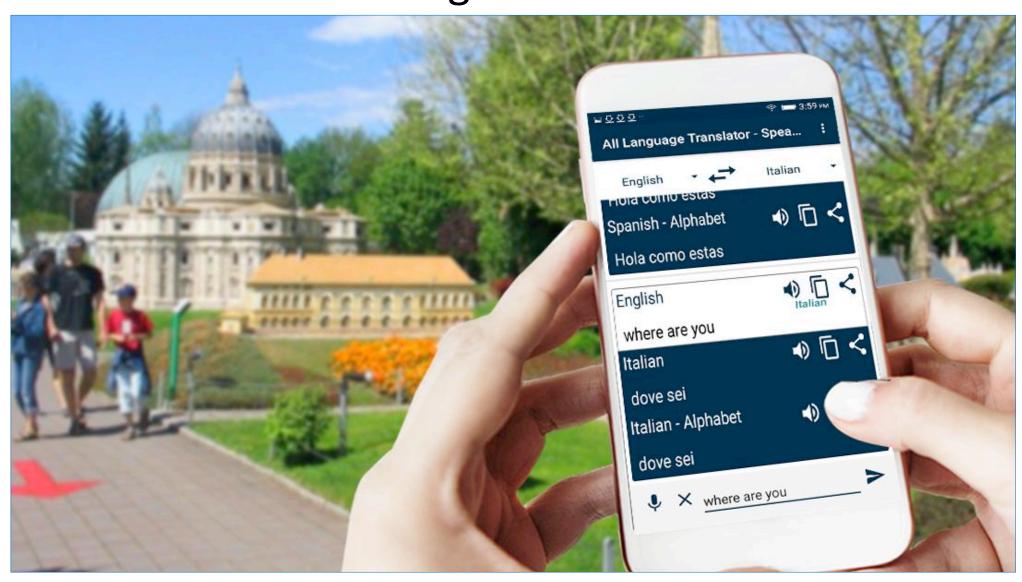
第十七届全国机器翻译大会

2021年8月6日-8日 2021年10月8日-10日

Efficient Machine Translation

Lei Li University of California Santa Barbara 2021/10/10

Cross Language Barrier with Machine Translation

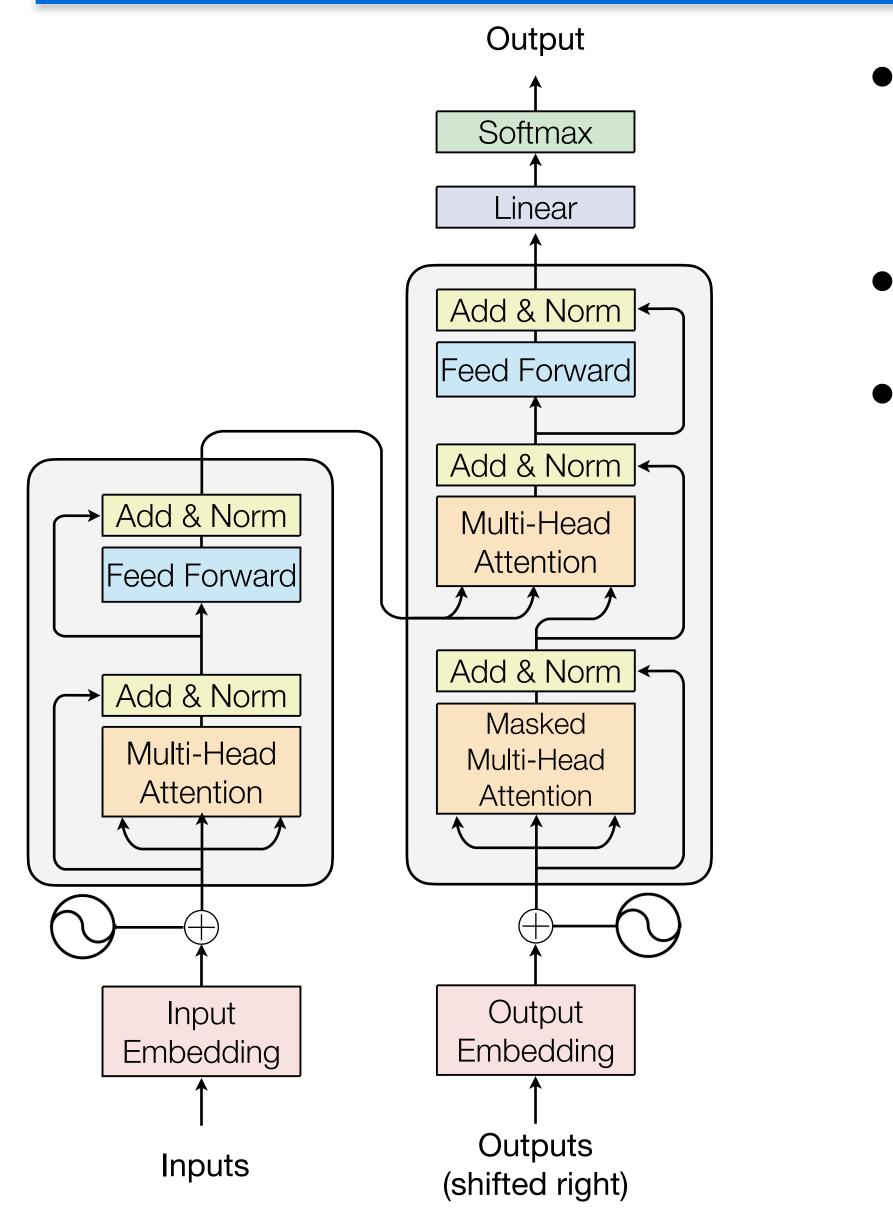


Tourism

Global Conferences

International Trade

Neural Machine Translation



- Transformer as commonly used backbone architecture for MT.
- 50 100m parameters
- Huge computation: 670 GPU hours for training [Vaswani et al 2017].

Training NMT gets more expensive! Attention GPU is all you need

model	Size (M)	Total Time (GPU hr)	Train Once (GPU hr)	Infer (ms)	Carbon Footprint (car year)
mRASP (EMNLP20)	60	38k	384		
mRASP2 (ACL 21)	450	128k			
LaSS (ACL 21)	60	41k	384		
LUT (AAAI 21)	144	22k	72	150	
COSTT (AAAI 21)	55	22k	72	140	
Chimera (ACL 21)	165	59k	320	160	
XSTNet (InterSpeech21)	152	24k	240	140	

Affordable and Green MT

- Training NMT models are computationally expensive. How to speed up MT training, and inference? How to reduce energy consumptions during MT
- training?

Outline

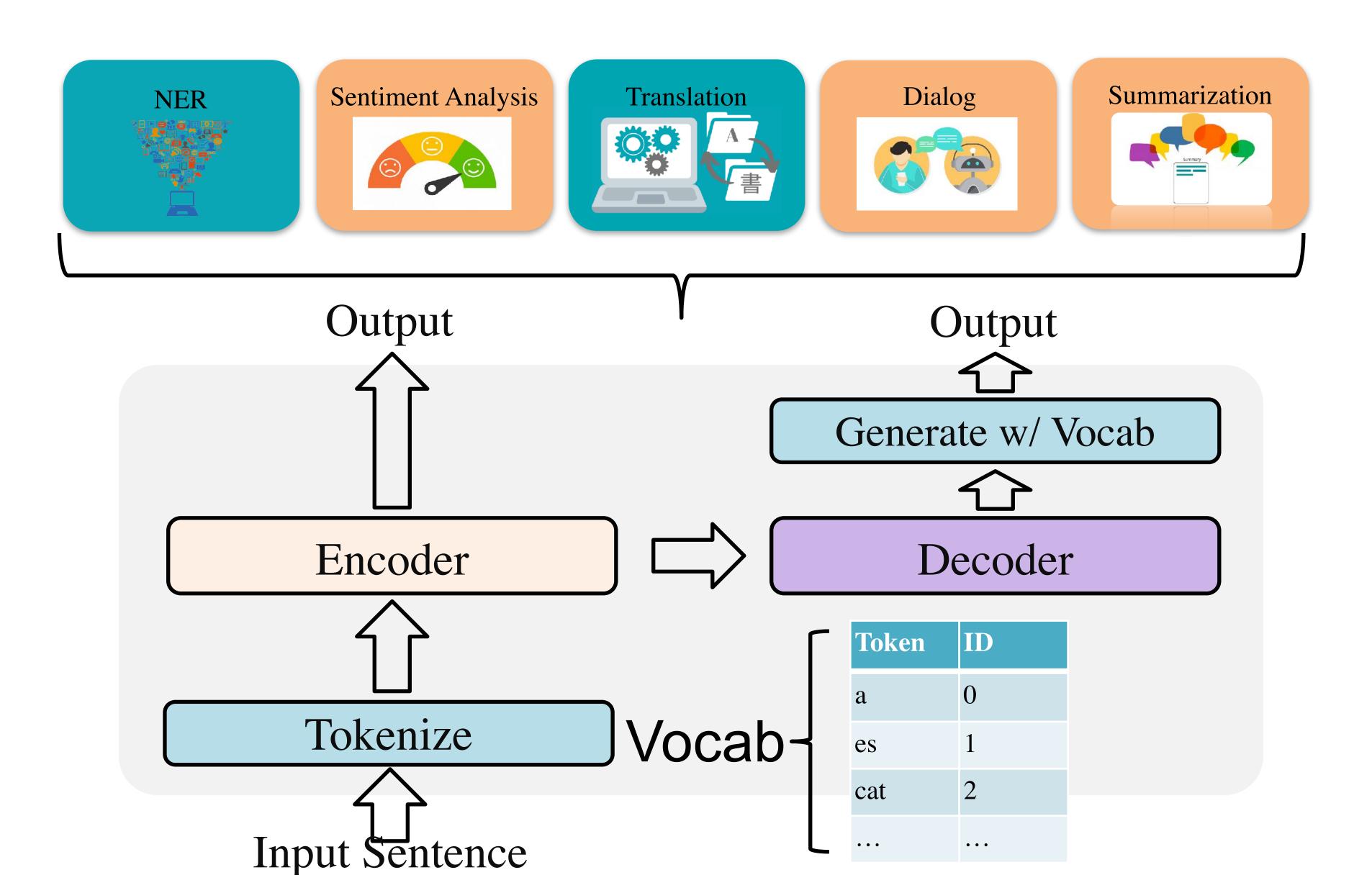
- 1. Algorithm: Learning Compact Vocabulary for NMT – Small vocabulary with improved performance at 100x faster!
- 2. Model: Parallel Generation
 - Translate at equal or better quality with 10x speedup!
- 3. Computing: Hardware Acceleration for training and inference
 - Faster than Tensorflow & Pytorch at 14x speedup!

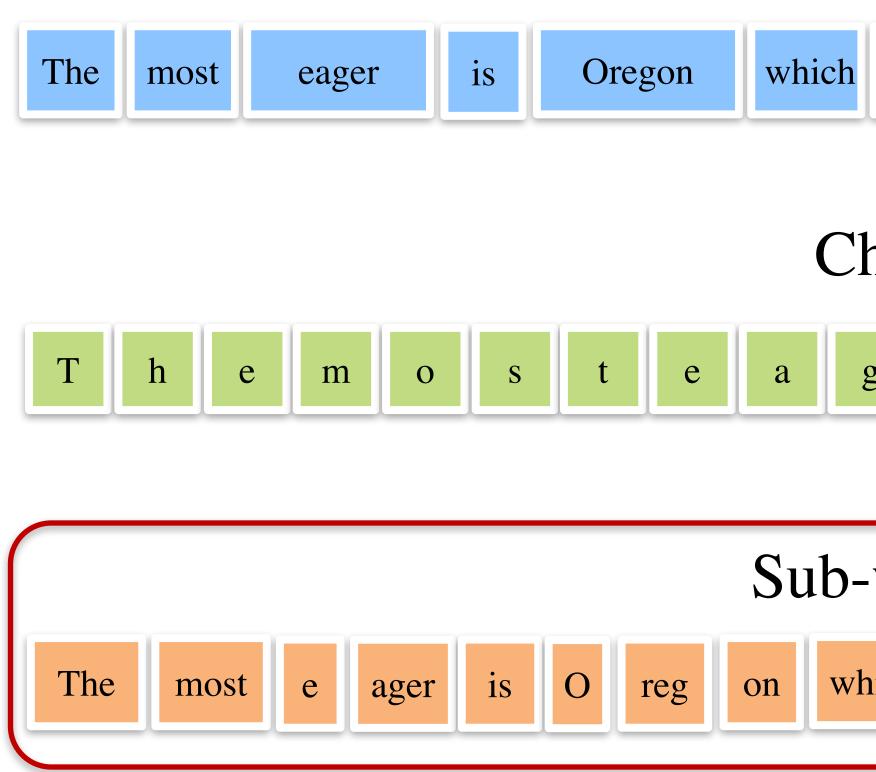
Vocabulary Learning via Optimal Transport for Neural Machine Translation

joint w/ Jingjing Xu¹ Hao Zhou¹ Chun Gan¹ Zaixiang Zheng¹



Vocabulary is Fundamental and Important





Sub-word vocabulary is the dominant choice

* With normal-size data

Word level

is enlisting 5,000	drivers	in	the	country
--------------------	---------	----	-----	---------

Char level

g	e	r	i	S	Ο	r	e	g	•••
---	---	---	---	---	---	---	---	---	-----

-WC	ord	leve	21					
hich	is	en	listing	5,000	drivers	in	the	country

Why is Sub-word (BPE) superior? Theoretically

- Information theory:

 - Compress the message into compact representation fewest bits to represent both sentence and vocabulary – Char-level vocab ==> text sequence will be long

 - Word-level vocab ==> vocab will be large and still OOV
- Entropy:
 - how much information in each token
- Intuition:
 - Reduced entropy (bits-per-char) ==> Better Vocab
 - Even better vocab?

Information-theoretic Vocabulary Evaluation

- Normalized Entropy – Information-per-char (IPC)

 - It represents Semantic-information-per-char

Token	count
a	200
e	90
C	30
t	30
S	90

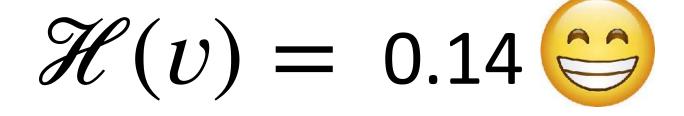
 $\mathscr{H}(v) = 1.37$

$\mathscr{H}(v) = -\frac{1}{l_v} \sum_{i \in v} P(i) \log P(i)$

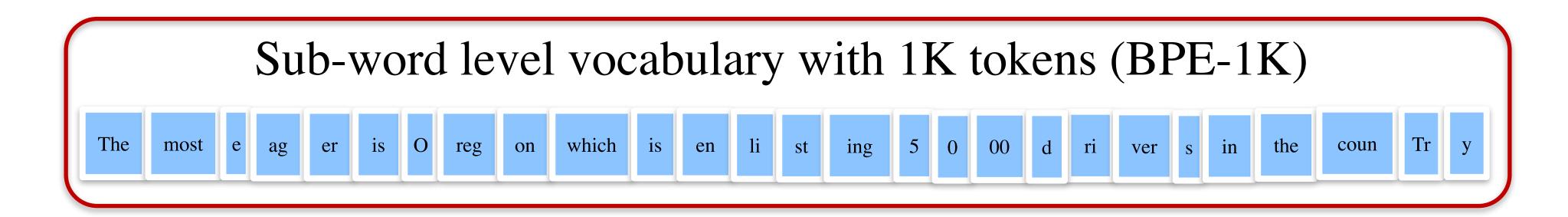
VS

Smaller IPC is better. Easy to differentiate (therefore easy to generate)

Token	count
a	100
aes	90
cat	30



Which vocabulary is better?



Sub-word level vocabulary with 10K tokens (BPE-10K)

The	most	e	ager	is	Ο	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country	
-----	------	---	------	----	---	-----	----	-------	----	----	-------------	-------	---------	------	----	-----	---------	--

Sub-word level vocabulary with 30K tokens (BPE-30K)

The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	drivers	in	the	country	
-----	------	---	------	----	---	-----	----	-------	----	----	---------	-------	---------	----	-----	---------	--

From the perspective of size, BPE-1K seems to be better but longer sequence

* With normal-size data

Which Vocabulary is Better?

