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Abstract

Dynamic Bayesian networks (DBNs) are a useful tool
for representing complex stochastic processes. Recent
developments in inference and learning in DBNs allow
their use in real-world applications. In this paper, we
apply DBNs to the problem of speech recognition. The
factored state representation enabled by DBNs allows
us to explicitly represent long-term articulatory and
acoustic context in addition to the phonetic-state infor-
mation maintained by hidden Markov models (HMMs).
Furthermore, it enables us to model the short-term cor-
relations among multiple observation streams within
single time-frames. Given a DBN structure capable of
representing these long- and short-term correlations,
we applied the EM algorithm to learn models with up
to 500,000 parameters. The use of structured DBN
models decreased the error rate by 12 to 29% on a
large-vocabulary isolated-word recognition task, com-
pared to a discrete HMM; it also improved significantly
on other published results for the same task. This
is the first successful application of DBNs to a large-
scale speech recognition problem. Investigation of the
learned models indicates that the hidden state variables
are strongly correlated with acoustic properties of the
speech signal.

Introduction

Over the last twenty years, probabilistic models have
emerged as the method of choice for large-scale speech
recognition tasks in two dominant forms: hidden
Markov models (Rabiner & Juang 1993), and neu-
ral networks with explicitly probabilistic interpreta-
tions (Bourlard & Morgan 1994; Robinson & Fallside
1991). Despite numerous successes in both isolated-
word recognition and continuous speech recognition,
both methodologies suffer from important deficiencies.
HMMs use a single state variable to encode all state
information; typically, just the identity of the current
phonetic unit. Neural networks occupy the opposite
end of the spectrum, and use hundreds or thousands of
hidden units that often have little or no intuitive mean-
ing.
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Our work is motivated by the desire to explore prob-
abilistic models that are expressed in terms of a rich yet
well-defined set of variables, and dynamic Bayesian net-
works provide the ideal framework for this task: with
a single set of formulae expressed in a single program,
probabilistic models over arbitrary sets of variables can
be expressed and computationally tested. By decom-
posing the state information into a set of variables,
DBNs require fewer parameters than HMMs to repre-
sent the same amount of information. In the context of
speech modeling, DBNs provide a convenient method
for defining models that maintain an explicit represen-
tation of the lips, tongue, jaw, and other speech artic-
ulators as they change over time. Such models can be
expected to model the speech generation process more
accurately than conventional systems. One particu-
larly important consequence of including an articula-
tory model is that it can handle coarticulation effects.
One of the main reasons these occur is that the iner-
tia of the speech articulators which 1s acquired in the
generation of one sound modifies the pronunciation of
following sounds. In addition, DBNs are able to model
the correlations among multiple acoustic features at a
single point in time in a way that has not previously
been exploited in discrete-observation HMMs.

We have implemented a general system for doing
speech recognition in the Bayesian network framework,
including methods for representing speech models, ef-
ficient inference methods for computing probabilities
within these models, and efficient learning algorithms
for training the DBN model parameters from obser-
vations. The system has been tested on a large-
vocabulary isolated-word recognition task. We found
that a large improvement results from modeling cor-
relations among acoustic features within a single time
frame. A further increase results from modeling the
temporal correlations among acoustic features across
time frames. Analysis of the learned parameters shows
that the two kinds of models capture different aspects
of the speech process.

Problem Background

The task of a statistical speech recognition system
is to learn a parametric model from a large body of



training data, and then to use the model to recognize
the words in previously unheard utterances. Since the
number of words in a natural language is large, it is
impossible to learn a specific model for every word. In-
stead, words are expressed in terms of a small number
of stereotypical atomic sounds or phonemes—English,
for example, is often modeled in terms of 40 to 60
phonemes. Models for each phoneme are learned, and
whole-word models are created by concatenating the
models of the word’s constituent phonemes. So, for
example, the word “cat” might have the phonetic tran-
scription /k ae t/.

