Sphinx Benchmark Report

Long Qin

Language Technologies Institute School of Computer Science Carnegie Mellon University

Overview

- O Evaluate general training and testing schemes
 - O LDA-MLLT, VTLN, MMI, SAT, MLLR, CMLLR
- O Use default setup and existing tools
 - O SphinxTrain-0.8, Sphinx3
- O Focus on WER, running time was not measured
 - Experiments were performed on different server machines, it's not easy to directly compare the xRT
- O Test on different data
 - O Easy task (WSJ) vs. broadcast news
 - English vs. Mandarin

Outline

- O The baseline training scheme
- O LDA-MLLT
- O VTLN
- o MMI
- O SAT
- O CMLLR
- O MLLR
- O Experiments
- O Discussion

Baseline Training Scheme

13-MFCC with Delta and Delta-Delta

Triphone model
3-state HMM
GMM observation distribution

Feature Extraction

CI Model

CD Model

Monophone model
3-state HMM
1-Gaussian or GMM
observation distribution

Decision tree clustering with auto-generated questions
A few thousand states

Force Alignment

- Force Alignment
 - Find the best alignment between speech and corresponding HMMs
- O Goal
 - Possibly remove utterances with transcription errors or low quality recordings
 - Find appropriate pronunciations for words with multiple pronunciations
- Settings
 - \$ \$CFG_FORCEDALIGN = "yes";
 - \$CFG_FORCE_ALIGN_BEAM = 1e-60;
 - \$CFG_FALIGN_CI_MGAU = "yes"/"no";

LDA-MLLT

- O LDA (linear discriminant analysis)
 - O Find a linear transform of feature vector, so that class separation is maximized
 - Reduce feature dimension
- MLLT (maximum likelihood linear transform)
 - Minimize the loss of likelihood between full and diagonal variance model
 - Applied together with LDA
- O In Sphinx
 - O Each Gaussian is considered as one class
 - Easier to implement
 - O Could also define state or phone as class
- Settings:
 - \$CFG_LDA_MLLT = "yes";
 - \$CFG_LDA_DIMENSION = 29;

VTLN

- O VTLN (vocal tract length normalization)
 - Formant frequency is considered to have a linear relationship with the vocal tract length
 - Adjust vocal tract length for each speaker to an average length by warping their spectra
 - The warping factor:

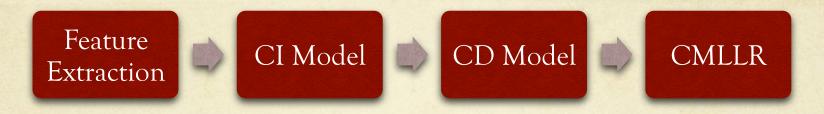
$$\lambda = \operatorname{arg\,max} P(O \mid X, \lambda_k)$$

- O In Sphinx
 - O Warping factor is estimated for each utterance using exhaust search
 - O Could also estimate identical warping factor for each speaker
 - O Warping factor should be estimated in both training and decoding
- O Settings:
 - \$CFG_VTLN = 'yes';
 - \$CFG_VTLN_START = 0.70;
 - \$CFG VTLN END = 1.40;
 - \$CFG VTLN STEP = 0.05;

MMI

- MMI (maximum mutual information)
 - A discriminative training algorithm
 - Maximize the posterior probability of the true hypothesis
 - Training is time consuming
- O Settings:
 - \$CFG_MMIE_MAX_ITERATIONS = 4;
 - \$CFG_MMIE_CONSTE = "3.0";
 - \$CFG_LANGUAGEWEIGHT = "11.5";
 - O The same as the language weight used in decoding
 - \$CFG_LANGUAGEMODEL = "LMFILE";
 - O A unigram or bigram LM

CMLLR



- O CMLLR (constraint maximum likelihood linear regression)
 - A speaker adaptation algorithm to modify speaker independent system towards new speaker using limited data
 - O Use the same transform for both mean and variance, therefore usually require less data then MLLR
 - Could be formulated as a linear transform of input features

O In Sphinx

- O Use a single global transform to adapt the input features for each speaker
- When accumulate counts, run BW with "-fullvar yes", "-2passvar no" and "-cmllrdump yes"

O Settings:

- \$CFG_DEC_DICTIONARY = "DECODING_DICTIONRY";
- \$CFG_DEC_LM = "DECODING_LANGUAGE_MODEL";