Sub-word level vocabulary with 1K tokens (BPE-1K)

The	most	e	ag	er	is	Ο	reg	on	which	is	en	li	st	ing	5	0	00	d	ri	ver	S	in	the	coun	Tr	у	
-----	------	---	----	----	----	---	-----	----	-------	----	----	----	----	-----	---	---	----	---	----	-----	---	----	-----	------	----	---	--

Sub-word level vocabulary with 10K tokens (BPE-10K)

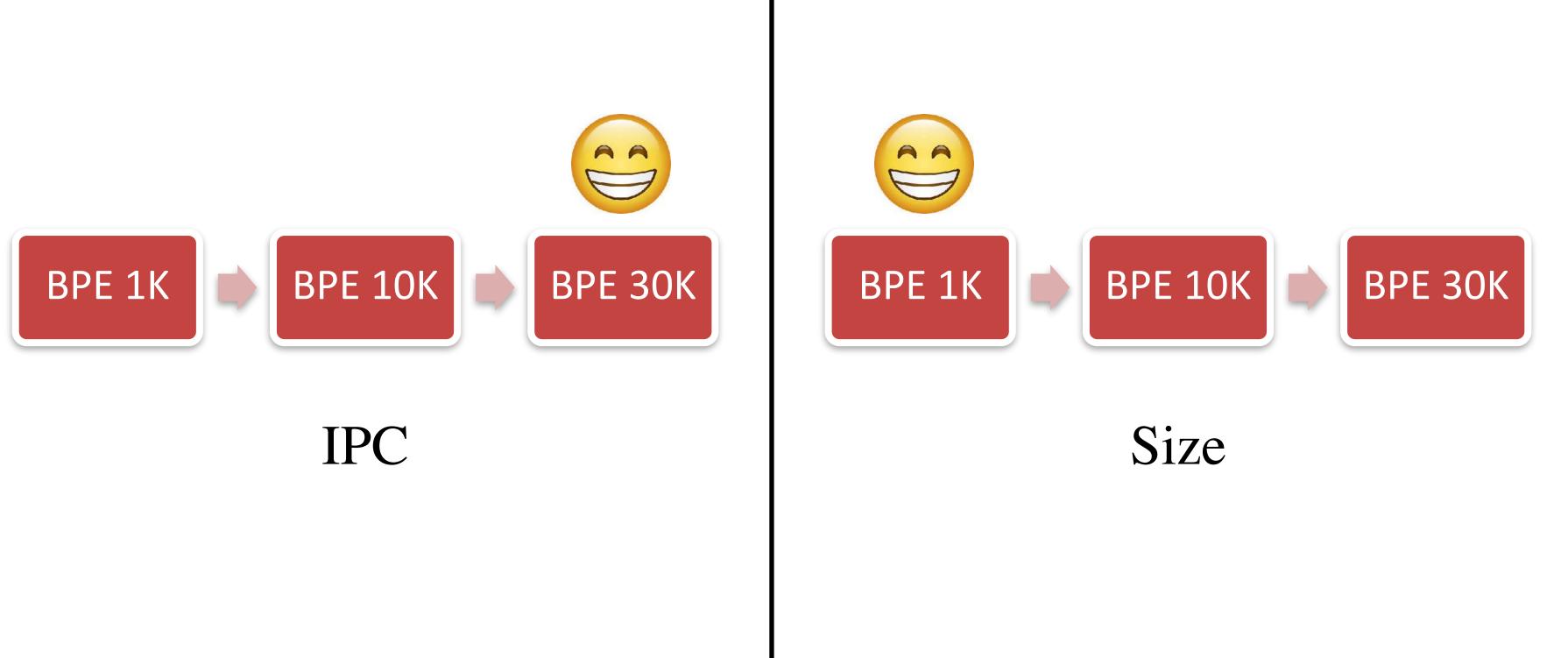
The	most	e	ager	is	Ο	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country
	~											-				_ \	
	Sı	ıb-	word	d le	vel	VO	cabi	lary	wit	h 3()K to	okens	(B	PE-	30k	()	
The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	dri	ivers	in	the	country

The	most	e	ager	is	0	reg	on	which	is	en	listin g	5,000	dr i	vers	in	the	country
	Sı	ıb-	wore	d le	vel	VO	cabi	ulary	wit	h 3(OK to	okens	(B]	PE-	30k	X)	
The	most	e	ager	is	0	reg	on	which	is	en	listing	5,000	driv	vers	in	the	country

From the perspective of entropy, BPE-30K seems to be better

* With normal-size data

Evaluating Vocabulary Quality is Expensive

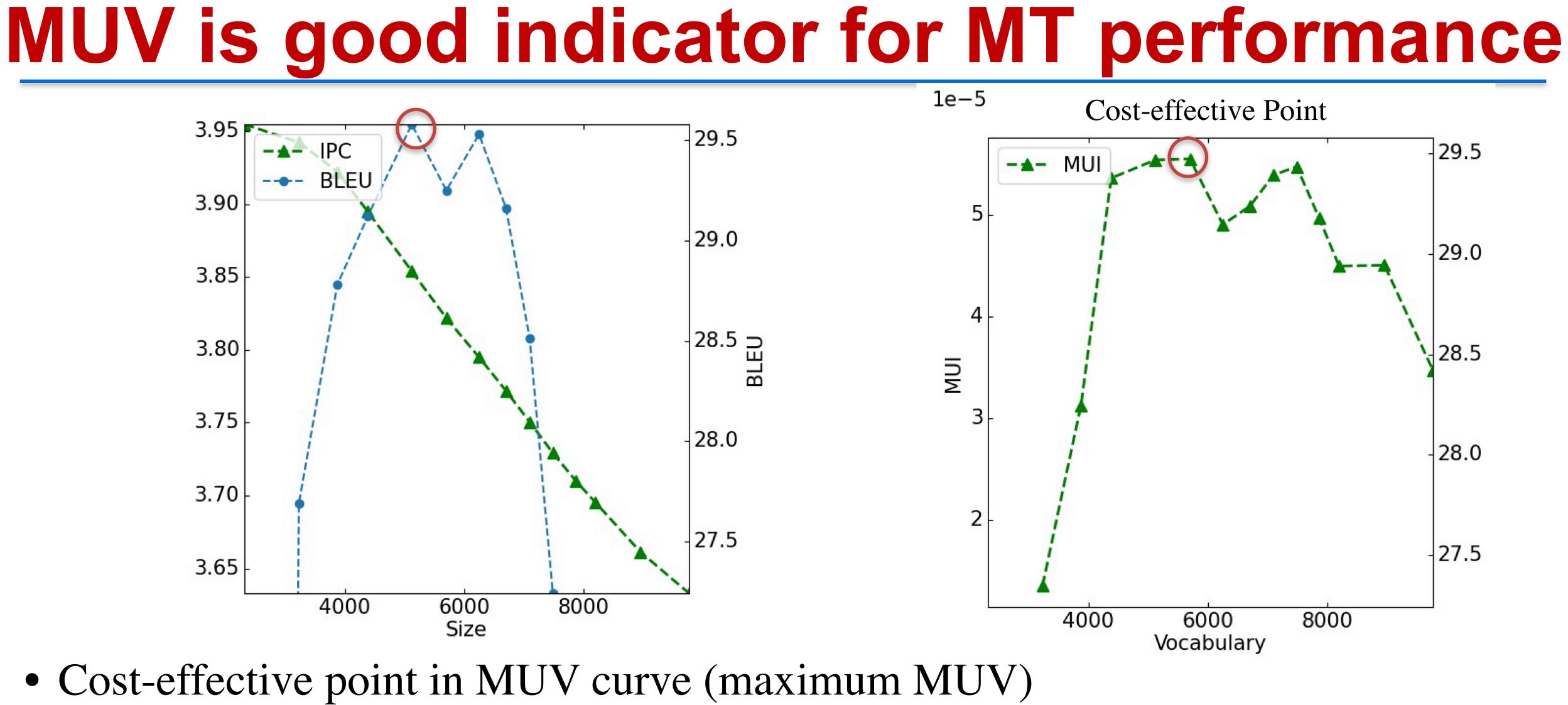


Full training and testing are required to find the optimal vocabulary!

- Value: IPC ·*
- Cost: size

- Marginal utility of information for Vocabulary (MUV)
 - Negative gradients of IPC to size
 - How many value does each unit-of-cost bring?

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.15

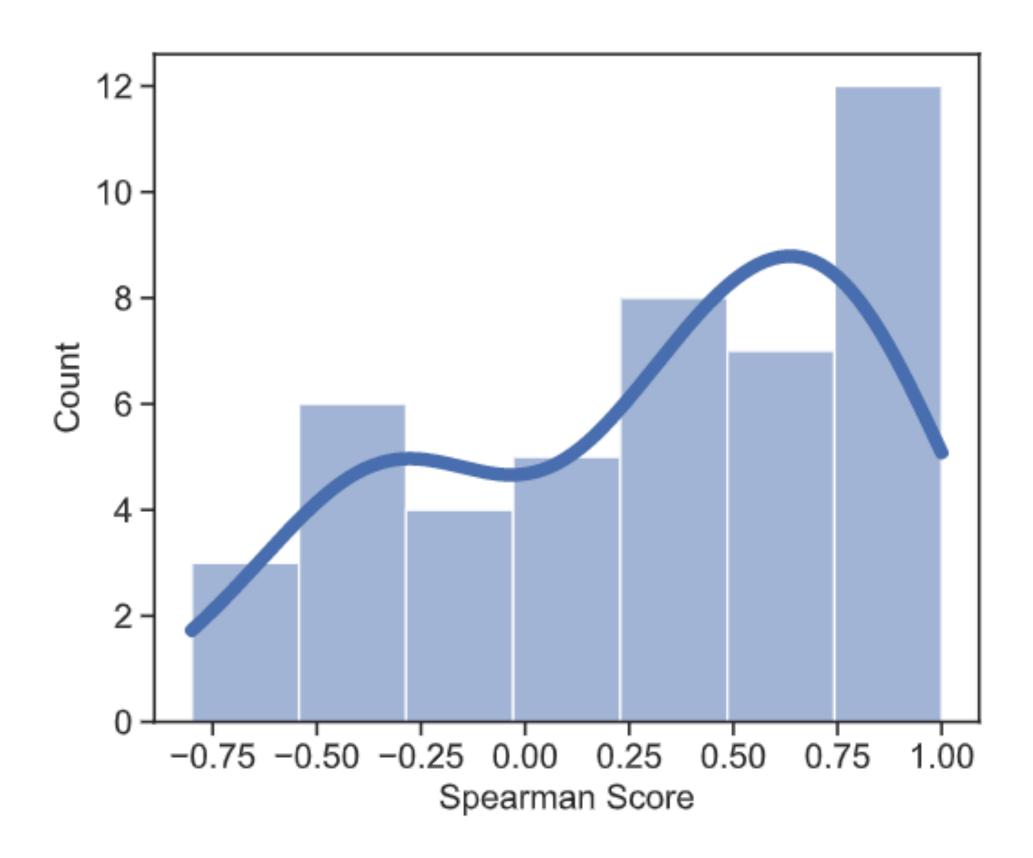


- ==> best BLEU

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.

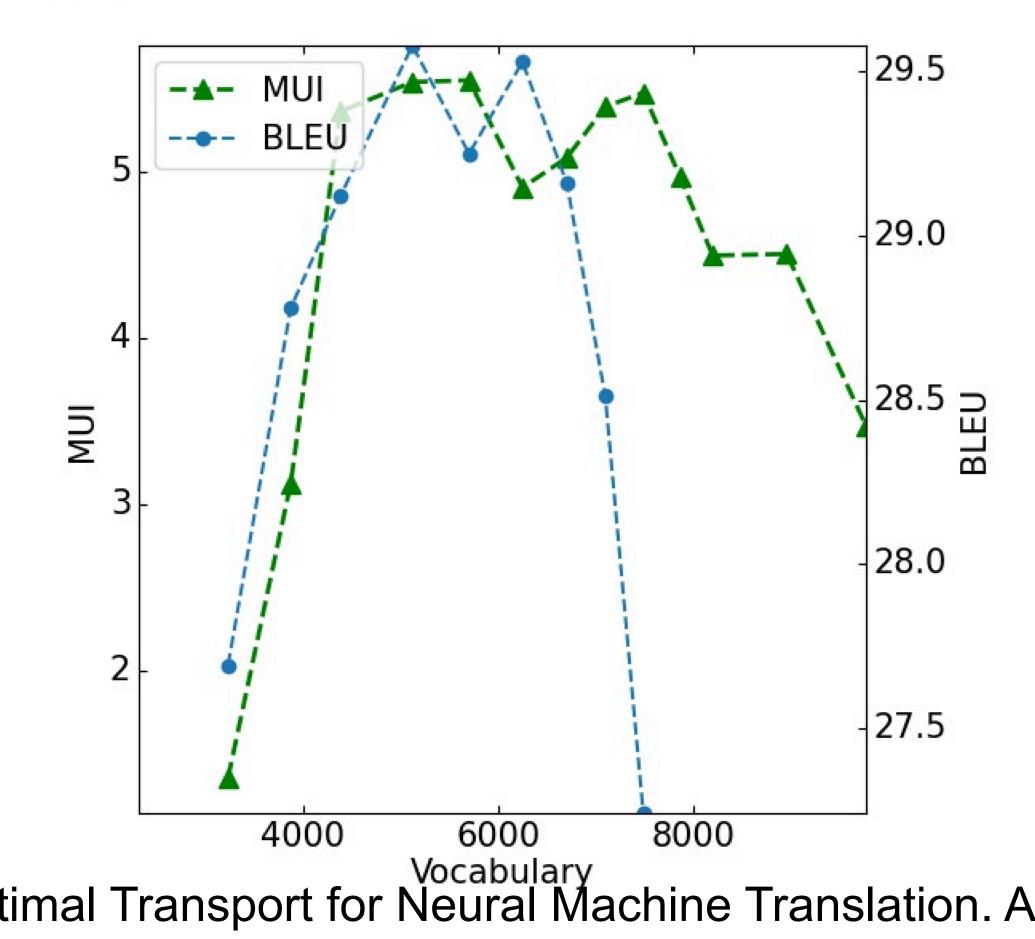
MUV Indicates MT Performance

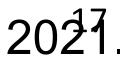
• MUV and BLEU are correlated on two-thirds of tasks • A good coarse-grained evaluation metric!



Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

1e-5



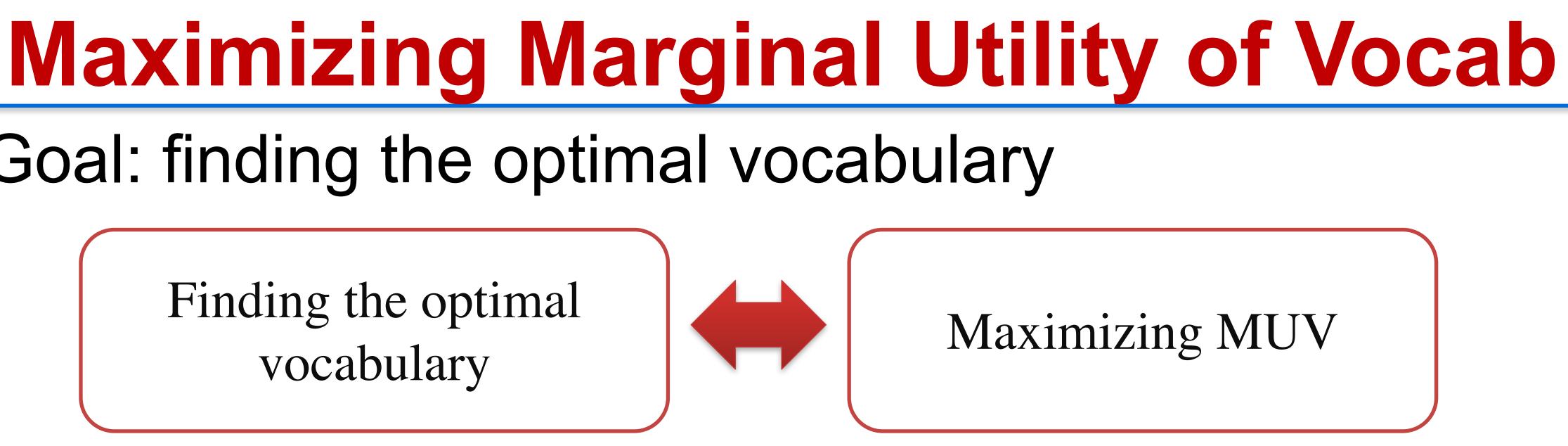


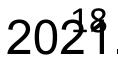
Goal: finding the optimal vocabulary

Finding the optimal vocabulary

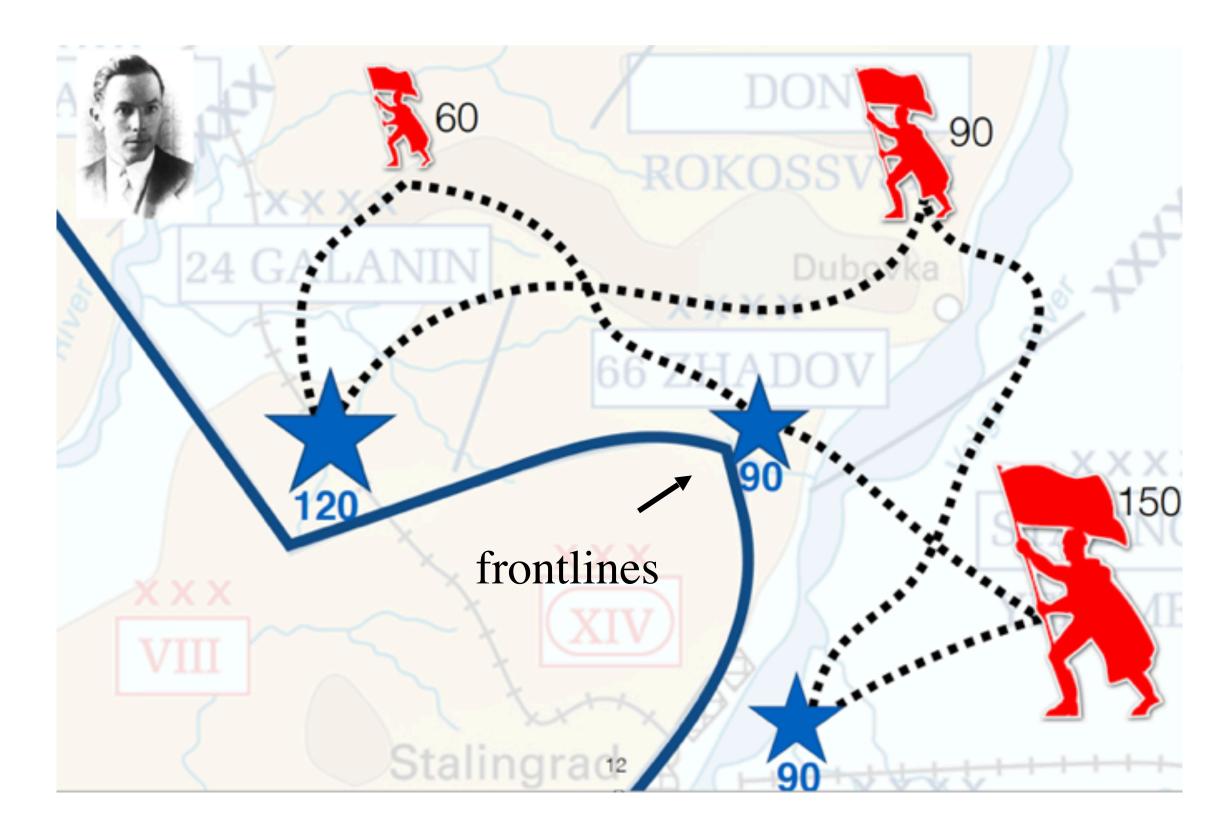
- Naive solution:
 - Exhaustive Search for vocabulary with max MUI
- How to search over a huge discrete space?

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

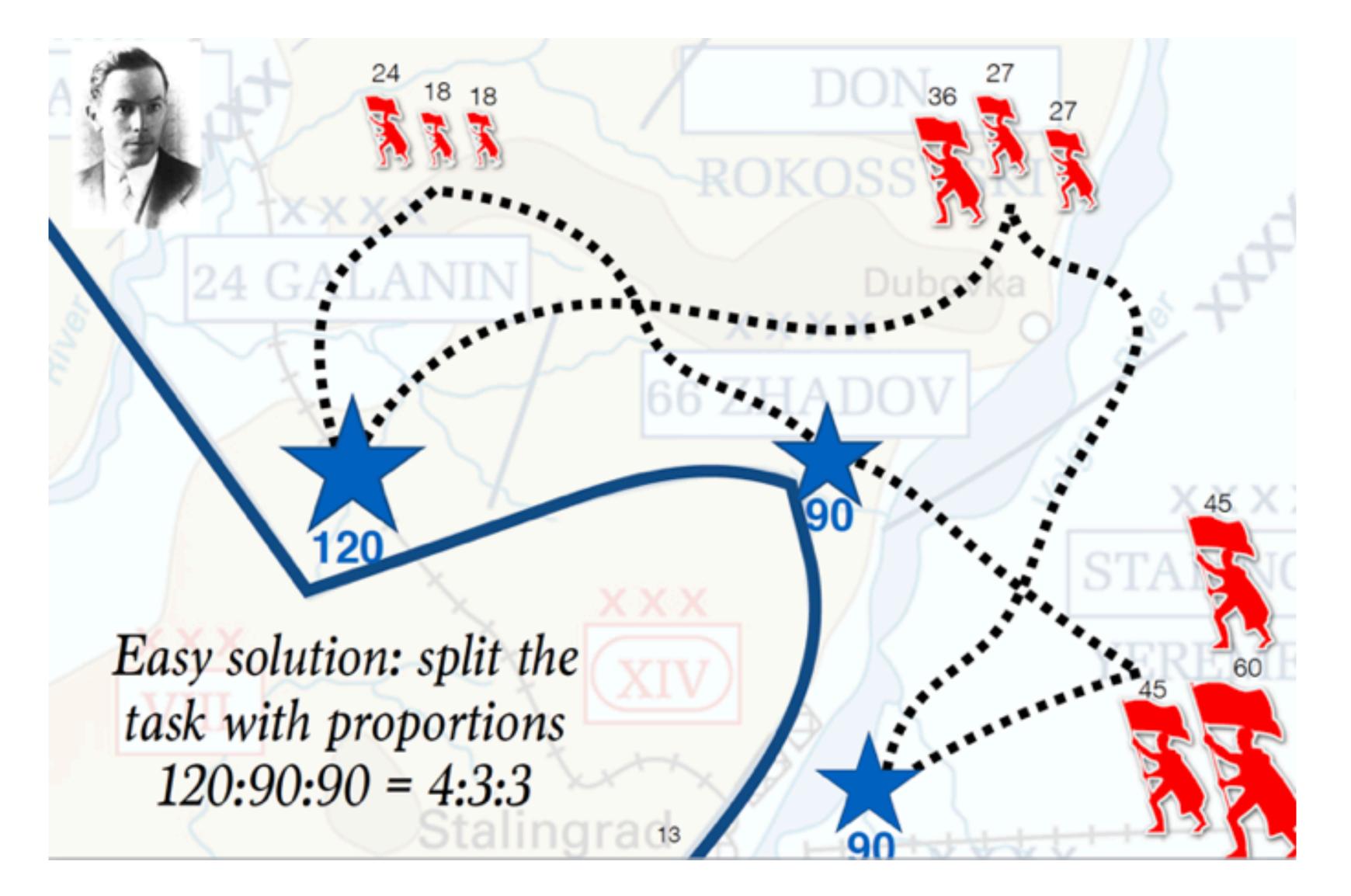




Problem Reduction • Best BLEU ==> Max MUV ==> Optimal Transport



Min cost to Transport soldiers from bases to frontlines

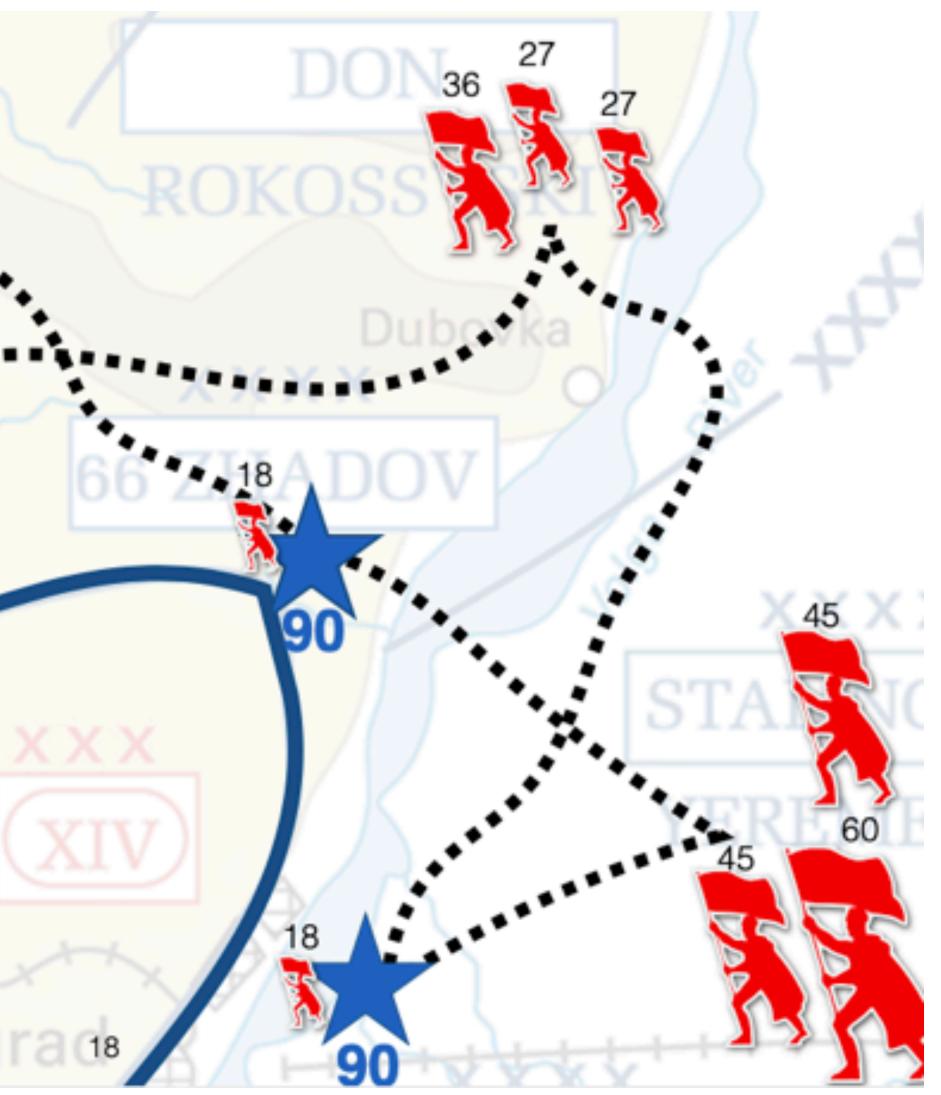


Optimal Transport

24 Easy solution: split the task with proportions

120:90:90 = 4:3:3

Optimal Transport



Vocabulary building as Transportation

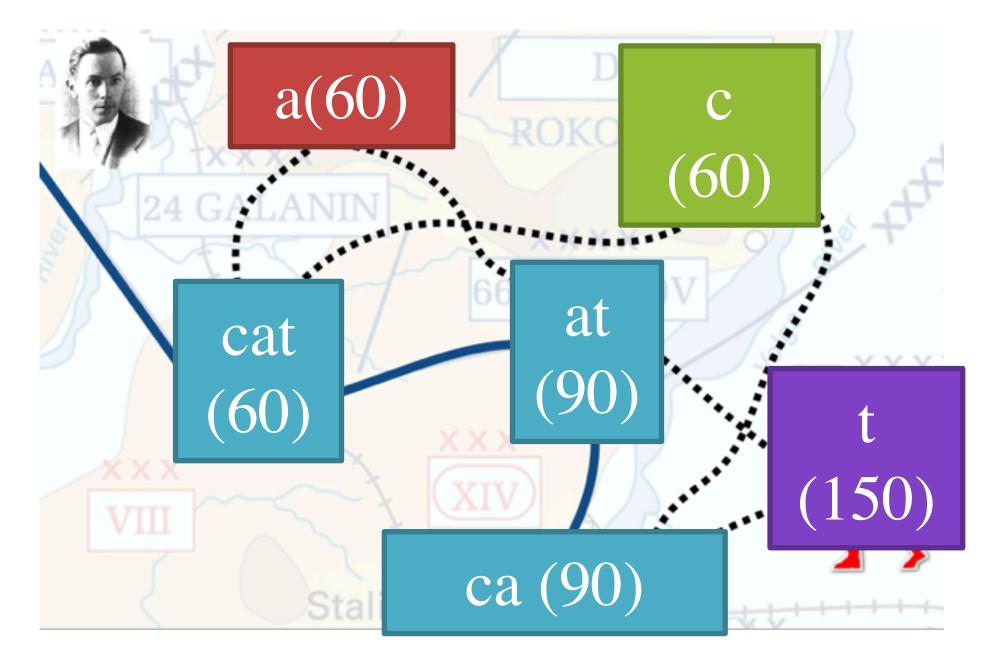
- Adding one new token means: Transport character frequency to token frequency
 - a b c d e a b d c e f: 2 a 2 b

- ab c d e ab d c e f: 0 a 0b and 2 ab

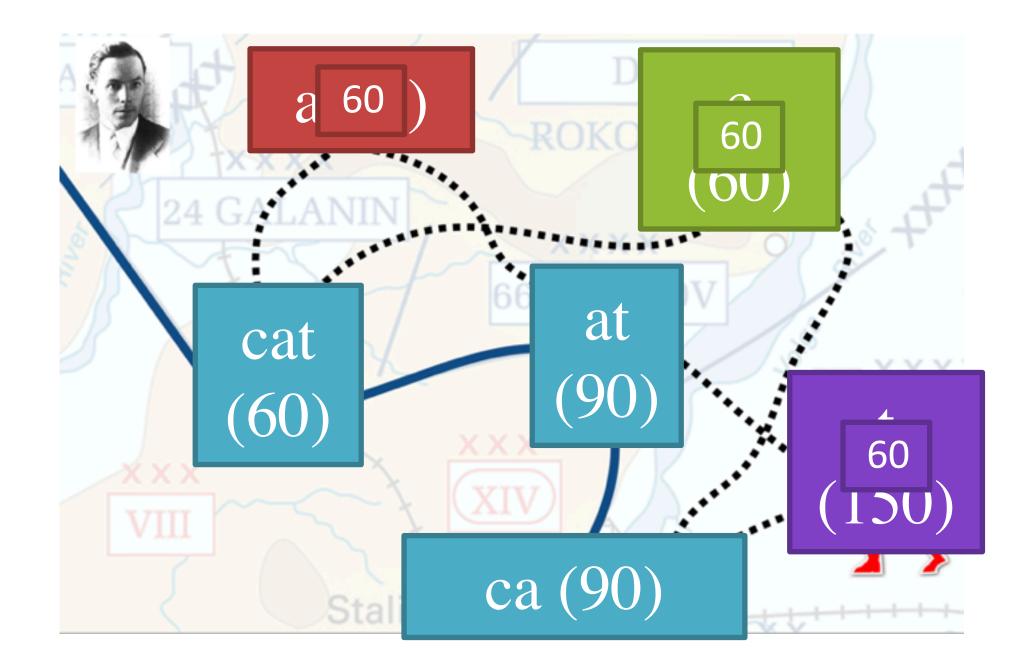
Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

VOLT Formulation

Transport chars to tokens

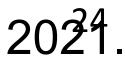


Not all tokens can get chars

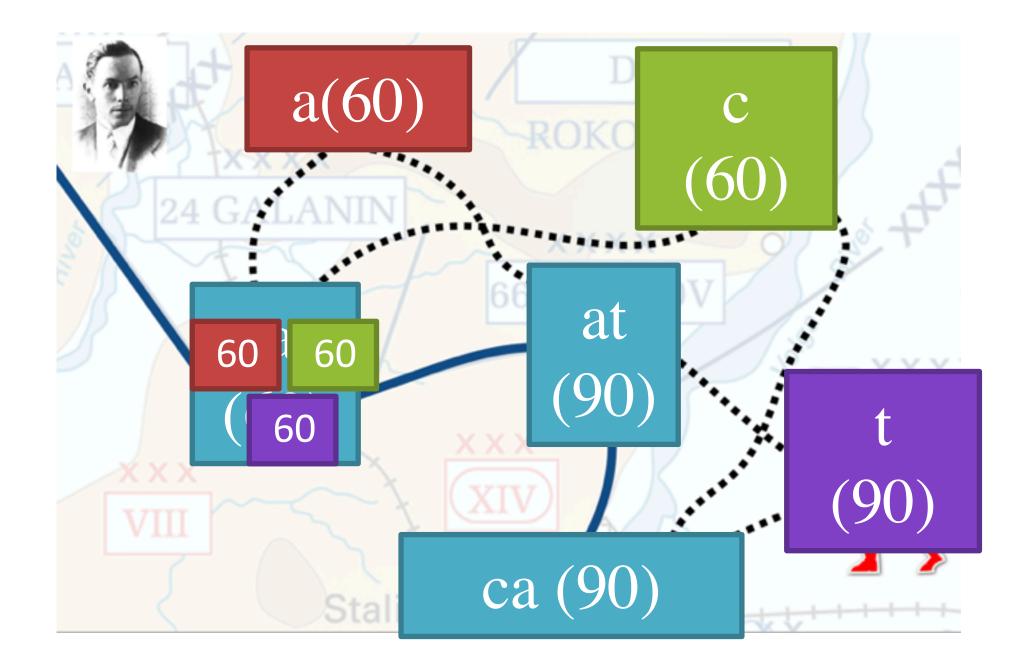


Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL $20\hat{2}^4$.