In order to model coarticulatory effects, expanded
phonetic alphabets are often used, in which there 1s
a unique symbol for each phoneme in the context of
surrounding phonemes. In left-context biphone alpha-
bets, there is a phonetic unit for each phoneme in the
left-context of every possible preceding phoneme. In
right-context biphone alphabets, there is a unit for each
phoneme in the right-context of every possible follow-
ing phoneme. Triphone modeling is a particularly com-
mon scheme in which there is a unit for each phoneme
in the context of all possible preceding and following
phonemes. The phonetic units found in these (and
other) alphabets are often referred to as phones. The-
oretically, the use of biphones squares the number of
atomic units, and the use of triphones cubes the num-
ber; in practice, only the commonly occurring combi-
nations are modeled.

It is often beneficial to break each phonetic unit into
two or more substates. In a two-state-per-phone sys-
tem, for example, each phone is broken into an initial
sound and a final sound, thus doubling the total number
of phonetic units.

Whatever the precise form of the phonetic alphabet,
the training data consists of a collection of utterances,
each of which has an associated phonetic transcription.
Each utterance is broken into a sequence of overlapping
time frames, and the sound is processed to generate the
acoustic features o1,09,...,0,. One or more acoustic
features may be extracted from each frame, and we use
the notation o; to refer to the features extracted from
the ith frame regardless of number. A phonetic tran-
scription or word model, M, is also associated with each
utterance.

Statistical Speech Recognition

The main goal of a statistical speech recognition sys-
tem is to estimate the probability of a word model M
given a sequence of acoustic observations o. (We focus
on isolated word recognition, and the results generalize
to connected word recognition.) This can be rewritten
with Bayes’ rule as: P(M|o) = %' This s
desirable because it decomposes the problem into two
subproblems: P(M) can be estimated from a language
model that specifies the probability of the occurrence of
different words, and P(o|M) can be estimated with a
model that describes how sounds are generated. Since
P(o) is a constant with respect to word models, dif-

ferent models M; can be compared by computing just
P(o|M;)P(M;). Computation of P(M) is straightfor-
ward in the case of isolated words, and we focus on
the estimation of P(o|M), i.e., the probability of the
observation sequence given the word.

This probability distribution is not usually estimated
directly. Instead, statistical models typically use a col-
lection of hidden state variables s, which are intended
to represent the state of the speech generation process
over time. Thus we have

P(o|M) =" P(o,s|M)

In addition, the observation generated at any point is
usually assumed to depend only on the state of the pro-
cess, so we have

P(o|M) =" P(s|M)P(ols)

We refer to the specification of P(s|M) as the pronun-
ciation model, and to the specification of P(ols) as the
acoustic model.

HMDMs

A hidden Markov Model is a simple representation of
a stochastic process of the kind described above. The
hidden state of the process is represented by a single
state variable s; at each point in time, and the observa-
tion is represented by an observation variable o; (Fig-
ure 1). Furthermore, a Markovian assumption is made,
so that we can decompose the probability over the state
sequence as follows (leaving implicit the dependence on

M):
P(o,s) = P(s1)P(01]s1) H P(s;]si-1)P(0s]si)

In the case of speech, the state variable is usually iden-
tified with the phonetic state, i.e., the current phone
being uttered. Thus, the pronunciation model is con-
tained in the probability distribution P(s;|s;—1, M)
which designates the transition probabilities among
phones, and consequently the distribution over phone
sequences for a particular word. The acoustic model
is the probability distribution P(ols), and is indepen-
dent of the particular word. Both of these models are
assumed independent of time.

The conditional probability parameters in HMMs are
usually estimated by maximizing the likelithood of the
observations using the EM algorithm. Once trained, the
HMM is used to recognize words by computing P(o|M;)
for each word model M;. For details, the reader is re-
ferred to (Rabiner & Juang 1993).