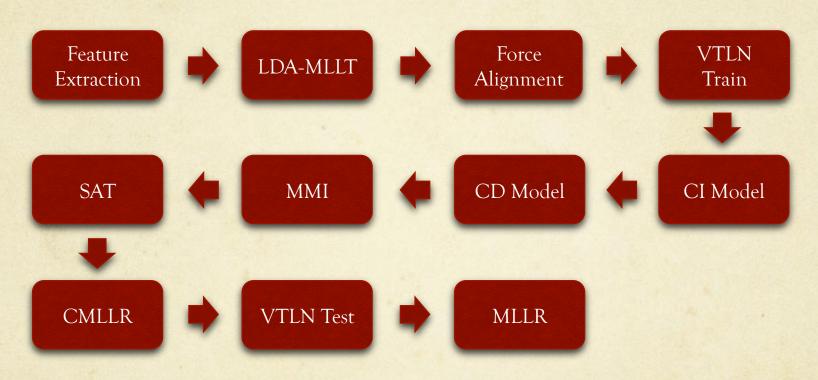
SAT

- O SAT (speaker adaptive training)
 - O Train a better speaker independent system
 - Apply CMLLR transforms to training features
 - Re-estimate the CMLLR transforms every iteration
- O In Sphinx
 - O SAT is applied after training a fairly good ML/MMI model
 - Need to split the training control and reference files into smaller files for each speaker (make_speaker_lists.py)
- O Settings:
 - \$CFG_SAT_DIR = "\$CFG_BASE_DIR/sat";

MLLR

- O MLLR (maximum likelihood linear regression)
 - Another speaker adaptation algorithm
 - Adjust mean and/or covariance to maximize the likelihood of the adaptation data
- O In Sphinx
 - Adapt mean in default
 - O Could also adapt covariance
 - O Use a single global transform for all models
 - O Could have multiple transforms for different classes of models
- Settings
 - Applied during decoding
 - O Get hypotheses of the testing data from the first pass decoding
 - O Using those hypotheses and testing data to estimate transforms and update model parameters
 - O During bw run, must set "-2passvar no"
 - O Decode again using the adapted model
 - O It's the same procedure when we apply CMLLR/VTLN in decoding

Overall System Framework



Data

Training		Testing	LM
WSJ0	15-hour	Nov. 92 5k and 20k Dev/Eval	standard Trigram
WSJ0+1	82-hour		
BN	138-hour	HUB4-96 Dev/Eval (with data in all different environments)	Trigram from BN 92-97 LM data
Mandarin BN	128-hour	RT04-Eval	Trigram from Chinese Gigaword

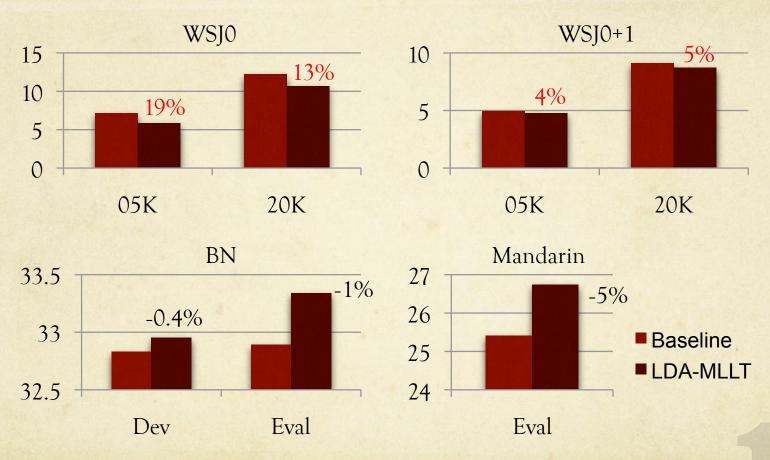
Baseline Settings

- O Force Alignment
 - O Could use multiple-Gaussian CI model
 - A little bit better, more computation
- C Linguistic Questions
 - If available
 - Or use auto-generated questions
- O Decoding
 - 0 lw=11.5, beam=1e-100, wbeam=1e-80, wip=0.2
- Mixtures and States
 - O WSJ0: 16 mixtures, 2000 tied-states
 - O WSJ0+1: 32 mixtures, 4000 tied-states
 - O BN: 32 mixtures, 5000 tied-states
 - Mandarin: 32 mixtures, 4000 tied-states

