
Sphinx Benchmark Report

Long Qin
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

Overview

!   Evaluate general training and testing schemes
!   LDA-MLLT, VTLN, MMI, SAT, MLLR, CMLLR

!   Use default setup and existing tools
!   SphinxTrain-0.8, Sphinx3

!   Focus on WER, running time was not measured
!   Experiments were performed on different server machines,

it’s not easy to directly compare the xRT

!   Test on different data
!   Easy task (WSJ) vs. broadcast news
!   English vs. Mandarin

Outline

!   The baseline training scheme
!   LDA-MLLT
!   VTLN
!   MMI
!   SAT
!   CMLLR
!   MLLR
!   Experiments
!   Discussion

Baseline Training Scheme

Feature
Extraction CI Model CD Model

13-MFCC with Delta and Delta-Delta

Monophone model
3-state HMM
1-Gaussian or GMM
observation distribution

Triphone model
3-state HMM
GMM observation distribution

Decision tree clustering with
auto-generated questions
A few thousand states

Force Alignment

!   Force Alignment
!   Find the best alignment between speech and corresponding HMMs

!   Goal
!   Possibly remove utterances with transcription errors or low quality

recordings
!   Find appropriate pronunciations for words with multiple pronunciations

!   Settings
!   $CFG_FORCEDALIGN = “yes”;
!   $CFG_FORCE_ALIGN_BEAM = 1e-60;
!   $CFG_FALIGN_CI_MGAU = “yes”/“no”;

Feature
Extraction CI Model Force

Alignment CI Model CD Model

LDA-MLLT

!   LDA (linear discriminant analysis)
!   Find a linear transform of feature vector, so that class separation is maximized

!   Reduce feature dimension

!   MLLT (maximum likelihood linear transform)
!   Minimize the loss of likelihood between full and diagonal variance model
!   Applied together with LDA

!   In Sphinx
!   Each Gaussian is considered as one class

!  Easier to implement

!  Could also define state or phone as class

!   Settings:
!   $CFG_LDA_MLLT = “yes”;
!   $CFG_LDA_DIMENSION = 29;

Feature
Extraction CI Model LDA-

MLLT CI Model CD Model

VTLN

!   VTLN (vocal tract length normalization)
!   Formant frequency is considered to have a linear relationship with the vocal tract length

!   Adjust vocal tract length for each speaker to an average length by warping their spectra
!   The warping factor:

!   In Sphinx
!   Warping factor is estimated for each utterance using exhaust search

!  Could also estimate identical warping factor for each speaker

!   Warping factor should be estimated in both training and decoding

!   Settings:
!   $CFG_VTLN = ’yes';
!   $CFG_VTLN_START = 0.70;

!   $CFG_VTLN_END = 1.40;
!   $CFG_VTLN_STEP = 0.05;

Feature
Extraction CI Model VTLN

Train CI Model CD Model VTLN
Decode

MMI

!   MMI (maximum mutual information)
!   A discriminative training algorithm
!   Maximize the posterior probability of the true hypothesis
!   Training is time consuming

!   Settings:
!   $CFG_MMIE_MAX_ITERATIONS = 4;
!   $CFG_MMIE_CONSTE = "3.0";
!   $CFG_LANGUAGEWEIGHT = "11.5";

!   The same as the language weight used in decoding

!   $CFG_LANGUAGEMODEL = ”LMFILE";
!   A unigram or bigram LM

Feature
Extraction CI Model CD Model MMI

CMLLR

!   CMLLR (constraint maximum likelihood linear regression)
!   A speaker adaptation algorithm to modify speaker independent system towards

new speaker using limited data
!   Use the same transform for both mean and variance, therefore usually require less

data then MLLR
!   Could be formulated as a linear transform of input features

!   In Sphinx
!   Use a single global transform to adapt the input features for each speaker
!   When accumulate counts, run BW with “-fullvar yes”, “-2passvar no” and

“-cmllrdump yes”