In this paper, we will be concerned with discrete ob-
servation variables, which can be created from the ac-
tual signal by the process of vector quantization (Ra-
biner & Juang 1993). In order to allow for a wide range
of sounds, it is common to generate several discrete ob-
servation variables o] at each point in time, each of
which has a fairly small range (say 256 values). To
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Figure 1: A DBN representation of an HMM. There is
a distinct state and observation variable at each point
in time. A node in the graph represents a variable,
and the arcs leading into a node specify the variables
on which it is conditionally dependent. A valid assign-
ment of values to the state variables for the word “no”
is shown. Observation variables are shaded. This sim-
ple picture ignores the issues of parameter tying and
phonetic transcriptions.

keep the number of parameters manageable with these
multiple observation streams, a further conditional in-
dependence assumption is typically made (Lee 1989):

P(ojs;) = HP(Oﬂév)

Bayesian Networks

A Bayesian network is a general way of representing
joint probability distributions with the chain rule and
conditional independence assumptions. The advantage
of the Bayesian network framework over HMMs is that
it allows for an arbitrary set of hidden variables s, with
arbitrary conditional independence assumptions. If the
conditional independence assumptions result in a sparse
network, this may result in an exponential decrease
in the number of parameters required to represent a
probability distribution. Often there is a concomi-
tant decrease in the computational load (Smyth, Heck-
erman, & Jordan 1997; Ghahramani & Jordan 1997;
Russell et al. 1995).

More precisely, a Bayesian network represents a prob-
ability distribution over a set of random variables V =
Vi,..Vn. The variables are connected by a directed
acyclic graph whose arcs specify conditional indepen-
dence among the variables, such that the joint distribu-
tion is given by

P(v1,...,v,) = HP(vi|Parent5(Vi))

where Parents(V;) are the parents of V; in the graph.
The required conditional probabilities may be stored
either in tabular form or with a functional representa-
tion. Figure 1 shows an HMM represented as a Bayesian
network. Although tabular representations of condi-
tional probabilities are particularly easy to work with,
it 1s straightforward to model observation probabilities
with mixtures of Gaussians, as is often done in HMM
systems.

When the variables represent a temporal sequence
and are thus ordered in time, the resulting Bayesian
network is referred to as a dynamic Bayesian network
(DBN) (Dean & Kanazawa 1989). These networks
maintain values for a set of variables X; at each point
in time. Xj; represents the value of the ith variable at
time j. These variables are partitioned into equivalence
sets that share time-invariant conditional probabilities.

Bayesian Network Algorithms. As with HMMs,
there are standard algorithms for computing with
Bayesian networks. In our implementation, the prob-
ability of a set of observations is computed using an
algorithm derived from (Peot & Shachter 1991). Condi-
tional probabilities can be learned using gradient meth-
ods (Russell et al. 1995) or EM (Lauritzen 1995). We
have adapted these algorithms for dynamic Bayesian
networks, using special techniques to handle the deter-
ministic variables that are a key feature of our speech
models (see below). A full treatment of these algo-
rithms can be found in (Zweig 1998).

DBNs and Speech Recognition

Like HMMs, our DBN speech models also decompose
into a pronunciation model and an acoustic model.
However, our acoustic model includes additional state
variables that we will call “articulatory context” vari-
ables; the intent is that these may capture the state of
the articulatory apparatus of the speaker, although this
will not be the case in all of our models. These variables
can depend on both the current phonetic state and the
previous articulatory context. Mathematically, this can
be expressed by partitioning the set of hidden variables
into phonetic and articulatory subsets: & = Q U A.
Then, P(o,s|M) = P(o,q,a|M) = P(q|M)P(o,alq).
The Bayesian network structure can be thought of as
consisting of two layers: one that models P(q|M), and
one that models P(o,alq). Figure 2 illustrates a DBN
structured for speech recognition in this manner. In
the following two sections, we discuss the pronuncia-
tion model and acoustic model in turn.