VOLT Formulation

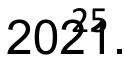


Not all tokens can get chars

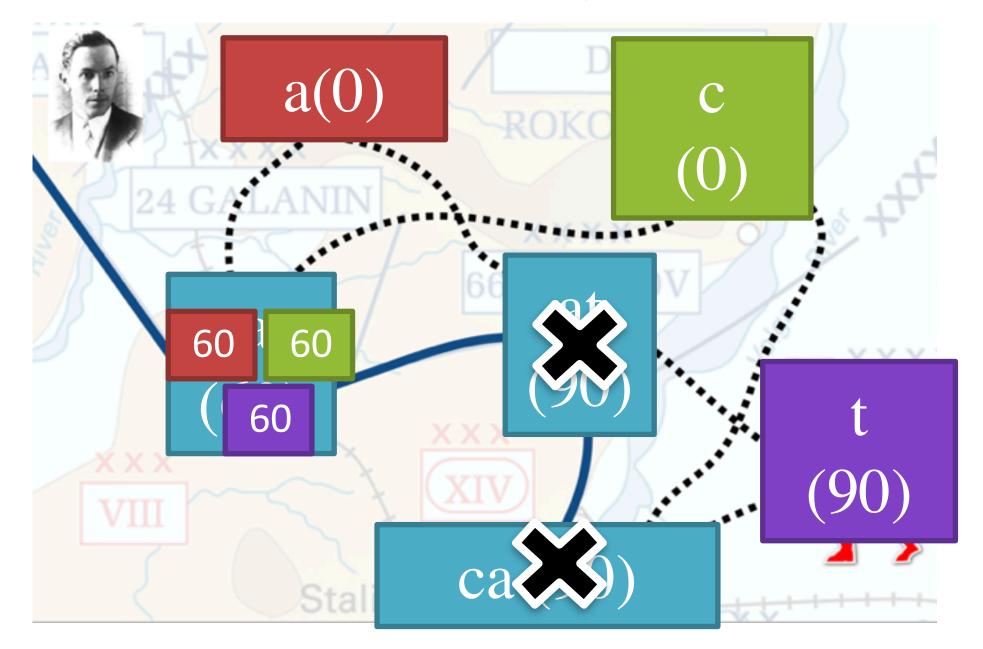


Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL $20\hat{2}^{\frac{1}{2}}$.

VOLT Formulation

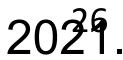


Not all tokens can get chars

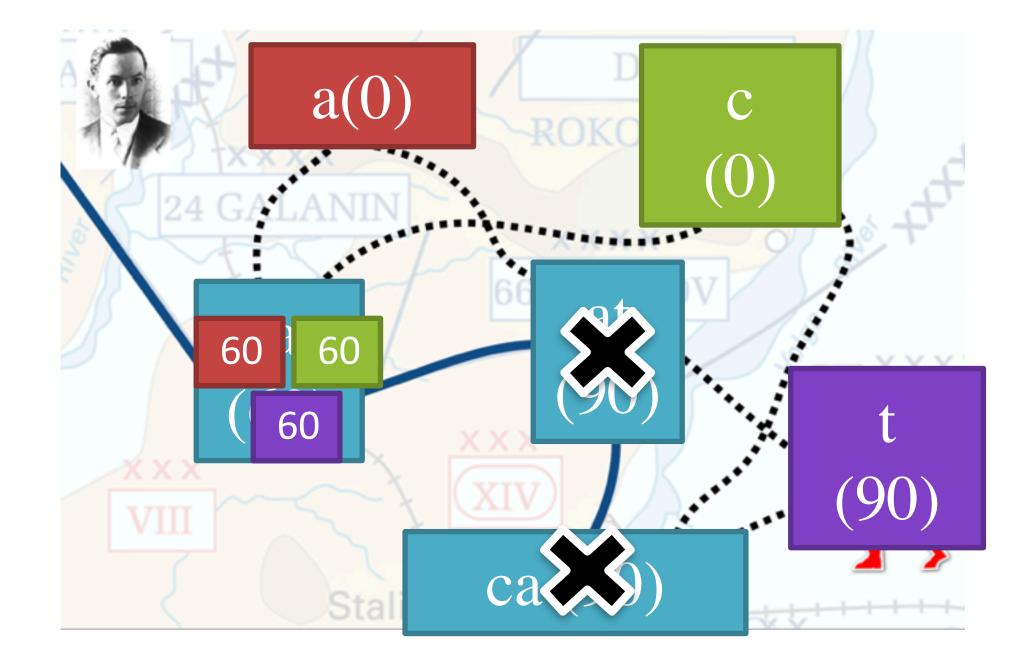


Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.

VOLT Formulation



Each Transportation Defines a Vocabulary



Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

Reducing MUV Optimization to OT

- The vocabulary with the maximum MUV
 - Maximum gap between IPC of a vocabulary (with size t) and that of a smaller vocabulary (with size <t)

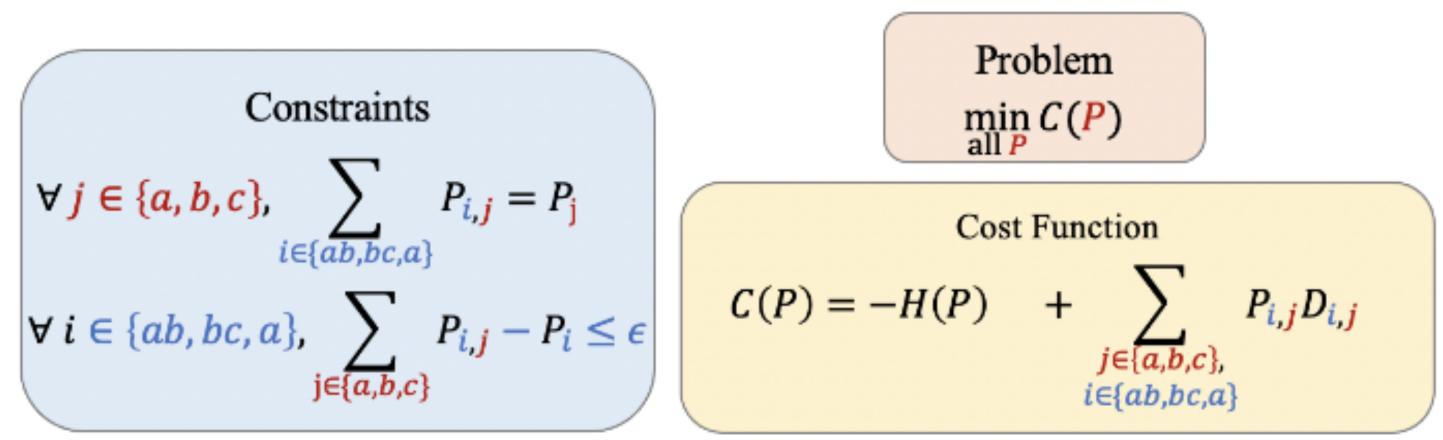
$$- \max - (H(V_{t+1}) - H(V_t))$$

- Intractable, instead to maximize upper-bound of gap $(H(V_{t+1}) - H(V_t))$
- ==> max(max $H(V_{t+1}) \max H(V_t))$
- Finding max H(V_t) ==> Optimal Transport

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2029.

Optimization

• Find the transportation matrix (=vocab) with lowest cost (-MUV)



Transportation matrix P cat at tea

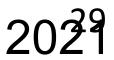
а	20	10	0
С	20	0	0
e	0	0	0
L +	20	10	0

Sinkhorn Algorithm [Gabriel Peyré et. al]

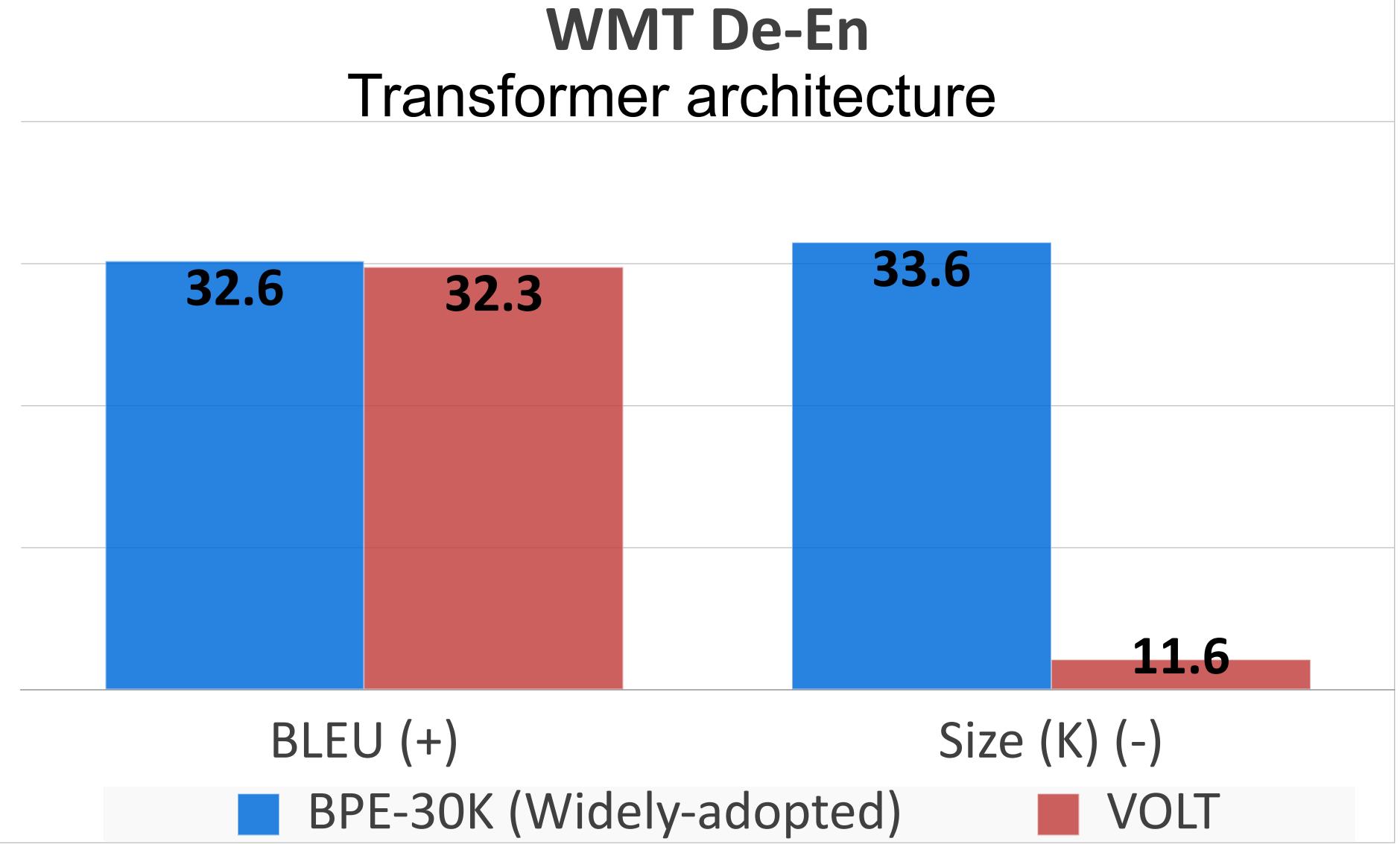
Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.

Cos	st matr	ix D
cat	at	tea

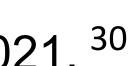
а	1	1	1
С	1	8	∞
е	∞	8	1
t	1	1	8



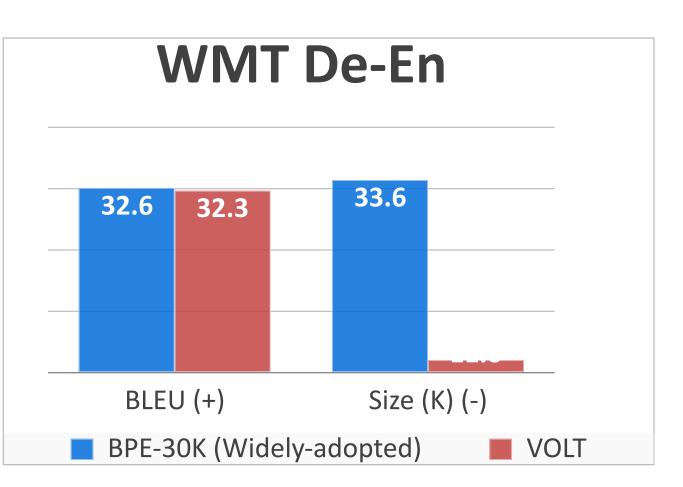
VOLT finds better vocabulary on Bilingual MT



Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³⁰



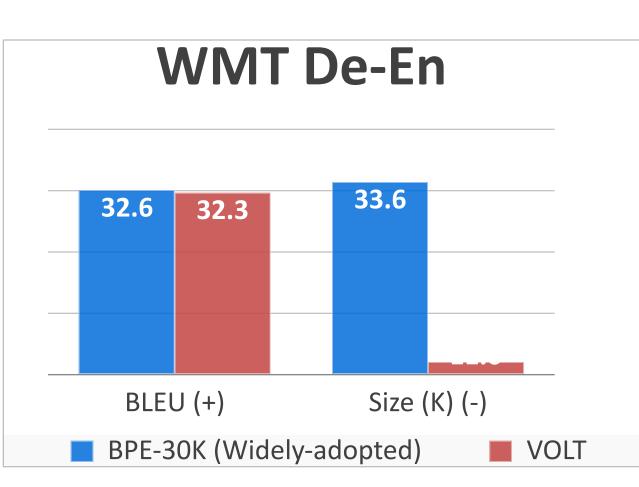
VOLT finds better vocabulary on Bilingual MT

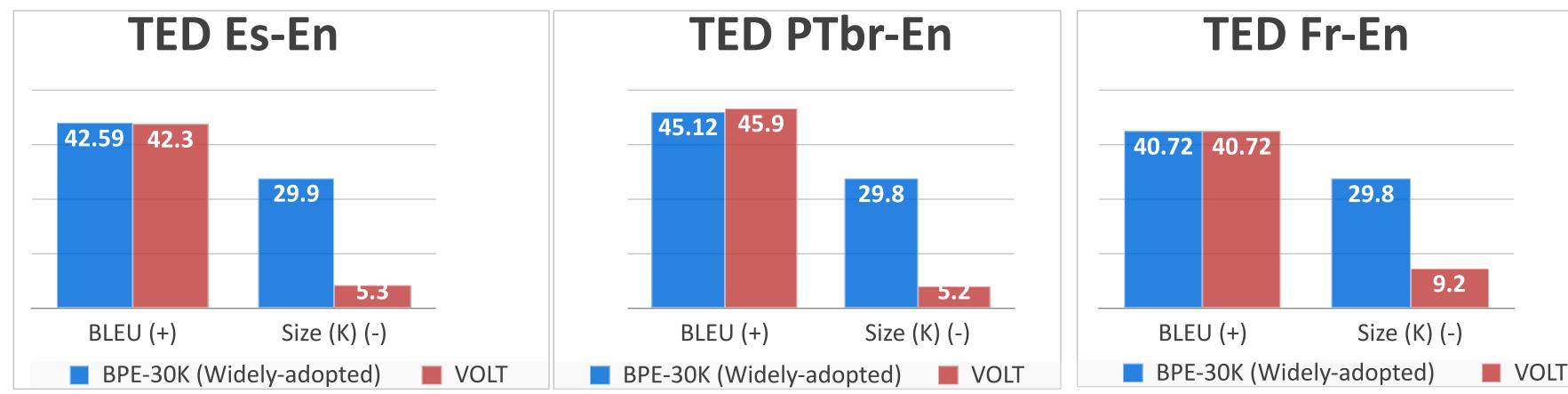


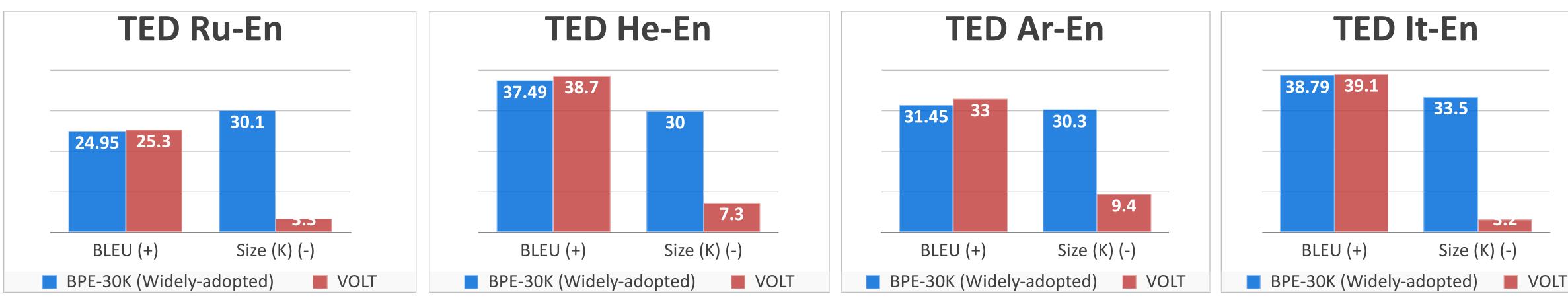
Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³¹

