds
to all possible competing word sequences and is a by-product of
the recognition process over the training utterances. Figure 1 gives
an example of a denominator lattice generated using the Sphinx III
decoder. In this lattice, each node is associated with a word and its
entry time. An arc is the transition from one node to another. In our
experiment, to simplify the EBW implementation, we converted the
numerator lattices and denominator lattices into a simpler format
in which each element contains a word hypothesis and the indexes
for preceding and succeeding hypotheses. In this simplified format,

word hypotheses are sorted by their entry time.

The above update equations require accumulating statistics for
the numerator and denominator HMMs by performing a lattice-
based forward-backward computation. Assuming that for a word

lattice, we have ¢ = 1...Q arcs sorted in time. And we have al-
ready calculated the pre-scaled language model score Im(q) and
acoustic likelihood ac(q) for each arc. In this paper, the language
model score Im(q) comes from a unigram language model, while
the acoustic likelihood ac(q) is estimated using Viterbi. Then the
posterior probability of each arc y(g) can be computed as:

1. Initialize (1) = B(Q) = 1.0

2. forarc g = 1...Q, for arc r preceding g,
a(g)+ = a(r) x ac(q) = Im(q)

3. forarc ¢ = Q...1, for arc r following g,
Blg)+ = B(r) * ac(q) = Im(q)

4. forarcq=1...Q,
Y(a) = alq) * B(q)/(ac(q) x Im(q) * 5(1))

3. BEAM PRUNING

Beam pruning is a very effective way to do lattice pruning. It is ap-
plied during the recognition process over the training data. During
decoding, the decoder only expands the HMM states that have accu-
mulated likelihoods which are greater than a beam width multiplied
by the best accumulated likelihood so far. So we can eliminate those
states that have very low likelihoods and end up with a very small lat-
tice. But in MMIE training, where the Gaussian mixture occupation
count is weighted by the posterior probabilities of word hypotheses,
pruning only by accumulated likelihood is not appropriate. Also in
beam pruning, when a state is pruned, all word sequences ending
with that state are pruned out. As a result, we may lose compet-
ing word hypotheses that have high posterior probabilities. In fact,
the beam pruning method has been reported to reduce the benefit of
MMIE training [12]. For our current purposes we will consider it as
a baseline result.

4. POSTERIOR PROBABILITY PRUNING

In MMIE training, the Gaussian occupation count from each word
hypothesis is weighted by the word posterior probability. Word hy-
potheses with low posterior probabilities do not contribute much to
the statistics accumulation, so pruning them out should not affect the
MMIE performance. Also in Sphinx lattices, there are many dupli-
cate word hypotheses only different at entry or exit time. During
MMIE training on such lattices, most of time a model just competes
with itself but not other confusable models. By removing unneces-
sary duplicate hypotheses, we may get a more effective set of com-
peting hypotheses for MMIE training. As shown in Figure 1, nodes
and arcs are two basic elements of a word lattice; we can thus per-
form lattice pruning on those two levels respectively.

4.1. Arc Pruning

Each node in the lattice has a number of outgoing arcs that are transi-
tions from the current node to succeeding nodes. We can find an arc
that has the highest posterior probability within all those transitions.
Then arcs (transitions) whose posterior probability is lower than a
beam width multiplied by the best one will be pruned. This can be
done in a forward pass from the beginning to the end of the lattice.
Similarly, each node also has many incoming arcs which are transi-
tions from preceding nodes to the current node. We can therefore do
a backward pass of pruning on those incoming arcs. The posterior
probability of each arc is calculated in the same way as the lattice-
based forward-backward computation we described in Section 3.



4.2. Node Pruning

In addition to the posterior probability arc pruning, we can also ap-
ply the posterior probability pruning on the node level to directly
remove duplicate word hypotheses in Sphinx lattices. First, the pos-
terior probability of each node is calculated as the sum of the pos-
terior probability of all its outgoing arcs. Then from the beginning
to the end, the search of the duplicate nodes is done in the range of
a 20-frame window, which is actually +/-10 frames around a node.
Among these duplicate nodes, the node whose posterior probabil-
ity is lower than the beam width multiplied by the best one will be
pruned.

Clearly, these two levels of posterior probability pruning can
be combined together to get the best result. To do this, we fixed
the beam width for the node pruning and then tried different beam
widths for the arc pruning.

5. EXPERIMENT SETUP

To investigate the effect of above lattice pruning methods on MMIE
training, we used the WSJ-SI84 and WSJ-SI284 data set. Some in-
formation about WSJ corpus statistics is given in Table 1. The input
data was a 13-order mel-scale cepstral vector (MFCC) including co,
and then the delta and delta-delta coefficients were calculated for
training. The testing data was the Nov. "92 Sk-word task evaluation
set. The decoder used the Lincoln Labs Sk-word closed vocabulary
trigram language model from WSJO.

Table 1. Corpus statistics for WSJ-SI84 and WSJ-S1284

Corpus Speakers Total Tied GE}ussian
Speech | States Mixtures
WSJ-S184 84 15h 2931 8
WSJ-S1284 284 81h 5132 16

The numerator lattices were generated by forced alignment be-
tween the correct transcription and the corresponding HMM net-
work. The denominator lattices were generated by decoding the
training utterances using a 64k-word vocabulary unigram language
model trained from the WSJO language model data. The same un-
igram language model was also used for lattice probability compu-
tation. The numerator lattice was always incorporated into the de-
nominator lattice to ensure that the denominator lattice contains the
correct transcription of the utterance. In this paper, the lattices were
only generated once and then used in each iteration of the EBW com-
putation.