Pronunciation Model. In (Zweig & Russell 1997;
Zweig 1998), it is shown that the DBN model struc-
ture we use can represent any distribution over phone
sequences that can be represented by an HMM. For the
purposes of simplifying the presentation in this paper,
we will make two additional assumptions. The first 1s
that each word model consists of a linear sequence of
phonetic units; so, for example, “cat” i1s assumed al-
ways to be pronounced /k ae t/ without any variation
in the phonetic units present or their order. The second
assumption concerns the average durations of phones,
and is that the probability that there is a transition be-
tween two consecutive phones ¢; and g2 1s given by a
phone-dependent transition probability, #,, .

The index node in Figure 2 keeps track of the posi-
tion in the phonetic transcription; all words go through
the same sequence of values 1,2,...,k where k 1s the
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Figure 2: A DBN for speech recognition. The index, transition, phone, and end-of-word variables encode a probability
distribution over phonetic sequences. The context and observation variables encode a distribution over observations,
conditioned on phonetic sequence. A valid set of variable assignments is indicated for the word “no.” In this picture,
the context variable represents nasalization. The vowel /o/ is not usually nasalized, but in this case coarticulation

causes nasalization of its first occurrence.

number of phonetic units in the transcription. An as-
signment of values to the index variables specifies a
time-alignment of the phonetic transcription to the ob-
servations. For a specific pronunciation model, there 1s
a deterministic mapping from the index of the phonetic
unit to the actual phonetic value, which is represented
by the phone variable. This mapping is specified on a
word-by-word basis. There is a binary transition vari-
able that is conditioned on the phonetic unit. When
the transition value is 1, the index value increases by 1,
which can be encoded with the appropriate conditional
probabilities.

The distinction between phonetic index and phonetic
value is required for parameter tying. For example, con-
sider the word “digit” with the phonetic transcription
/d ih jh ih t/. The first /ih/ must be followed by /jh/,
and the second /ih/ must be followed by /t/; thus there
must be a distinction between the two phone occur-
rences. On the other hand, the probability distribution
over acoustic emissions should be the same for the two
occurrences; thus there should not be a distinction. It is
impossible to satisfy these constraints with a single set
of conditional probabilities that refers only to phonetic
values or index values.

The conditional probabilities associated with the in-
dex variables are constrained so that the index value be-
gins at 1 and then must either stay the same or increase
by 1 at each time step. A dummy end-of-word observa-
tion is used to ensure that all sequences with non-zero
probability end with a transition out of the last phonetic
unit. This binary variable is “observed” to have value 1,
and the conditional probabilities of this variable are ad-
justed so that P(EOW = l|index = last,transition =
1) = 1, and the probability that EFOW = 1 is 0 in
all other cases. Conditioning on the transition variable
ensures an unbiased distribution over durations for the
last phonetic unit.

In Figure 2, deterministic variables are labeled. Tak-
ing advantage of the deterministic relationships is cru-
cial for efficient inference.

Acoustic Model. The reason for using a DBN is that
it allows the hidden state to be factored in an arbi-
trary way. This enables several approaches to acoustic
modeling that are awkward with conventional HMMs.
The simplest approach is to augment the phonetic
state variable with one or more variables that repre-
sent articulatory-acoustic context. This is the structure
shown in Figure 2.

The context variable serves two purposes, one dealing
with long-term correlations among observations across
time-frames, and the other with short-term correlations
within a time-frame. The first purpose is to model vari-
ations in phonetic pronunciation due to coarticulatory
effects. For example, if the context variable represents
nasalization, it can capture the coarticulatory nasaliza-
tion of vowels. Depending on the level of detail desired,
multiple context variables can be used to represent dif-
ferent articulatory features. Model semantics can be
enforced with statistical priors, or by training with data
in which the articulator positions are known.

The second purpose is to model correlations among
multiple vector-quantized observations within a single
time-frame. While directly modeling the correlations
requires a prohibitive number of parameters, an auxil-
iary variable can parsimoniously capture the most im-
portant effects.