!   Settings:
!   $CFG_DEC_DICTIONARY = “DECODING_DICTIONRY”;
!   $CFG_DEC_LM = “DECODING_LANGUAGE_MODEL”;

Feature
Extraction CI Model CD Model CMLLR

SAT

!   SAT (speaker adaptive training)
!   Train a better speaker independent system
!   Apply CMLLR transforms to training features
!   Re-estimate the CMLLR transforms every iteration

!   In Sphinx
!   SAT is applied after training a fairly good ML/MMI model
!   Need to split the training control and reference files into smaller files for

each speaker (make_speaker_lists.py)

!   Settings:
!   $CFG_SAT_DIR = “$CFG_BASE_DIR/sat”;

Feature
Extraction CI Model CD Model SAT

MLLR

!  MLLR (maximum likelihood linear regression)
!  Another speaker adaptation algorithm

!  Adjust mean and/or covariance to maximize the likelihood of the adaptation data

!  In Sphinx
!  Adapt mean in default

!  Could also adapt covariance

!  Use a single global transform for all models

!  Could have multiple transforms for different classes of models

!  Settings
!  Applied during decoding

!  Get hypotheses of the testing data from the first pass decoding

!  Using those hypotheses and testing data to estimate transforms and update model parameters
!  During bw run, must set “-2passvar no”

!  Decode again using the adapted model

!  It’s the same procedure when we apply CMLLR/VTLN in decoding

Feature
Extraction CI Model CD Model MLLR

Overall System Framework

Feature
Extraction

LDA-MLLT
Force

Alignment
VTLN
Train

CI Model CD Model MMI SAT

CMLLR VTLN Test MLLR

Data

Training Testing LM

WSJ0 15-hour
Nov. 92

5k and 20k Dev/Eval
standard Trigram

WSJ0+1 82-hour

BN 138-hour HUB4-96 Dev/Eval
(with data in all different environments)

Trigram from BN 92-97
LM data

Mandarin BN 128-hour RT04-Eval
Trigram from Chinese

Gigaword

Baseline Settings
!   Force Alignment

!   Could use multiple-Gaussian CI model
!   A little bit better, more computation

!   Linguistic Questions
!   If available
!   Or use auto-generated questions

!   Decoding
!   lw=11.5, beam=1e-100, wbeam=1e-80, wip=0.2

!   Mixtures and States
!   WSJ0: 16 mixtures, 2000 tied-states
!   WSJ0+1: 32 mixtures, 4000 tied-states
!   BN: 32 mixtures, 5000 tied-states
!   Mandarin: 32 mixtures, 4000 tied-states

Baseline Results

Data
WER (%)

Dev Eval

WSJ0
7.62 (5k)

12.84 (20k)
6.85 (5k)

11.69 (20k)

WSJ0+1
5.50 (5k)
9.80 (20k)

4.18 (5k)
7.78 (20k)

BN 32.98 32.85

Mandarin ----- 25.35

LDA-MLLT Results

0

5

10

15

05K 20K

32.5

33

33.5

Dev Eval

0

5

10

05K 20K

24

25

26

27

Eval

Baseline
LDA-MLLT

WSJ0 WSJ0+1

BN Mandarin

19%

13%
4%

5%

-0.4%
-1% -5%

Comment: may work better on simple tasks with high quality data,
but others (Joao Miranda) had tried it on noisy data, which also
helped a lot. It works on telephone conversation tasks too.

VTLN Results

31

32

33

34

Dev Eval

0

5

10

05K 20K

24
24.5

25
25.5

26

Eval

Baseline

VTLN

0

5

10

15

05K 20K

WSJ0 WSJ0+1

BN Mandarin

VTLN Train & Test

VTLN Test Only

6%

10%

4%

1%

3%
0.1%

3%

To be noticed:
•  the red numbers in the graph is the relative improvement over the baseline
•  to have a graph without too many bars, the WSJ 5K/20K results are the average of the
the Dev and Eval results

For BN and Mandarin, VTLN is
only applied during decoding, as
it was found the performance was
worse when applying VTLN in
both training and decoding

MMI Results

0

5

10

15

05K 20K

31

32

33

34

Devel Eval

0

5

10

05K 20K

23

24

25

26

Eval

Baseline

MMIE

WSJ0 WSJ0+1

BN Mandarin

1%

3%
6%

4%

3% 3% 5%

Comment: the results are not as good as I got from the lattice pruning
experiments, where I used smaller lattices; try smaller beam widths when generate
lattices, such as $beam = $wbeam = 1e-70, should be better and faster. Also try to
use a bigram instead of unigram when generating lattices.

