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Overview 

!   Evaluate general training and testing schemes 
!   LDA-MLLT, VTLN, MMI, SAT, MLLR, CMLLR 

!   Use default setup and existing tools 
!   SphinxTrain-0.8, Sphinx3 

!   Focus on WER, running time was not measured 
!   Experiments were performed on different server machines, 

it’s not easy to directly compare the xRT 

!   Test on different data 
!   Easy task (WSJ) vs. broadcast news 
!   English vs. Mandarin 



Outline 

!   The baseline training scheme 
!   LDA-MLLT 
!   VTLN 
!   MMI 
!   SAT 
!   CMLLR 
!   MLLR 
!   Experiments 
!   Discussion 



Baseline Training Scheme 

Feature 
Extraction CI Model CD Model 

13-MFCC with Delta and Delta-Delta 

Monophone model 
3-state HMM 
1-Gaussian or GMM 
observation distribution 

Triphone model 
3-state HMM 
GMM observation distribution 

Decision tree clustering with 
auto-generated questions 
A few thousand states 



Force Alignment 

!   Force Alignment 
!   Find the best alignment between speech and corresponding HMMs 

!   Goal 
!   Possibly remove utterances with transcription errors or low quality 

recordings 
!   Find appropriate pronunciations for words with multiple pronunciations 

!   Settings 
!   $CFG_FORCEDALIGN = “yes”; 
!   $CFG_FORCE_ALIGN_BEAM = 1e-60; 
!   $CFG_FALIGN_CI_MGAU = “yes”/“no”; 

Feature 
Extraction CI Model Force 

Alignment CI Model CD Model 



LDA-MLLT 

!   LDA (linear discriminant analysis) 
!   Find a linear transform of feature vector, so that class separation is maximized 

!   Reduce feature dimension 

!   MLLT (maximum likelihood linear transform) 
!   Minimize the loss of likelihood between full and diagonal variance model 
!   Applied together with LDA 

!   In Sphinx 
!   Each Gaussian is considered as one class 

!  Easier to implement 

!  Could also define state or phone as class 

!   Settings: 
!   $CFG_LDA_MLLT = “yes”; 
!   $CFG_LDA_DIMENSION = 29; 

Feature 
Extraction CI Model LDA-

MLLT CI Model CD Model 



VTLN 

!   VTLN (vocal tract length normalization) 
!   Formant frequency is considered to have a linear relationship with the vocal tract length 

!   Adjust vocal tract length for each speaker to an average length by warping their spectra 
!   The warping factor:  

!   In Sphinx 
!   Warping factor is estimated for each utterance using exhaust search 

!  Could also estimate identical warping factor for each speaker 

!   Warping factor should be estimated in both training and decoding 

!   Settings: 
!   $CFG_VTLN = ’yes'; 
!   $CFG_VTLN_START = 0.70; 

!   $CFG_VTLN_END = 1.40; 
!   $CFG_VTLN_STEP = 0.05; 

Feature 
Extraction CI Model VTLN 

Train CI Model CD Model VTLN 
Decode 



MMI 

!   MMI (maximum mutual information) 
!   A discriminative training algorithm 
!   Maximize the posterior probability of the true hypothesis 
!   Training is time consuming 

!   Settings: 
!   $CFG_MMIE_MAX_ITERATIONS = 4; 
!   $CFG_MMIE_CONSTE = "3.0"; 
!   $CFG_LANGUAGEWEIGHT = "11.5"; 

!   The same as the language weight used in decoding 

!   $CFG_LANGUAGEMODEL  = ”LMFILE"; 
!   A unigram or bigram LM 

Feature 
Extraction CI Model CD Model MMI 



CMLLR 

!   CMLLR (constraint maximum likelihood linear regression) 
!   A speaker adaptation algorithm to modify speaker independent system towards 

new speaker using limited data 
!   Use the same transform for both mean and variance, therefore usually require less 

data then MLLR 
!   Could be formulated as a linear transform of input features 

!   In Sphinx 
!   Use a single global transform to adapt the input features for each speaker 
!   When accumulate counts, run BW with “-fullvar yes”, “-2passvar no” and             

“-cmllrdump yes” 

!   Settings: 
!   $CFG_DEC_DICTIONARY = “DECODING_DICTIONRY”; 
!   $CFG_DEC_LM = “DECODING_LANGUAGE_MODEL”; 

Feature 
Extraction CI Model CD Model CMLLR 



SAT 

!   SAT (speaker adaptive training) 
!   Train a better speaker independent system 
!   Apply CMLLR transforms to training features 
!   Re-estimate the CMLLR transforms every iteration 

!   In Sphinx 
!   SAT is applied after training a fairly good ML/MMI model 
!   Need to split the training control and reference files into smaller files for 

each speaker (make_speaker_lists.py) 

!   Settings: 
!   $CFG_SAT_DIR = “$CFG_BASE_DIR/sat”; 

Feature 
Extraction CI Model CD Model SAT 



MLLR 

!  MLLR (maximum likelihood linear regression) 
!  Another speaker adaptation algorithm 