Network Structures Tested. In our experiments,
we tested networks that varied only in the acoustic
model. All the DBN variants had a single binary con-
text variable, and differed in the conditional indepen-
dence assumptions made about this variable. We used
the following model structures (see Figure 3):

1. An “articulator” network in which the context vari-
able depends on both the phonetic state and its
own past value. This can directly represent phone-
dependent articulatory target positions and inertial
constraints.
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Figure 3: Acoustic models for the networks tested.
Three acoustic observations were made in each time
frame. The dotted arcs represent links to the previous
time frame.

2. A “chain” network in which the phonetic dependence
is removed. This structure can directly represent
phone-independent temporal correlations.

3. A “phone-dependent-correlation” network (PD-
Correlation) which results from removing the tem-
poral links from the articulator network. This can
directly model phone-dependent intra-frame correla-
tions among multiple acoustic features.

4. A “correlation” network which further removes the
phonetic dependence. This is only capable of model-
ing intra-frame observation correlations in the most
basic way.

The articulator network was initialized to reflect voic-
ing, and the chain network to reflect temporal continu-
ity.

Experimental Results
Database and Task

As a test-bed, we selected the Phonebook database, a
large-vocabulary, isolated-word database compiled by
researchers at NYNEX (Pitrelli et al. 1995). The
words were chosen with the goal of “incorporating all
phonemes in as many segmental /stress contexts as are
likely to produce coarticulatory variations, while also
spanning a variety of talkers and telephone transmis-
sion characteristics.” These characteristics make it a
challenging data set.

The data was processed in 25ms windows to generate
10 mel-frequency cepstral coefficients (MFCCs) (Davis
& Mermelstein 1980) and their derivatives every 8.4ms.
MFCCs are generated by computing the power spec-
trum with an FFT; then the total energy in 20 different
frequency ranges is computed. The cosine transform of
the logarithm of the filterbank outputs is computed,
and the low-order coefficients constitute the MFCCs.

MFCCs represent the shape of the short-term power
spectrum in a manner inspired by the human auditory
system.

The MFCCs were vector-quantized using a size-256
codebook. Their derivatives were quantized in a second
codebook. The Cy and delta-Cy coefficients were quan-
tized separately with size-16 codebooks, and concate-
nated to form a third 256-valued data stream. We per-
formed mean-cepstral subtraction for C7 through Ciy,
and speaker normalization for Cyy (Lee 1989). The effect
of mean-cepstral subtraction is to remove the transmis-
sion characteristics of telephone lines. Speaker normal-
ization scales Cy to the overall power level of a speaker
by subtracting the maximum value, so that the result-
ing values can be compared across utterances.

We experimented with DBN models using both
context-independent and context-dependent phonetic
units. In both cases, we started from the phonetic
transcriptions provided with Phonebook, ignoring the
stressed /unstressed distinction for vowels.

In the case of context-independent units, 1.e., sim-
ple phonemes, we used four distinct states for each
phoneme: an initial and final state, and two interior
states.

To generate the context-dependent transcriptions, we
replaced each phoneme with two new phonetic units:
one representing the beginning of the phoneme in the
left-context of the preceding phoneme, and one repre-
senting the end of the phoneme in the right-context of
the following unit. For example, the /ae/ in /k ae t/ be-
comes /(k — ae) (ae —t)/. To prevent the proliferation
of phonetic units, we did not use context-dependent
units that were seen fewer than a threshold number
of times in the training data. If a context-dependent
unit was not available, we used a context-independent
phoneme-initial or phoneme-final unit instead. Finally,
we found it beneficial to repeat the occurrence of each
unit twice. Thus, each phoneme in the original tran-
scription was broken into a total of four substates, com-
parable to context-independent phonemes. The effect of
doubling the number of occurrences of a phonetic unit
is to increase the minimum and expected durations in
that state.

We report results for two context-dependent phonetic
alphabets: one in which units occurring at least 250
times in the training data were used, and one in which
units occurring at least 125 times were used. In both
cases, the alphabet also contained context-independent
units for the initial and final segments of each of the
original phonemes. The two alphabets contained 336
and 666 units respectively. Thus the number of pa-
rameters in the first case 1s comparable to the context-
independent-alphabet system with an auxiliary vari-
able; the number of parameters in the second case 1s
comparable to the number that arises when an aux-
iliary variable is added to the first context-dependent
system.