6. EXPERIMENT RESULTS

6.1. Baseline MMIE Results

Table 2 shows the recognition results for MMIE training compared to
the initial MLE results. We can find that by applying MMIE training,
the word error rate (WER) of the WSJ-SI84 system and the WSJ-
SI284 system was reduced by 6.2% and 4.9%, respectively. Note
that this is modest in comparison with some other reported results.

6.2. Lattice Pruning Results

The lattice pruning was only applied to the denominator lattices be-
fore they were merged with the numerator lattices. So the pruned

Table 2. Baseline MLE and MMIE results

Training Word Error Rate (WER) %
Criterion WSJ-S184 WSJ-S1284
MLE 6.63 4.52
MMIE 6.22 4.30
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Fig. 2. The relationship between the lattice density and the lattice
WER

denominator lattice still contains the correct transcription of the ut-
terance. To perform beam pruning, different beam widths, such as
1E-80, 1E-70, 1E-60, etc. were used during the decoding of the
training utterances. The lattices generated from the beam width of
1E-80 were selected as the baseline lattices to be further pruned us-
ing the posterior probability lattice pruning method. Beam width of
1E-10 was fixed for the node pruning and beam widths of 1E-70,
1E-50, etc, were tried for the arc pruning.

We used the following measurements to evaluate the effect of
lattice pruning:

e Lattice density: the number of nodes in the lattice divided by
the actual number of words in the correct transcription. It is
an estimate of the lattice complexity.

e Lattice WER: the WER of the best path in the lattice. It is
a lower bound on WER which can be obtained by rescoring
the lattice. We can consider it as a rough measurement of the
lattice quality.

e The standard WER: the WER of the recognition results on the
test set after MMIE training on pruned lattices.

Figure 2 shows the relationship between the lattice density and
the lattice WER of different lattices generated from the beam prun-
ing results and the posterior probability pruning results. It can be
seen that, as the lattices become smaller, there is a very large gap be-
tween the beam pruning curve and the posterior probability pruning
curve. This indicates that posterior probability pruning can produce
smaller lattices of high quality, in contrast beam pruning does not.

The relationship between the lattice density and the performance
of MMIE training on different lattices is shown in Figure 3. We can
find that different from the beam pruning results, the performance
of MMIE training with posterior probability lattice pruning is even
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Fig. 3. The relationship between the lattice density and the MMIE
performance on the Nov. 92 5k-word task evaluation set

better than the MMIE baseline results. As a result, we got a total
7.4% and 8.2% relative improvement, which is noticeably better than
the numbers we reported in Section 6.1. This is because in a Sphinx
lattice, there are many word hypotheses with the same word, but
different entry or exit times. When doing MMIE training on such
lattices, most of time a model just competes with itself but not other
confusable models. By applying posterior probability pruning, we
actually remove those duplicate word hypotheses from the lattice.
Therefore, MMIE training can penalize the confusable models more
and yield a better model.

6.3. Computation Analysis

Another advantage of MMIE training on pruned lattices is that we
can save significant computation over the baseline MMIE training.
In our experiment, the computation of MMIE training mainly comes
from three parts—the lattice generation, the lattice format conver-
sion and the EBW computation. Normally, the lattice generation and
the lattice format conversion will dominate the overall computation.
In fact, the latter one even costs more than lattice generation.

During lattice generation, the smaller the beam width, the less
computation is needed. So if beam pruning is applied, then we can
save some computation from this step. But this is not the case in pos-
terior probability pruning, as we actually prune the lattice after it has
been generated. However, by applying posterior probability pruning,
we can save a lot of computation from the lattice format conversion
and the EBW computation on the lattice. The computation of these
two steps is actually proportional to the number of word hypothe-
ses in the lattice. For example, if we pruned the lattice to half of its
original size, then we can save about 50% of the running time for
the lattice format conversion and the parameter update using EBW.
Compared to the computation of the lattice format conversion, the
computation used to prune the lattice in posterior probability prun-
ing is very small. So generally speaking, in our experiments, when
performing MMIE training with posterior probability lattice prun-
ing, we used only 40% to 60% of the baseline MMIE running time.

7. CONCLUSION

The implementation details of MMIE training in SphinxTrain and
the baseline results on various WSJ data sets were described. In addi-
tion, given that having many duplicate word hypotheses in lattices is
believed to degrade the MMIE performance,we investigated MMIE
training using pruned lattices. Because of the special requirements
for lattices used in MMIE training: 1) unigram language model prob-
abilities are used in training, 2) the time alignment information needs
to be kept for the EBW computation, 3) the Gaussian occupation
count is weighted by the posterior probability of a word hypothe-
sis, many common lattice pruning techniques can’t be applied. We
proposed a posterior probability lattice pruning method to directly
remove duplicate and unnecessary arcs and nodes with low posterior
probabilities in the lattice. From our experiments, we found with the
benefit of the posterior probability lattice pruning, MMIE training
can yield more improvement, meanwhile requiring less computation
than the baseline MMIE results.
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