Baseline Results

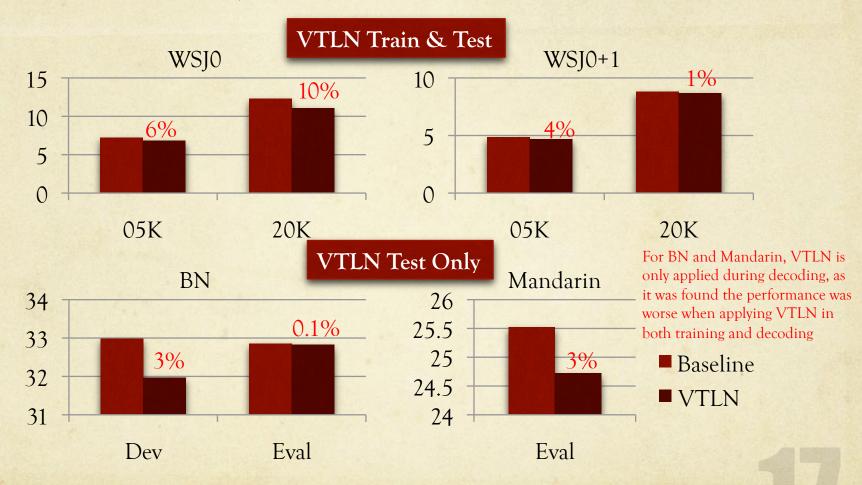
	WER (%)		
Data	Dev	Eval	
WSJO	7.62 (5k) 12.84 (20k)	6.85 (5k) 11.69 (20k)	
WSJ0+1	5.50 (5k) 9.80 (20k)	4.18 (5k) 7.78 (20k)	
BN	32.98	32.85	
Mandarin		25.35	

LDA-MLLT Results



Comment: may work better on simple tasks with high quality data, but others (Joao Miranda) had tried it on noisy data, which also helped a lot. It works on telephone conversation tasks too.

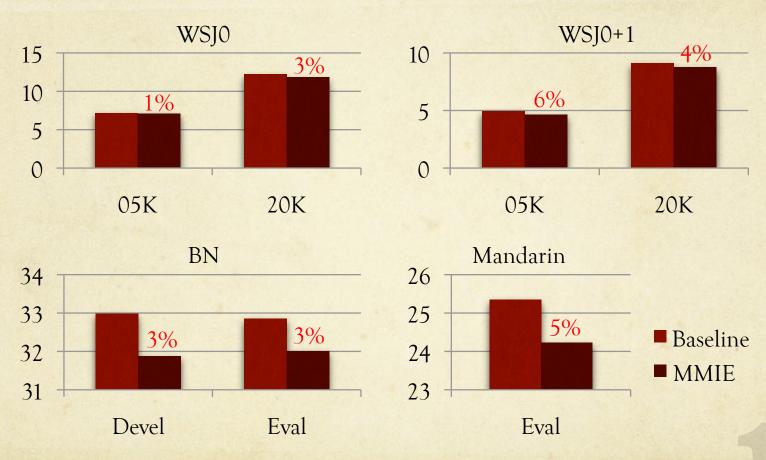
VTLN Results



To be noticed:

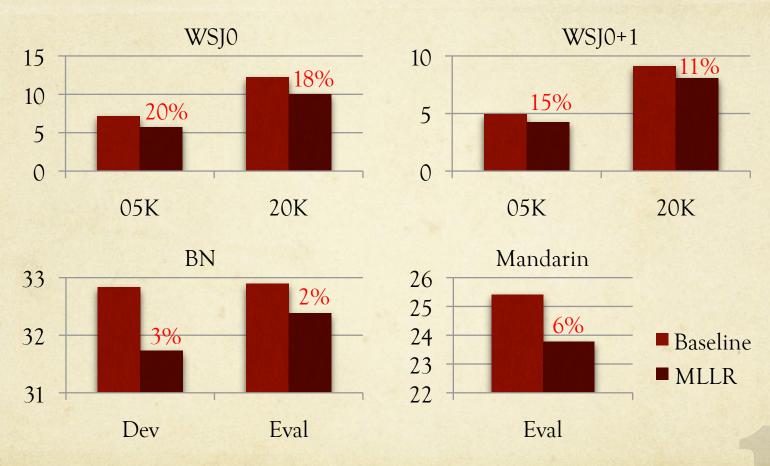
- the red numbers in the graph is the relative improvement over the baseline
- to have a graph without too many bars, the WSJ 5K/20K results are the average of the the Dev and Eval results