MLLR Results

0

5

10

15

05K 20K

31

32

33

Dev Eval

0

5

10

05K 20K

22
23
24
25
26

Eval

Baseline

MLLR

WSJ0 WSJ0+1

BN Mandarin

20%
18%

15%

11%

3%

2%
6%

Comment: works pretty good especially when the first path
hypotheses are accurate; could use the second path hypotheses train
a better transform and iteratively do it to get the best number

CMLLR Results

0

5

10

15

05K 20K

28

30

32

34

Dev Eval

0

5

10

05K 20K

22
23
24
25
26

Eval

Baseline

CMLLR

21%
21%

17%

13%

6% 6% 7%

WSJ0 WSJ0+1

BN Mandarin

Comment: has similar performance as MLLR, slightly better in BN

SAT Results

0

5

10

15

05K 20K

Baseline

CMLLR

SAT

0

5

10

05K 20K

Baseline

CMLLR

SAT

WSJ0

WSJ0+1

29%

28%

22%

23%

Comment: SAT + CMLLR decoding is very effective, which usually gives
10% improvement over CMLLR decoding only. When estimating CMLLR
transform, it’s better to start from a very good hypothesis such as the
CMLLR+MLLR decoding result.

Here the number is relative
improvement of SAT+CMLLR
over baseline

VTLN + MLLR Results

0

5

10

05K 20K

30
31
32
33
34

Dev Eval

0

5

10

15

05K 20K

22
23
24
25
26

Eval

Baseline

VTLN

MLLR

VTLN+MLLR

WSJ0 WSJ0+1

BN Mandarin

19%
20%

17%

15%

4%
2% 7%

Comment: the improvement is additive, but quite small compared to
perform MLLR only

Here the number is relative
improvement of VTLN+MLLR over
baseline

CMLLR+MLLR Results

0

5

10

15

05K 20K

28

30

32

34

Dev Eval

0

5

10

05K 20K

20

22

24

26

Eval

Baseline

CMLLR

MLLR

10% 7% 7%

27%
27%

24%

18%
WSJ0 WSJ0+1

BN Mandarin

Here the number is relative
improvement of CMLLR
+MLLR over baseline

Comment: CMLLR+MLLR further improves the WER!

LDA-MLLT + MMI Result

0

5

10

15

05K 20K

0

5

10

05K 20K

30

32

34

Dev Eval

22

24

26

28

Eval

Baseline

LDA-MLLT

MMIE

LDA-MLLT
+MMIE

WSJ0 WSJ0+1

21%

15%
11%

7%

Comment: MMIE gives solid improvement over LDA-MLLT
(compare the 2nd bar and the 4th bar)

Here the number is relative
improvement of LDA-MLLT
+MMI over baseline

BN Mandarin

5%
3%

Summary
!   LDA-MLLT

!   works pretty good on simple tasks with clear speech, not clear on hard tasks with noisy
speech, needs more investigation

!   VTLN
!   produces some improvement

!   MMIE
!   produces ok/good improvement
!   requires large amount computation

!   CMLLR
!   works pretty good, especially when first path hypotheses are very accurate

!   MLLR
!   works similar to CMLLR

!   SAT
!   produces solid improvement

Still Missing

!   Better discriminative training technique
!   boosted-MMI

!   Deep Neutral Network
!   Bottle Neck Feature (easier to adapt)

!   Hybrid Model (more improvement)