VOLT finds better vocabulary on Bilingual MT

Transformer architecture



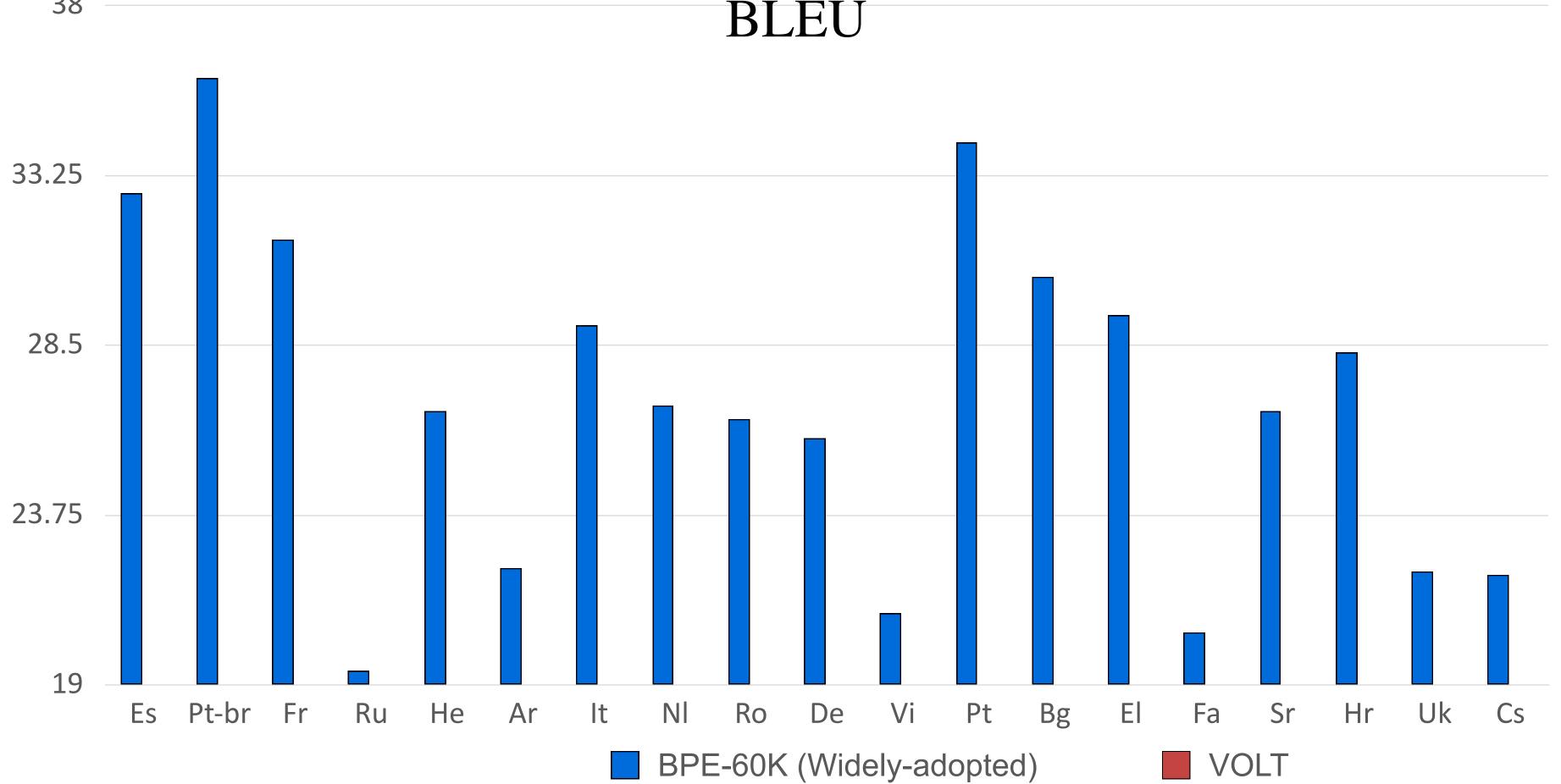




Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³²

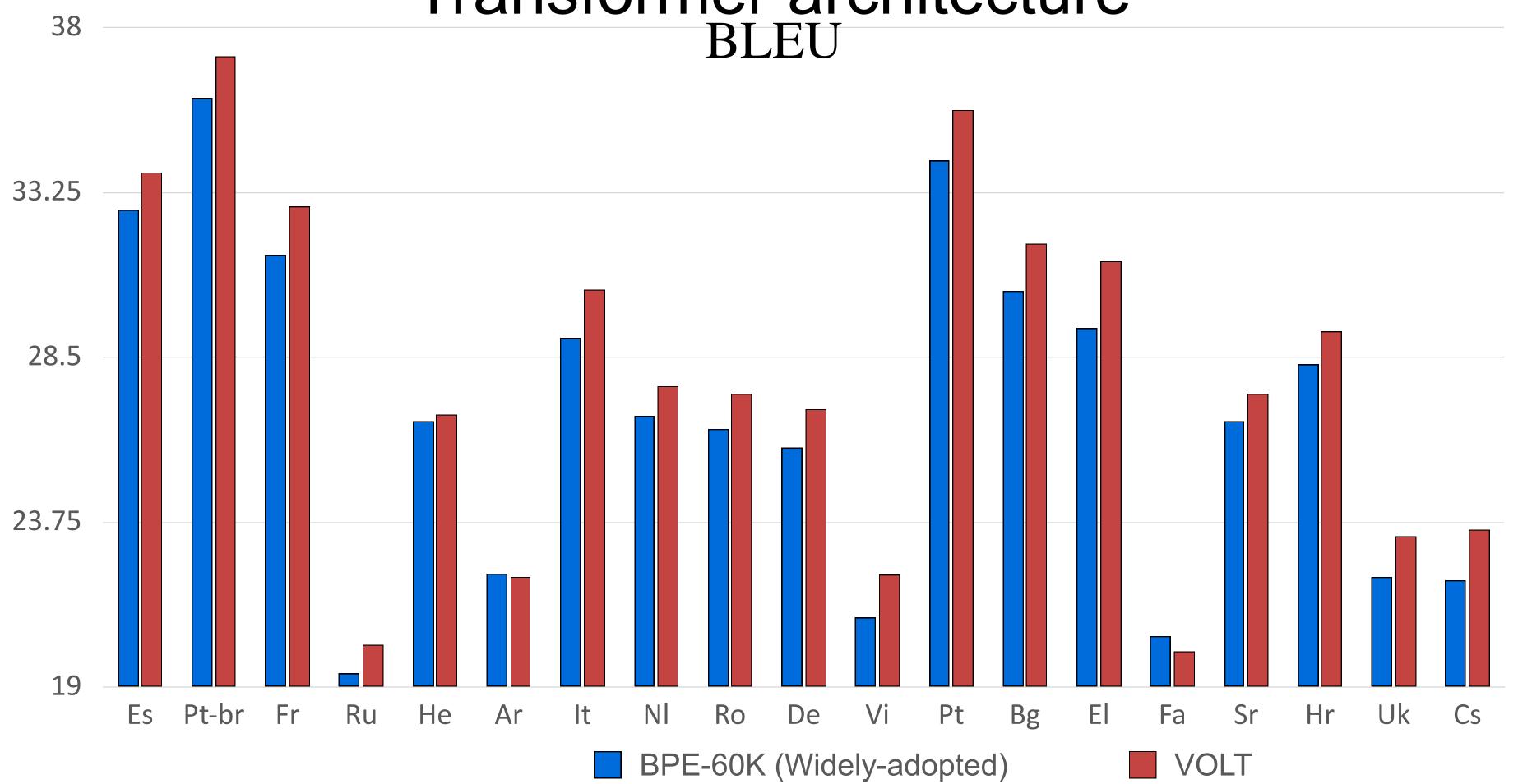


VOLT Finds Better Vocabulary on Multilingual MT Transformer architecture 38

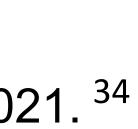


Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³³

VOLT Finds Better Vocabulary on Multilingual MT38 38 38 38 BLEU



Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³⁴



VOLT Generalizes Well to Other Architectures



Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021.³⁵

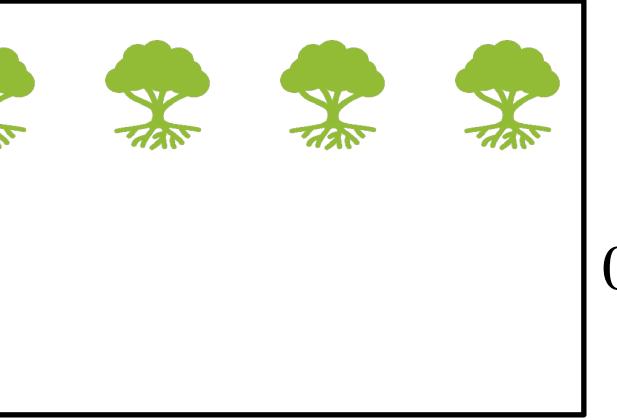
VOLT: A Green Vocabulary Learning Solution

Carbon Emission

VOLT-search

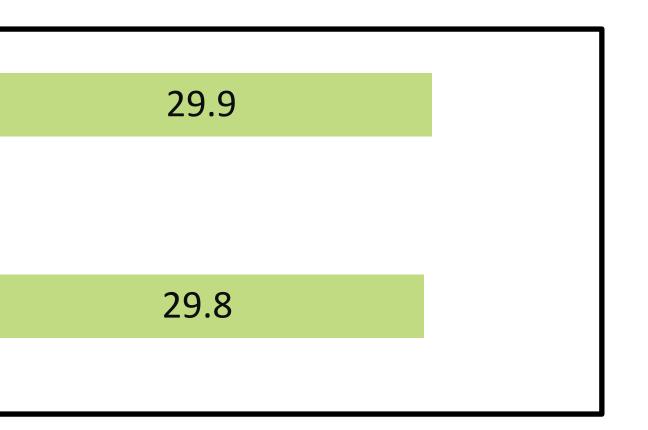
BLEU

Xu, Zhou, Gan, Zheng, Li. Vocabulary Learning via Optimal Transport for Neural Machine Translation. ACL 2021. ³⁶



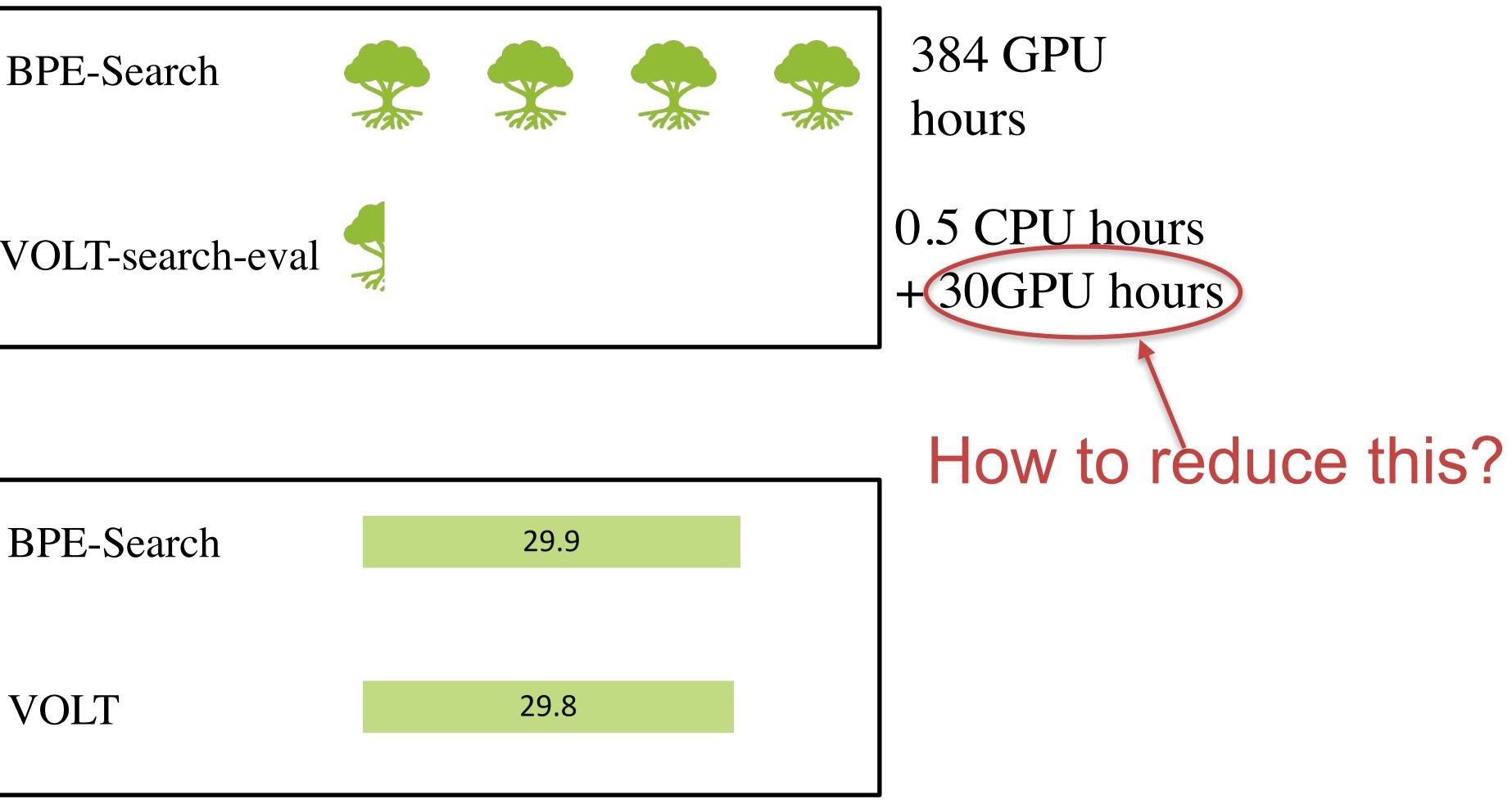
384 GPU hours

0.5 CPU hours



VOLT: A Green Vocabulary Learning Solution

Carbon Emission



VOLT-search-eval

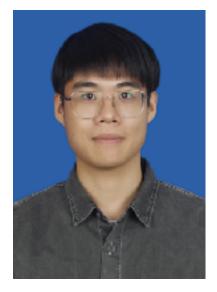
BPE-Search

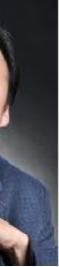
BLEU

VOLT

Glancing Transformer for Non-autoregressive **Neural Machine Translation**

Joint w/ Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin Qiu, Weinan Zhang, Yong Yu

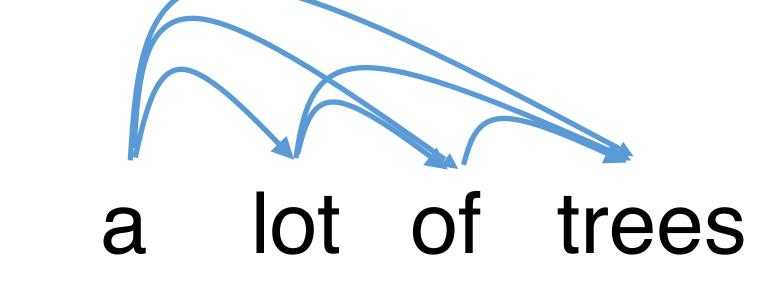




Autoregressive models generate sentences sequentially

很多树

- The conditional probability is factorized successively
 - $p(Y|X;\theta) = \mathbf{I}$
- Human-style translation is slow. Machine does not have to mimic human!



$$\prod_{t=1}^{T} p(y_t | y_{< t}, X; \theta)$$

Wild idea: Parallel Generation?