MMI Results



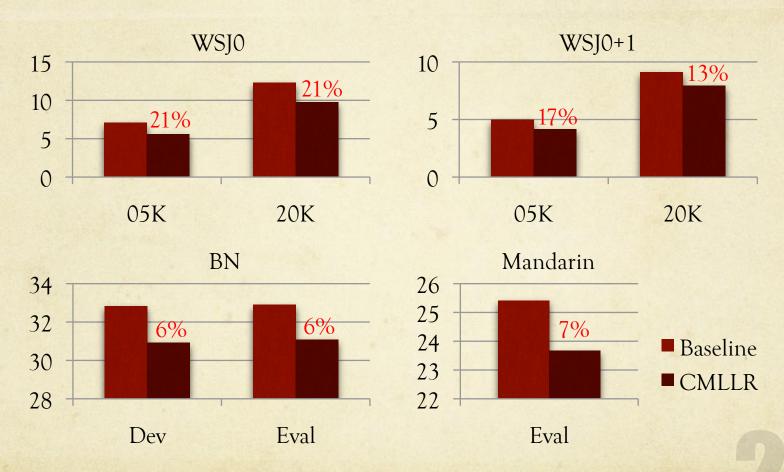
Comment: the results are not as good as I got from the lattice pruning experiments, where I used smaller lattices; try smaller beam widths when generate lattices, such as \$beam = \$wbeam = 1e-70, should be better and faster. Also try to use a bigram instead of unigram when generating lattices.

MLLR Results



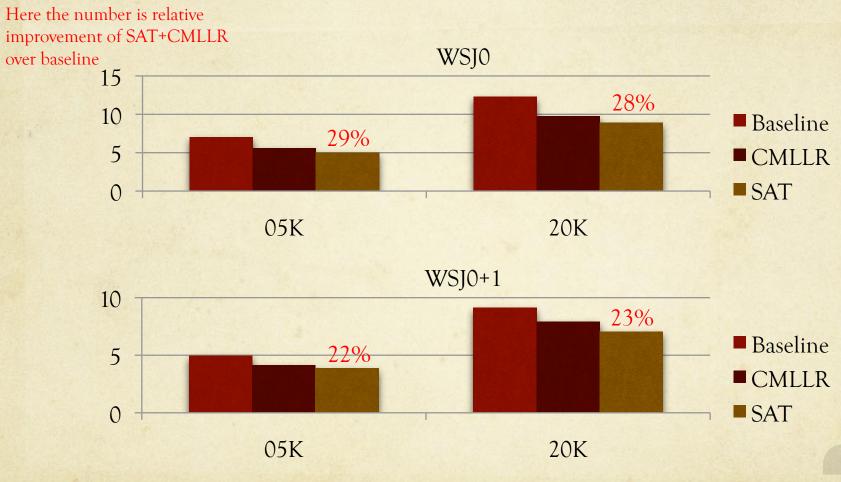
Comment: works pretty good especially when the first path hypotheses are accurate; could use the second path hypotheses train a better transform and iteratively do it to get the best number

CMLLR Results



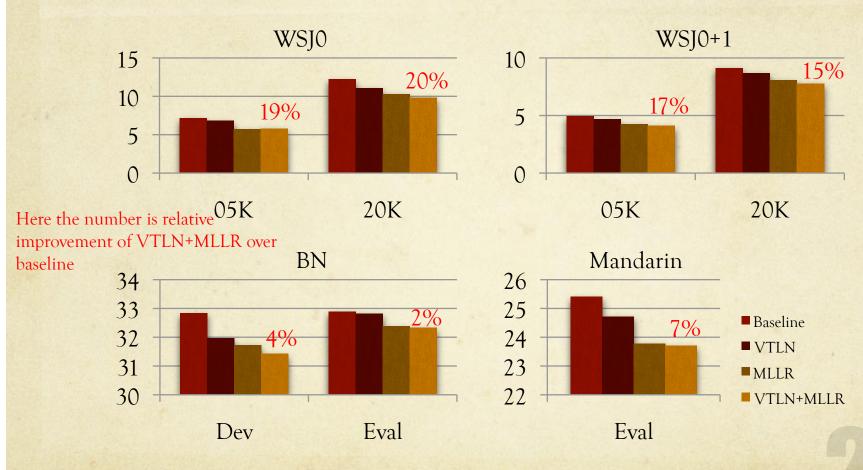
Comment: has similar performance as MLLR, slightly better in BN