Note that the notion of context in the sense of a
context-dependent alphabet 1s different from that rep-



| Network | Parameters | Error Rate ]
Baseline-HMM | 127k 4.8%
Correlation 254k 3.7%
PD-Correlation | 254k 4.2%
Chain 254k 3.6%
Articulator 255k 3.4%

Figure 4: Test results with the basic phoneme alphabet;
o ~ 0.25%. The number of independent parameters is
shown to 3 significant figures; all the DBN variants have
slightly different parameter counts.

resented by the context variable in Figures 2 and 3.
Context of the kind expressed in an alphabet is based
on an idealized pronunciation template; the context-
variable represents context as manifested in a specific
utterance.

The training subset consisted of all *a, *h, *m, *q,
and *t files; we tuned the various schemes with a de-
velopment set consisting of the *o and *y files. Test
results are reported for the *d and *r files, which were
not used in any of the training or tuning phases. The
words in the Phonebook vocabulary are divided into 75-
word subsets, and the recognition task consists of iden-
tifying each test word from among the 75 word models
in 1ts subset. There were 19,421 training utterances,
7291 development utterances and 6598 test utterances.
There was no overlap between training and test words
or training and test speakers.

Performance

Figure 4 shows the word-error rates with the basic
phoneme alphabet. The results for the DBNs clearly
dominate the baseline HMM system. The articulatory
network performs slightly better than the chain net-
work, and the networks without time-continuity arcs
perform at intermediate levels. However, most of the
differences among the augmented networks are not sta-
tistically significant.

These results are significantly better than those re-
ported elsewhere for state-of-the-art systems: Dupont
et al. (1997) report an error rate of 4.1% for a hybrid
neural-net HMM system with the same phonetic tran-
scription and test set, and worse results for a more con-
ventional HMM-based system. (They report improved
performance with transcriptions based on a pronuncia-
tion dictionary from CMU.)

Figure 5 shows the word error rates with the context-
dependent alphabets. Using a context-dependent al-
phabet proved to be an effective way of improving per-
formance. For about the same number of parameters as
the augmented context-independent phoneme network,
performance was slightly better. However, augment-
ing the context-dependent alphabet with an auxiliary
variable helped still further. We tested the best per-
forming augmentation (the articulator structure) with
the context-dependent alphabet, and obtained a signifi-
cant performance increase. Increasing the alphabet size

| Network | Parameters | Error Rate ]

CDA-HMM 257k 3.2%
CDA-Articulator | 515k 2.7%
CDA-HMM 510k 3.1%

Figure 5: Test results with the context-dependent al-
phabets (CDA); o = 0.20%. In the first two systems,
each context-dependent unit occurred at least 250 times
in the training data; in the third, the threshold was 125.
This resulted in alphabet sizes of 336 and 666 respec-
tively.
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Figure 6: A 4-state HMM phone model (top), and a
corresponding HMM model with a binary context dis-
tinction (bottom). In the second HMM, there are two
states for each of the original states, representing con-
text values of 0 and 1. The shaded nodes represent
notional initial and final states in which no sound is
emitted. Phone models are concatenated by merging
the final state(s) of one with the initial state(s) of the
other. The more complex model must have two initial
and final states to retain memory of the context across
phones. These graphs specify possible transitions be-
tween HMM states, and are not DBN specifications.

to attain a comparable number of parameters did not
help as much.

In terms of computational requirements, the
“Baseline-HMM?” configuration requires 18M of RAM,
and can process a single example through one EM it-
eration 6X faster than real time on a SPARC Ultra-30.
The “Articulator” network requires 28M of RAM and
runs 2X faster than real time.