 Non-autoregressive models generate all the tokens in parallel a lot of trees 很多树

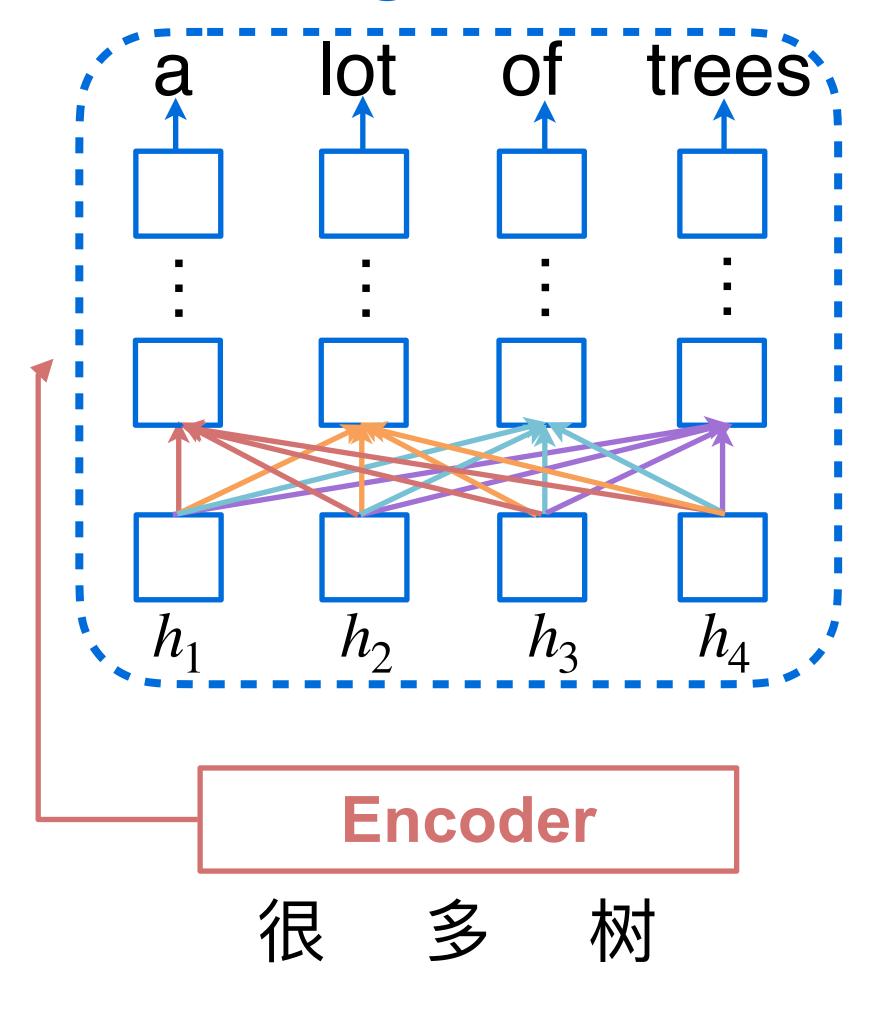
- Conditional independence assumption
 - $p(Y|X;\theta) =$

$$= \prod_{t=1}^{T} p(y_t | X; \theta)$$

Model architecture

lot of trees a a <BOS> **Encoder** 很 树 多

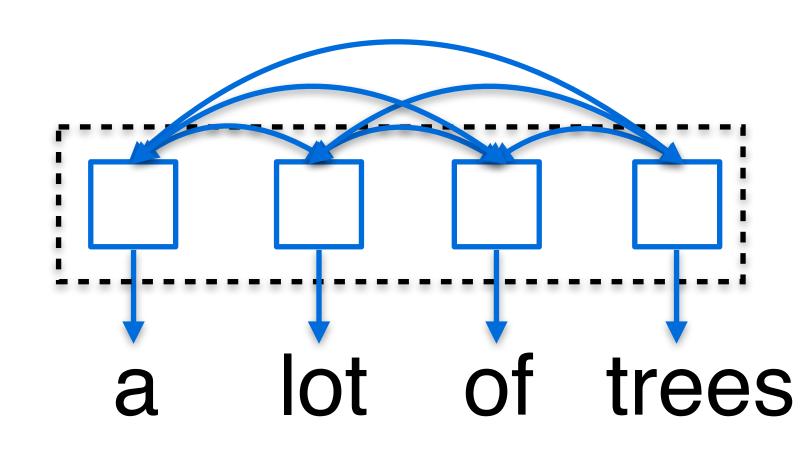
Autoregressive decoder Non-autoregressive decoder



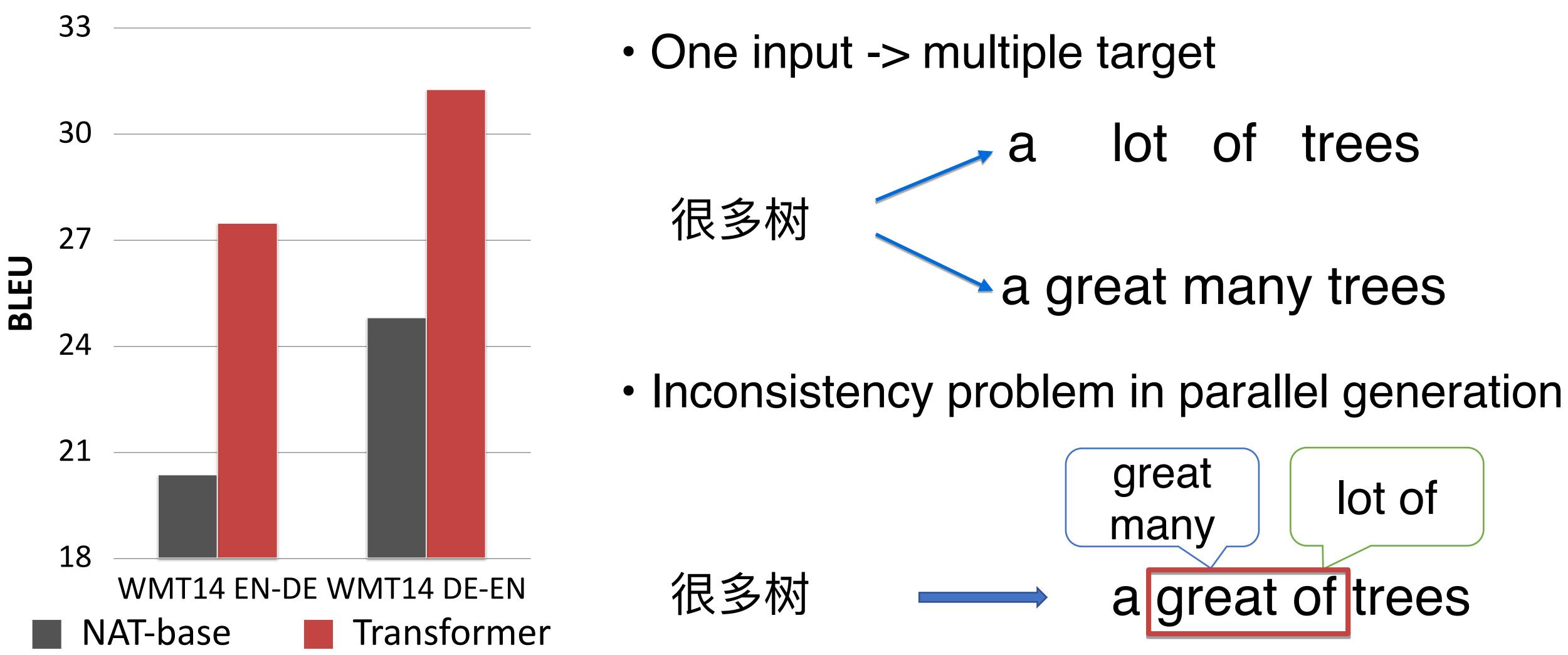
Gu et al, NAT, ICLR 2018

Why Non-autoregressive?

- Faster decoding in non-autoregressive translation (NAT)
 I I I I
 a lot of trees
- 2. Capturing bidirectional context for generation



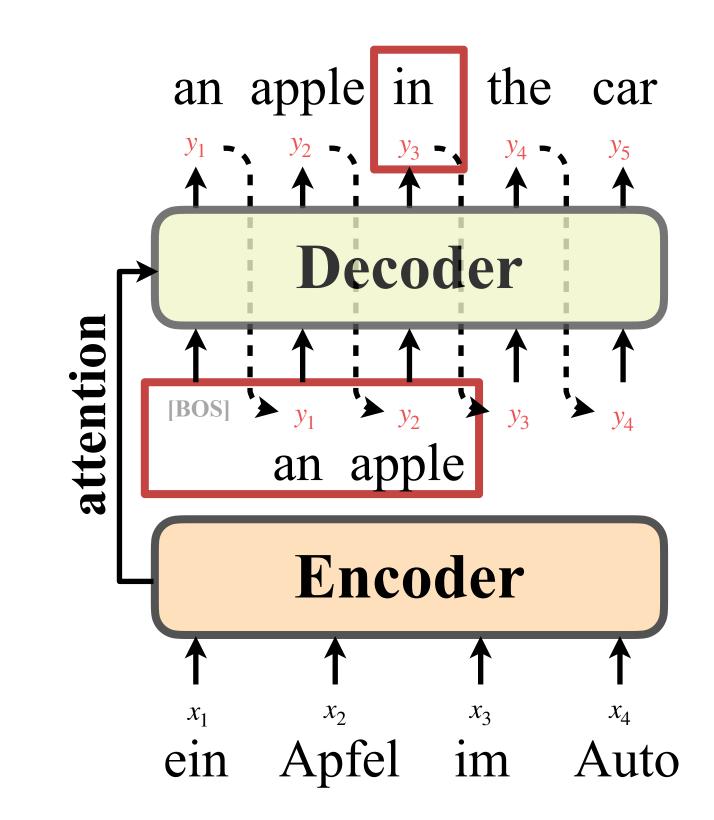
Challenge: Inferior Quality of NAT



Key Intuition: Word interdependency Learning word interdependency in the target sentence is crucial for generating fluent sentences Non-autoregressive models lack a effective way of

- dependency learning

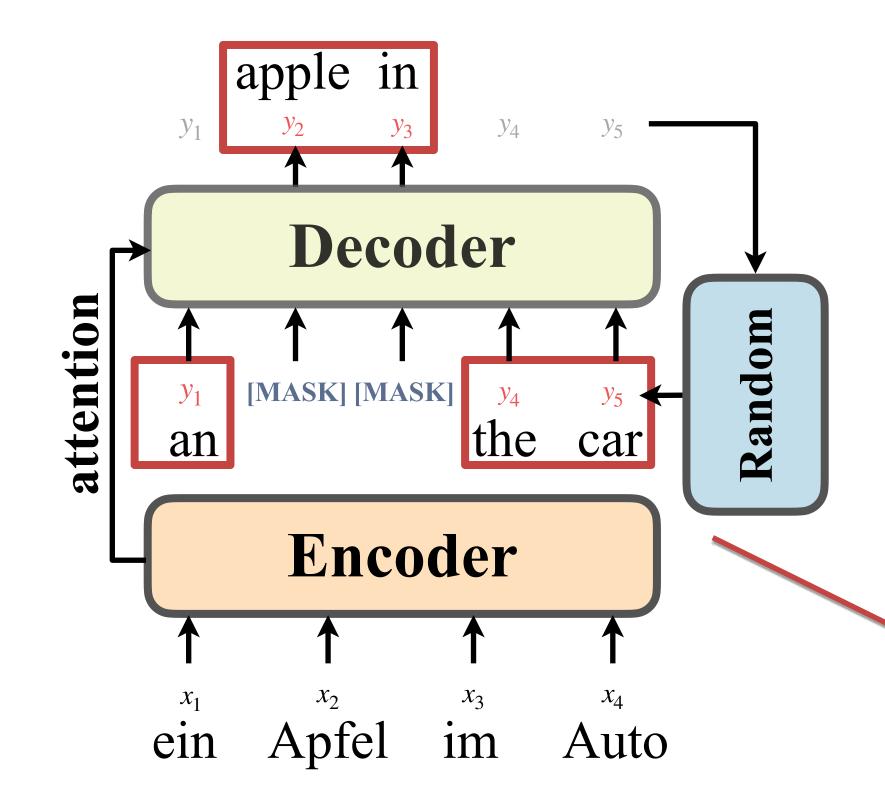
Learning Word Interdependency



Autoregressive models

 predict the next tokens conditioned on the input target tokens (left-to-right)

Learning Word Interdependency



Lee et al. Deterministic Non-Autoregressive Neural Sequence Modeling by Iterative Refinement. EMNLP 2018. Ghazvininejad et al. Mask-Predict: Parallel Decoding of Conditional Masked Language Models. EMNLP 2019. 46

Iterative-NAT

 predict the randomly masked tokens based on unmasked tokens

rely on multiple decoding iterations, therefore does not gain speedup!



- Glancing Language Model (GLM)
 - A gradual training method
 - •

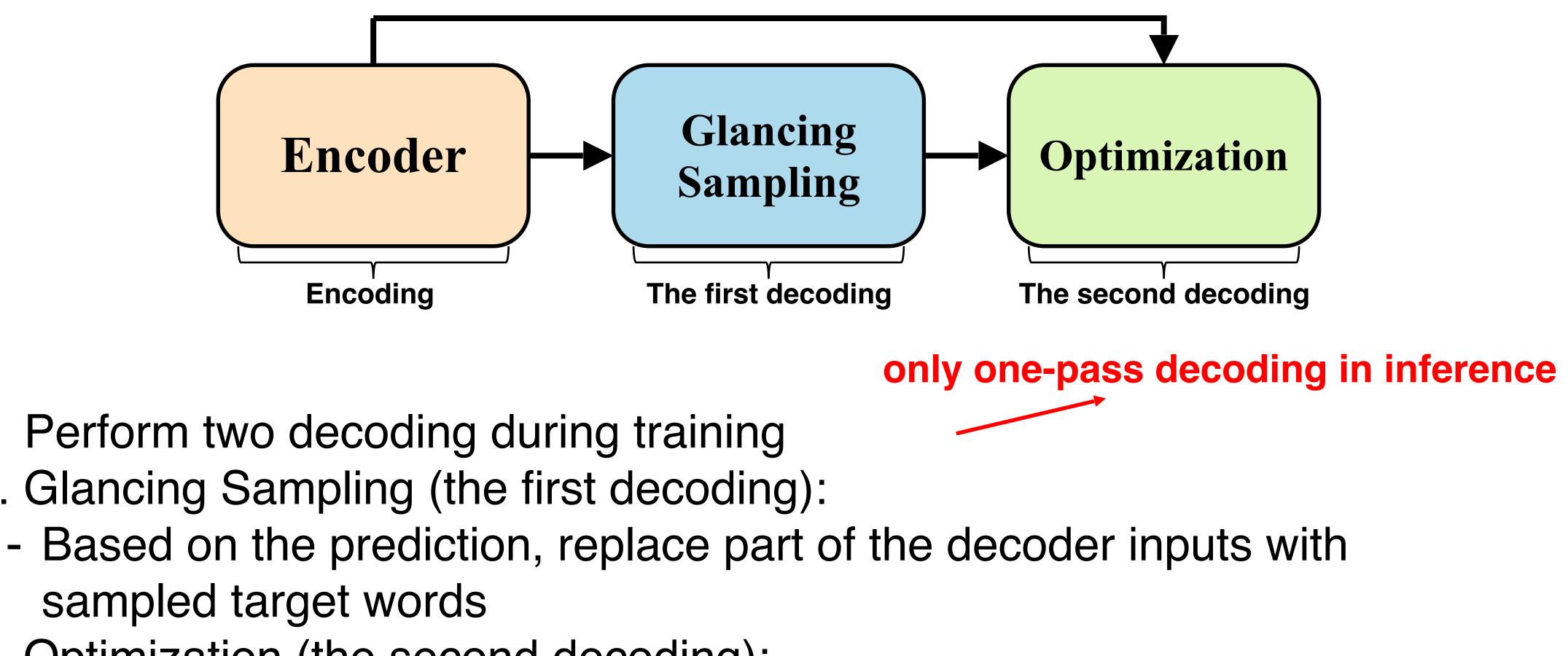
Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