SAT Results



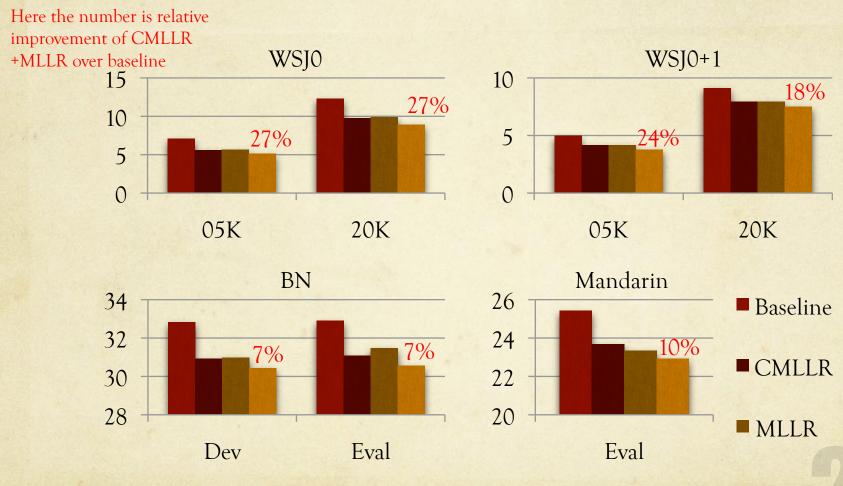
Comment: SAT + CMLLR decoding is very effective, which usually gives 10% improvement over CMLLR decoding only. When estimating CMLLR transform, it's better to start from a very good hypothesis such as the CMLLR+MLLR decoding result.

VTLN + MLLR Results



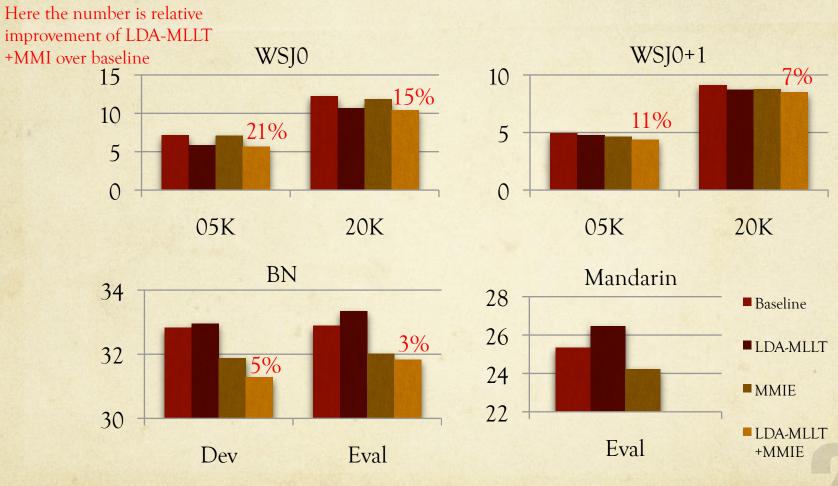
Comment: the improvement is additive, but quite small compared to perform MLLR only

CMLLR+MLLR Results



Comment: CMLLR+MLLR further improves the WER!

LDA-MLLT + MMI Result



Comment: MMIE gives solid improvement over LDA-MLLT (compare the 2nd bar and the 4th bar)

Summary

- O LDA-MLLT
 - o works pretty good on simple tasks with clear speech, not clear on hard tasks with noisy speech, needs more investigation
- O VTLN
 - o produces some improvement
- O MMIE
 - o produces ok/good improvement
 - o requires large amount computation
- O CMLLR
 - o works pretty good, especially when first path hypotheses are very accurate
- O MLLR
 - o works similar to CMLLR
- O SAT
 - o produces solid improvement

Still Missing

- O Better discriminative training technique
 - O boosted-MMI
- O Deep Neutral Network
 - O Bottle Neck Feature (easier to adapt)
 - O Hybrid Model (more improvement)