Cross-Product HMM. Acoustic and articulatory
context can be incorporated into an HMM framework
by creating a distinct state for each possible combina-
tion of phonetic state and context, and modifying the
pronunciation model appropriately. This is illustrated
for a binary context distinction in Figure 6. In the ex-
panded HMM, there are two new states for each of the
original states, and the transition model is more com-
plex: there are four possible transitions at each point
in time, corresponding to all possible combinations of
changing the phonetic state and changing the context
value. The number of independent transition parame-
ters needed for the expanded HMM 1is 6 times the num-



ber of original phones. The total number of indepen-
dent transition and context parameters needed in the
articulatory DBN is 3 times the number of phones. In
the chain DBN, it is equal to the number of phones.

We tested the HMM shown in Figure 6 with the basic
phoneme alphabet and two different kinds of initializa-
tion: one reflecting continuity in the context variable
(analogous to the Chain-DBN), and one reflecting voic-
ing (analogous to the Articulator-DBN). The results
were 3.5 and 3.2% word-error respectively, with 255k
parameters. These results indicate that the benefits of
articulatory/acoustic context modeling with a binary
context variable can also be achieved by using a more
complex HMM model. We expect this not to be the
case as the number of context variables increases.

Discussion

The presence of a context variable unambiguously im-
proves our speech recognition results. With basic
phoneme alphabets, the improvements range from 12%
to 29%. Statistically, these results are highly signifi-
cant; the difference between the baseline and the artic-
ulator network is significant at the 0.0001 level. With
the context-dependent alphabet, we observed similar
effects.

Having learned a model with hidden variables, it is
interesting to try to ascertain exactly what those vari-
ables are modeling. We found striking patterns in the
parameters associated with the context variable, and
these clearly depend on the network structure used.
The Cy/6Cy observation stream is most strongly corre-
lated with the context variable, and this association is
illustrated for the articulator network in Figure 7. This
graph shows that the context variable is likely to have
a value of 1 when Cj has large values, which is charac-
teristic of vowels. The same information is shown for
the correlation network in Figure 8; the pattern is obvi-
ously different, and less easily characterized. Although
we initialized the context variable in the articulator net-
work to reflect known linguistic information about the
voicing of phonemes (on the assumption that this might
be the most significant single bit of articulator state in-
formation), the learned model does not appear to reflect
voicing directly.

For the networks with time-continuity arcs, the pa-
rameters associated with the context variable indicate
that it is characterized by a high degree of continuity.
(See Figure 9.) This is consistent with its interpreta-
tion as representing a slowly changing process such as
articulator position.

Conclusion

In this paper we demonstrate that DBNs are a flexible
tool that can be applied effectively to speech recogni-
tion, and show that the use of a factored-state repre-
sentation can improve speech recognition results. We
explicitly model articulatory-acoustic context with an
auxiliary variable that complements the phonetic state
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Figure 7: Association between the learned context vari-
able and acoustic features for the articulatory network.
Cy is indicative of the overall energy in an acoustic
frame. The maximum value in an utterance is sub-
tracted, so the value is never greater than 0. Assuming
that each mel-frequency filter bank contributes equally,
Cy ranges between its maximum value and about 50
decibels below maximum.
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Figure 8: Association between the learned context vari-
able and acoustic features for the correlation network.
This shows a quite different pattern from that exhibited
by the articulator network. (For clarity, the surface is
viewed from a different angle.)
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Figure 9: Learning continuity. The solid line shows the
initial probability of the auxiliary state value remaining
0 across two consecutive time frames as a function of the
phone. The variable was initialized to reflect voicing, so
low values reflect voiced phones. The dotted line indi-
cates the learned parameters. The learned parameters
reflect continuity: the auxiliary variable is unlikely to
change regardless of phone. This effect is observed for
all values of the auxiliary chain. To generate our recog-
nition results, we initialized the parameters to less ex-
treme values, which results in fewer EM iterations and
somewhat better word recognition.

variable. The use of a context variable initialized to
reflect voicing results in a significant improvement in
recognition. We expect further improvements from
multiple context variables. This is a natural approach
to modeling the coarticulatory effects that arise from
the inertial and quasi-independent nature of the speech
articulators.
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