 $L_{\theta} = -\log p(Y|X;\theta)$

Lack explicit target word interdependency learning

Learning word interdependency for single-pass parallel generation

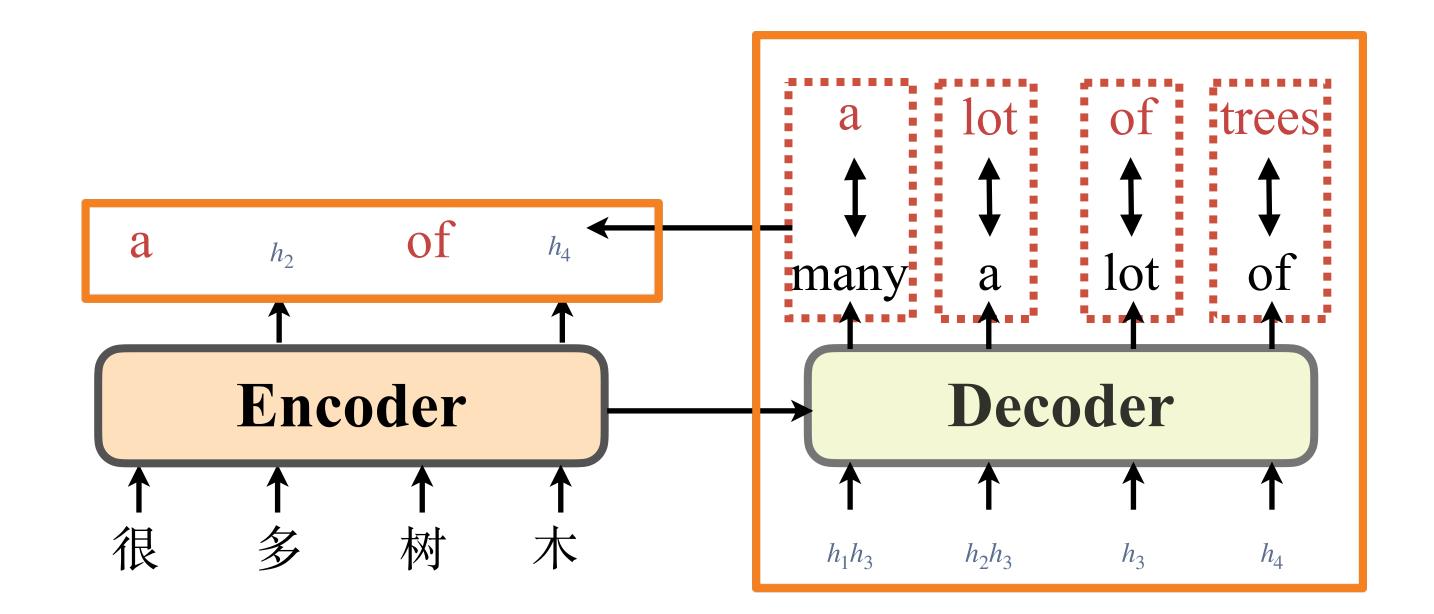
Glancing Language Model



- Perform two decoding during training
- 1. Glancing Sampling (the first decoding):
 - sampled target words
- 2. Optimization (the second decoding):
 - Learn to predict the remaining words with the replaced decoder inputs

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

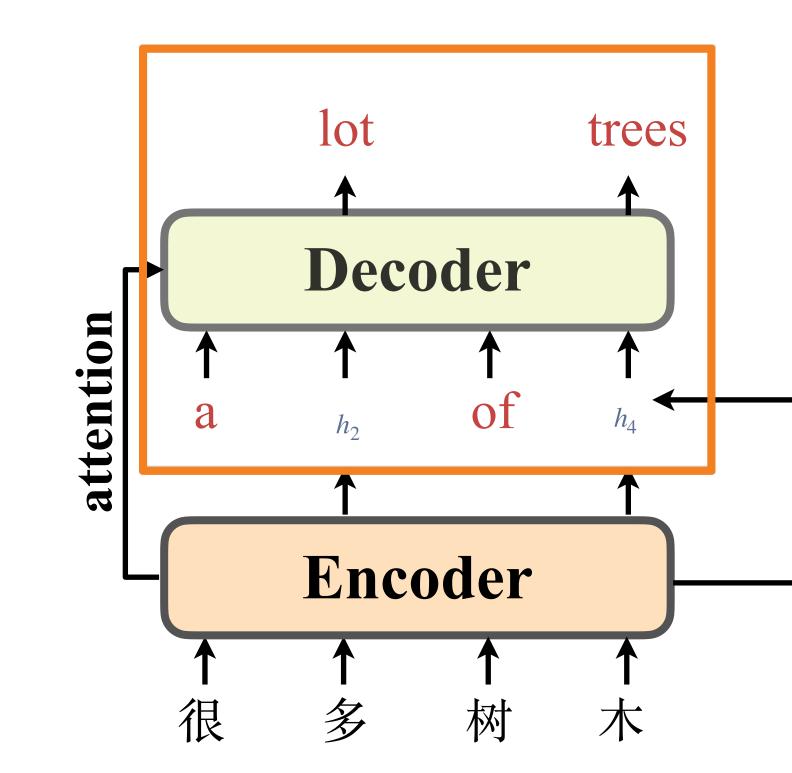
Glancing: Learning Dependency Gradually



Based on the prediction, replace part of the decoder inputs with sampled target words

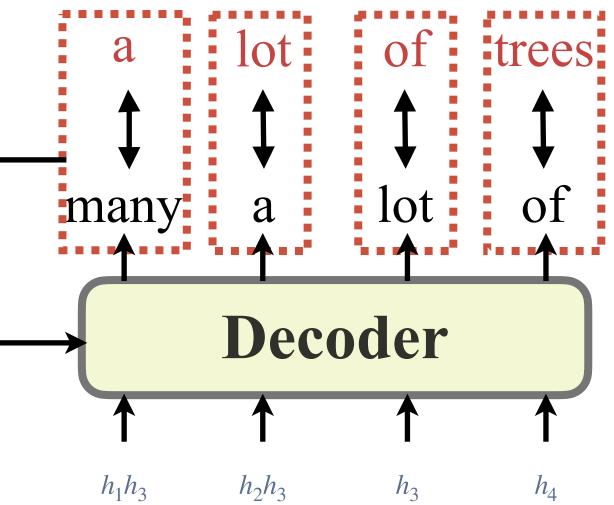
Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

Glancing: Learning Dependency Gradually

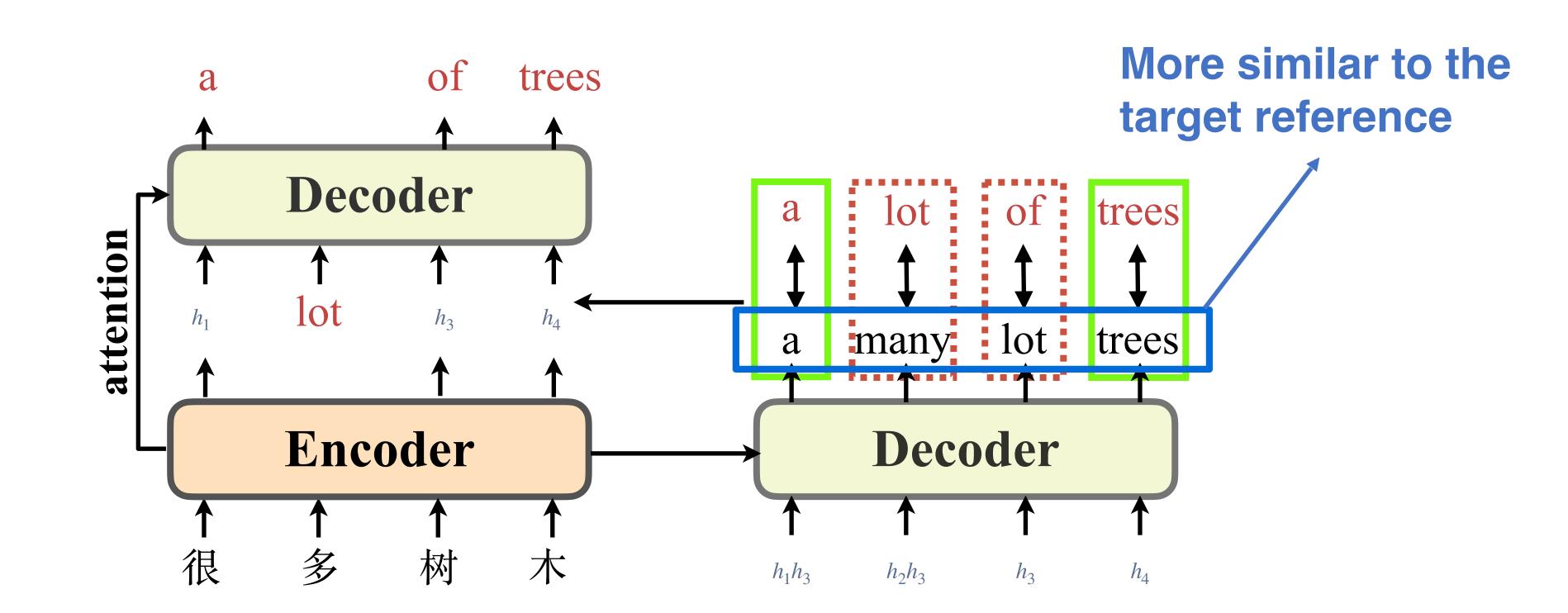


- Learn to predict the remaining words with the replaced decoder inputs

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.



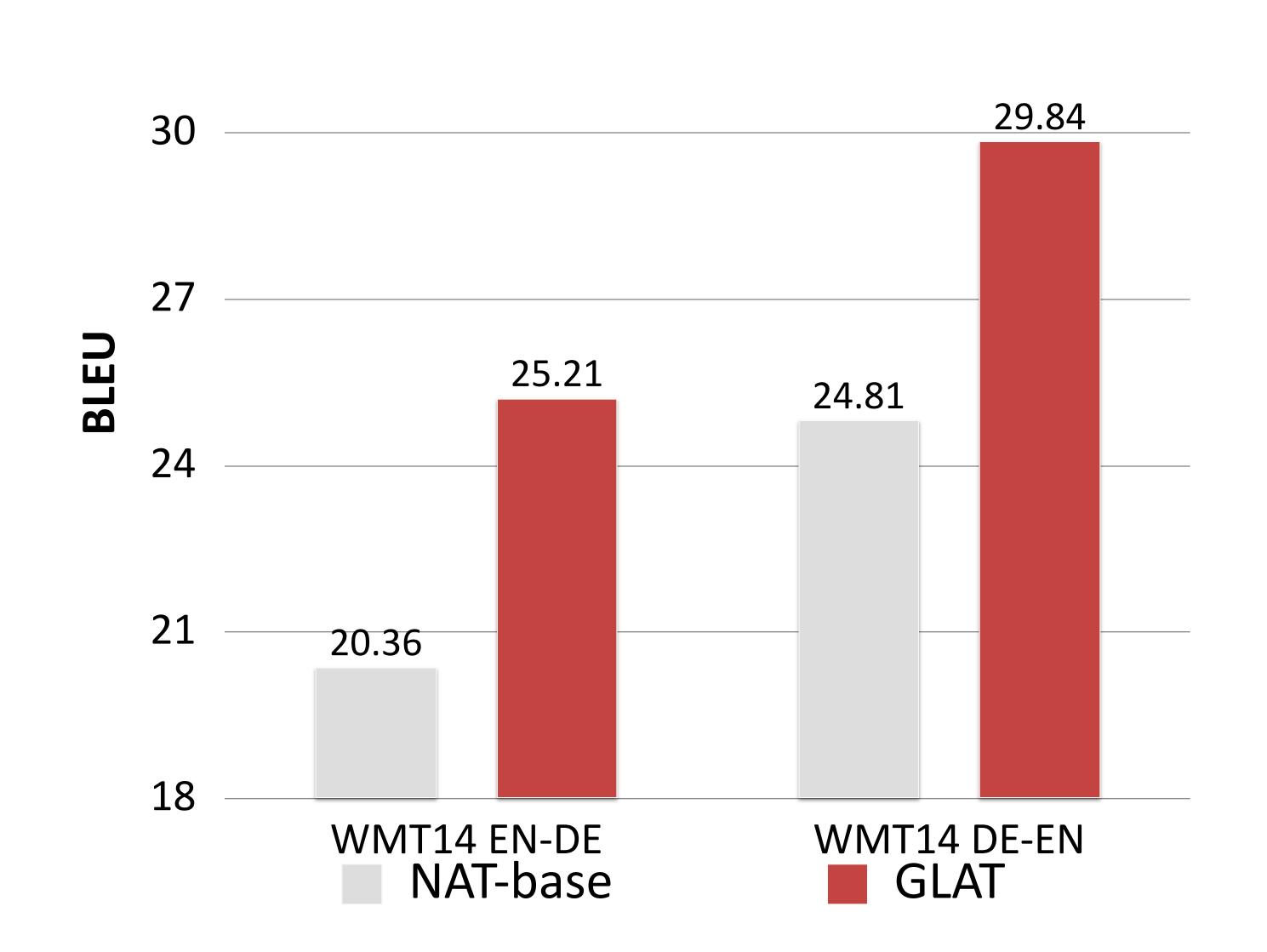
Glancing: Learning Dependency Gradually



Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

During training, the sampling number of target words decreases gradually.

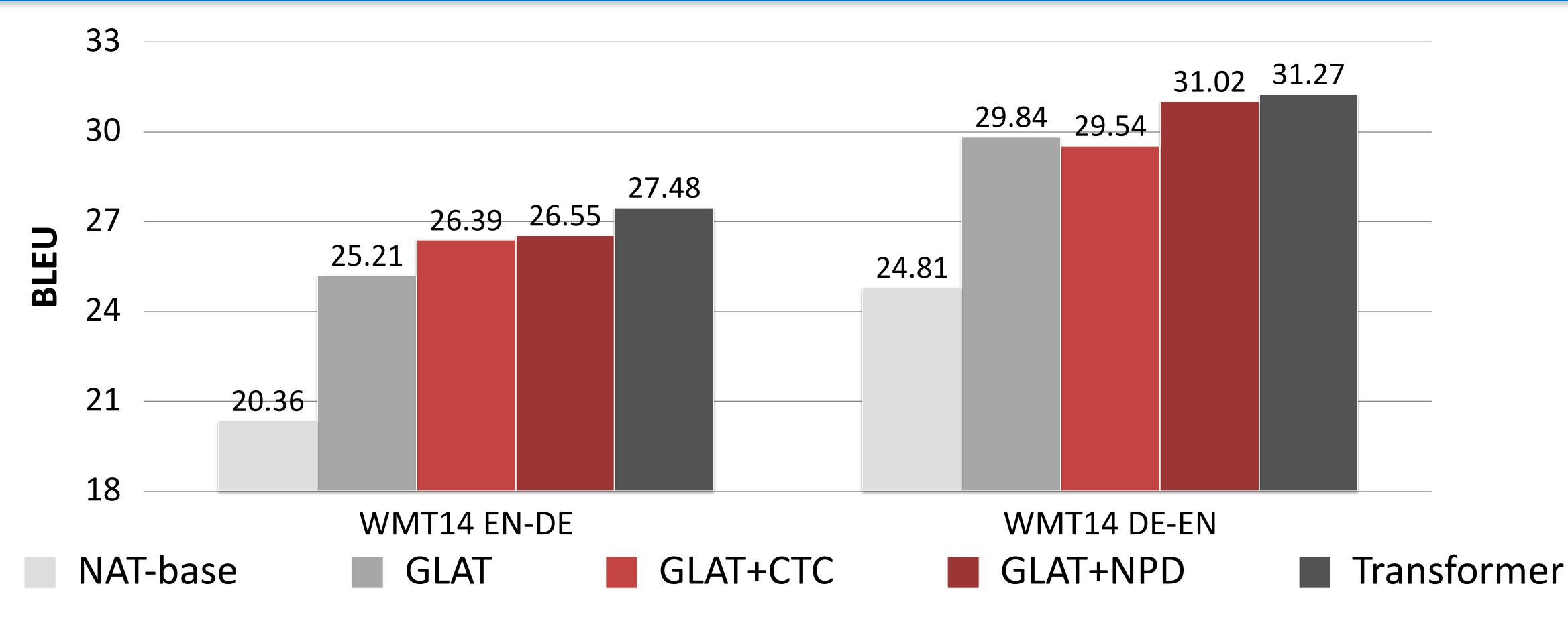
GLAT boosts Translation Quality significantly!



Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

+ 5 BLEU!

GLAT approaches Transformer quality!



GLAT achieves high quality translation while keeping high inference speed-up (8x~15x)

Qian et al. Glancing Transformer for Non-autoregressive Neural Machine Translation. ACL 2021.

The first NAT system to do so! newstest2021.en-de test set (en-de)

GLAT in Real Competition GLAT achieve the Top score in WMT21 En-De and De-En! newstest2021.de-en test set (de-en)

#	٥	Name	٥	BLEU
1		Anonymous submission #1276		35.0
2		Anonymous submission #1284		35.0
3		Anonymous submission #1304		34.9
4		Anonymous submission #1117		34.9
5		Anonymous submission #1258		34.9
6		Anonymous submission #1124		34.9
7		Anonymous submission #543		34.8
8		Anonymous submission #963		34.8
9		Anonymous submission #861		34.7
10		Anonymous submission #738		34.7

BLEU and ChrF are sacreBLEU scores. Systems in **bold face** are your submissior validation errors denoted by -1.0 score.