!  Adjust mean and/or covariance to maximize the likelihood of the adaptation data 

!  In Sphinx 
!  Adapt mean in default 

!  Could also adapt covariance 

!  Use a single global transform for all models 

!  Could have multiple transforms for different classes of models 

!  Settings 
!  Applied during decoding 

!  Get hypotheses of the testing data from the first pass decoding 

!  Using those hypotheses and testing data to estimate transforms and update model parameters 
!  During bw run, must set “-2passvar no” 

!  Decode again using the adapted model 

!  It’s the same procedure when we apply CMLLR/VTLN in decoding 

Feature 
Extraction CI Model CD Model MLLR 



Overall System Framework 

Feature 
Extraction 

LDA-MLLT 
Force 

Alignment 
VTLN 
Train 

CI Model CD Model MMI SAT 

CMLLR VTLN Test MLLR 



Data 

Training Testing LM 

WSJ0 15-hour 
Nov. 92 

5k and 20k Dev/Eval 
standard Trigram 

WSJ0+1 82-hour 

BN 138-hour HUB4-96 Dev/Eval 
(with data in all different environments) 

Trigram from BN 92-97 
LM data 

Mandarin BN 128-hour RT04-Eval 
Trigram from Chinese 

Gigaword 



Baseline Settings 
!   Force Alignment 

!   Could use multiple-Gaussian CI model 
!   A little bit better, more computation 

!   Linguistic Questions 
!   If available 
!   Or use auto-generated questions 

!   Decoding 
!   lw=11.5, beam=1e-100, wbeam=1e-80, wip=0.2 

!   Mixtures and States 
!   WSJ0:     16 mixtures, 2000 tied-states 
!   WSJ0+1:     32 mixtures, 4000 tied-states 
!   BN:     32 mixtures, 5000 tied-states 
!   Mandarin:     32 mixtures, 4000 tied-states 



Baseline Results 

Data 
WER (%) 

Dev Eval 

WSJ0 
7.62 (5k) 

12.84 (20k) 
6.85 (5k) 

11.69 (20k) 

WSJ0+1 
5.50 (5k) 
9.80 (20k) 

4.18 (5k) 
7.78 (20k) 

BN 32.98 32.85 

Mandarin ----- 25.35 



LDA-MLLT Results 
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Comment: may work better on simple tasks with high quality data, 
but others (Joao Miranda) had tried it on noisy data, which also 
helped a lot. It works on telephone conversation tasks too. 



VTLN Results 
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To be noticed: 
•   the red numbers in the graph is the relative improvement over the baseline 
•   to have a graph without too many bars, the WSJ 5K/20K results are the average of the 
the Dev and Eval results 

For BN and Mandarin, VTLN is 
only applied during decoding, as 
it was found the performance was 
worse when applying VTLN in 
both training and decoding 



MMI Results 
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Comment: the results are not as good as I got from the lattice pruning 
experiments, where I used smaller lattices; try smaller beam widths when generate 
lattices, such as $beam = $wbeam = 1e-70, should be better and faster. Also try to 
use a bigram instead of unigram when generating lattices. 



MLLR Results 
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Comment: works pretty good especially when the first path 
hypotheses are accurate; could use the second path hypotheses train 
a better transform and iteratively do it to get the best number 



CMLLR Results 
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Comment: has similar performance as MLLR, slightly better in BN 



SAT Results 
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Comment: SAT + CMLLR decoding is very effective, which usually gives 
10% improvement over CMLLR decoding only. When estimating CMLLR 
transform, it’s better to start from a very good hypothesis such as the 
CMLLR+MLLR decoding result. 

Here the number is relative 
improvement of SAT+CMLLR 
over baseline 



VTLN + MLLR Results 
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Comment: the improvement is additive, but quite small compared to 
perform MLLR only 

Here the number is relative 
improvement of VTLN+MLLR over 
baseline 



CMLLR+MLLR Results 
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Here the number is relative 
improvement of CMLLR
+MLLR over baseline 

Comment: CMLLR+MLLR further improves the WER! 



LDA-MLLT + MMI Result 
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Comment: MMIE gives solid improvement over LDA-MLLT 
(compare the 2nd bar and the 4th bar) 

Here the number is relative 
improvement of LDA-MLLT
+MMI over baseline 
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Summary 
!   LDA-MLLT 

!   works pretty good on simple tasks with clear speech, not clear on hard tasks with noisy 
speech, needs more investigation 

!   VTLN 
!   produces some improvement 

!   MMIE 
!   produces ok/good improvement 
!   requires large amount computation 

!   CMLLR 
!   works pretty good, especially when first path hypotheses are very accurate 

!   MLLR 
!   works similar to CMLLR 

!   SAT 
!   produces solid improvement 



Still Missing 

!   Better discriminative training technique 
!   boosted-MMI 

!   Deep Neutral Network 
!   Bottle Neck Feature (easier to adapt) 

!   Hybrid Model (more improvement) 