	# \$	> Name	🗘 BLEU
	1	Anonymous submission #1265	31.3
	2	Anonymous submission #1303	31.3
	3	Anonymous submission #1291	31.3
	4	Anonymous submission #804	31.3
	5	Anonymous submission #368	31.3
	6	Anonymous submission #1168	31.3
	7	Anonymous submission #1251	31.2
	8	Anonymous submission #986	31.2
	9	Anonymous submission #1310	31.2
	10	Anonymous submission #1243	31.2

BLEU and ChrF are sacreBLEU scores. Systems in **bold face** are your submissio validation errors denoted by -1.0 score.

Qian et al. The Volctrans GLAT System: Non-autoregressive Translation Meets WMT21. 2021.

GLAT is the first production NAT system! Already deployed online in VolcTrans and serving **English-Japanese** 40

35

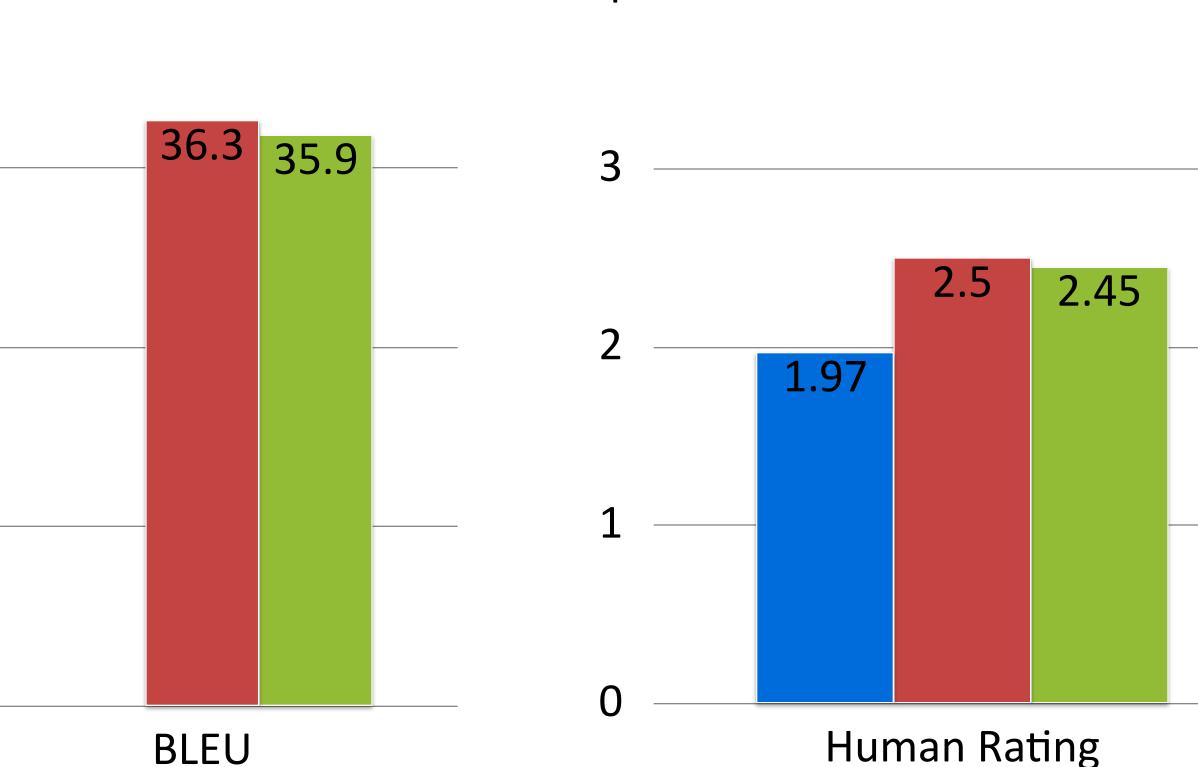
30

25

20

beautyera_ beautiful moment · 2019-12-23 you're bound to love this#nature #view #heavenonearth ♫ 原聲 - beautiful moment

liktok caption translation



Human Rating

火山翻译 Volctrans

LightSeq: A High Performance Library for Transformers

Joint w/ Xiaohui Wang, Ying Xiong, Yang Wei, Xian Qian, Mingxuan Wang and community contributors

Need for Hardware Acceleration

 What about Transformer computing? - Transformers are still widely used in many sequence processing

and generation tasks.

- Large number of parameters cause the high latency in training and inference.
- Current computation libraries are insufficient.

LightSeq: A high-performance library

- Efficient
 - PyTorch.

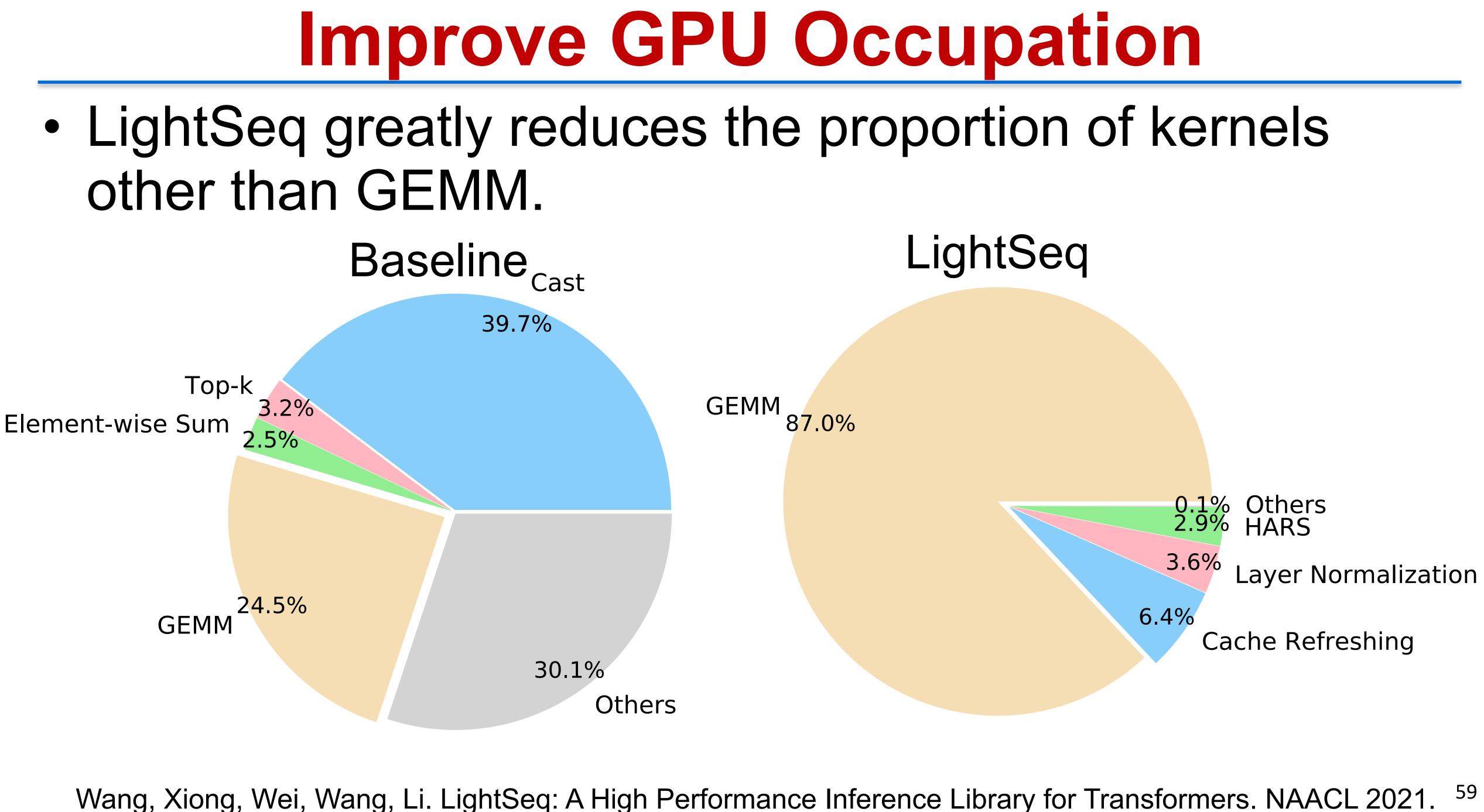
Functional

 LightSeq supports more architecture variants and different search algorithms.

Convenient

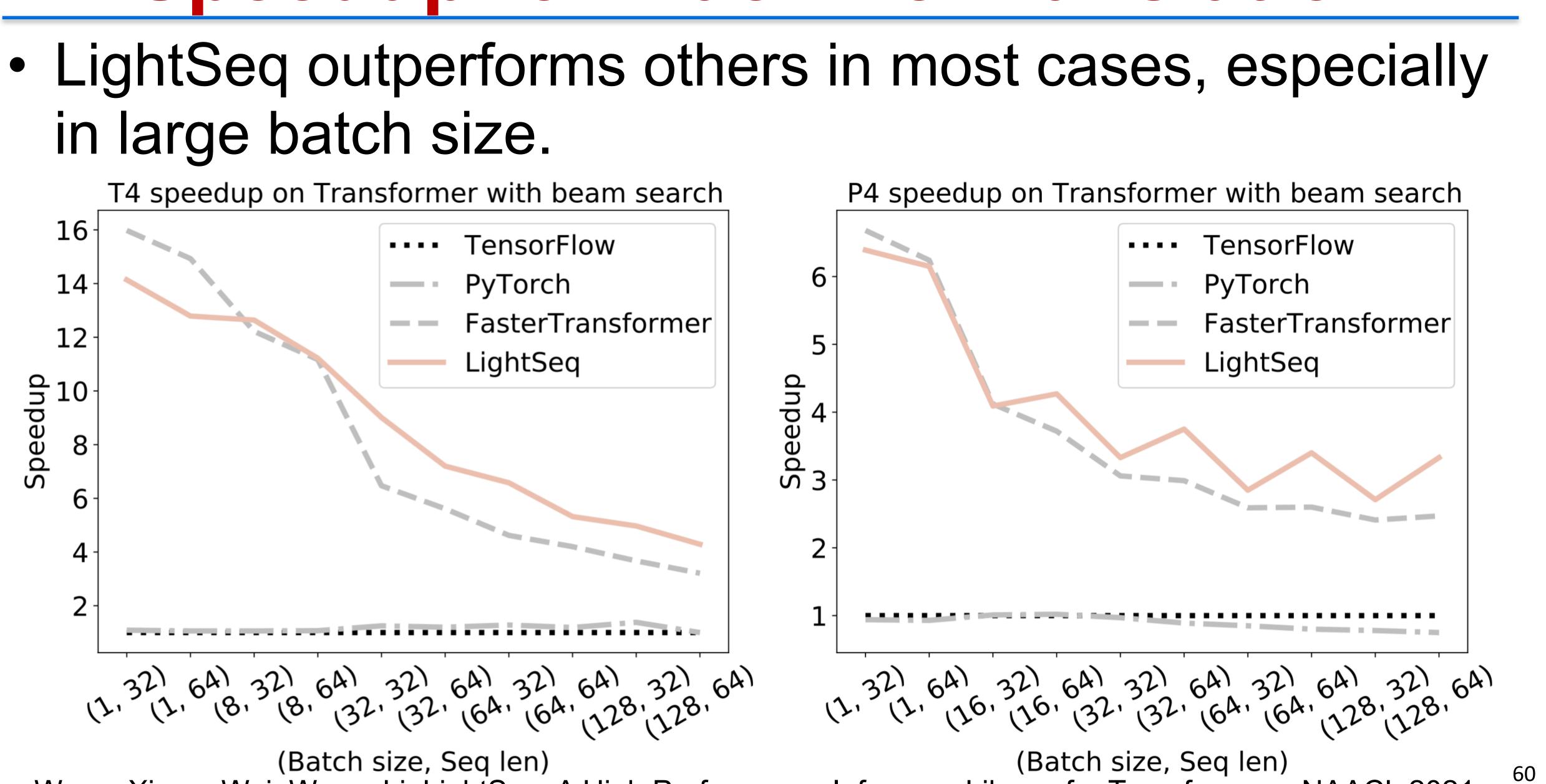
- LightSeq is easy to use without any code modification.
- Seemless porting from Tensorflow, Pytorch, Hugginface, Fairseq

LightSeq achieves up to 14x speedup compared with TensorFlow and



Speedup for Machine Translation

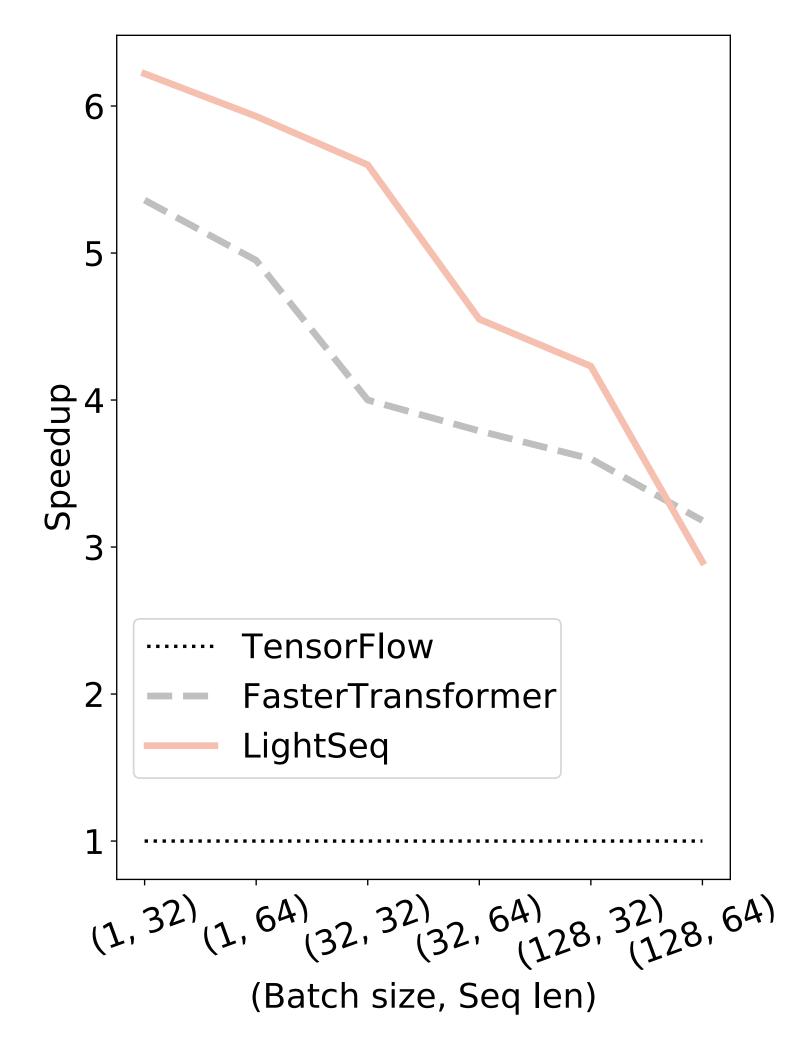
in large batch size.



Wang, Xiong, Wei, Wang, Li. LightSeq: A High Performance Inference Library for Transformers. NAACL 2021.

Faster Text Generation w/ LightSeq

LightSeq outperforms others in most cases



Wang, Xiong, Wei, Wang, Li. LightSeq: A High Performance Inference Library for Transformers. NAACL 2021.

- Algorithm: VOLT
 - Learning Compact Vocabulary for NMT
 - Small vocabulary with improved performance at 100x faster!
 - Green solution: 30mins on only one cpu.
- Model: GLAT
 - Parallel Generation really works for the first time! – Translate at equal or better quality with 10x speedup!

 - Deployed in production
- Computing: LightSeq
 - Hardware Acceleration for training and inference
 - 14x faster than Tensorflow & Pytorch!

Summary for Efficient MT

Towards Green MT

- Many challenges remaining!
- Propose new metric: Best value MT
 - GFlops or carbon footprint for model development
- Hardware acceleration for GLAT and other NAT?
- Low-end hardware?
- Taming the model size?

• Code:

- VOLT: <u>https://github.com/Jingjing-NLP/VOLT</u>
- GLAT: <u>https://github.com/FLC777/GLAT</u>
- Open Source Library

Light eq Transformer fast training Speech and Text and inference lib

GurST **Translation Toolkit**

Thanks!

Contact: lilei@cs.ucsb.edu

CCMT 2021/10/9

13:55–14:20	报告2 预训练时代的机器翻译 王明轩
14:20–15:10	机器翻译前沿趋势Panel(嘉宾: 王瑞 王明轩 李军辉 孟凡东
15:25–15:40	机器翻译多媒体领域的实践和探索 刘坚(字节跳动)

CCMT 2021/10/10

10:48-11:50	Panel 2端到端语音翻译的研究与应用(主持人:黄辉; 嘉宾:张家俊 刘树杰 熊德意 何	
15:40-15:55	报告1 绿色词表学习: ACL论文背后的故事 许晶晶	
16:10-16:25	报告3 敢想+敢拼:记一次用并行生成参加WMT的经历 周浩	

