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Takeuti’s Parametricity Logic

These are notes on Takeuti’s paper An Axiomatic System of Parametricity,
Fundamenta Mathematicae 33 (1998) 397–432. A slight restriction of the same
logic appears in Wadler’s paper The Girard-Reynolds Isomorphism (second edi-
tion). Takeuti’s logic is itself a reformulation of the system presented in Plotkin
and Abadi’s paper A logic for parametric polymorphism.

It seems that for any point on the λ-cube, one can derive an associated logic
in Takeuti’s style. The basic idea is to duplicate the constructs of the λ-calculus
at the level of the logic, then to add more abstractions so that proofs can be
parameterized over the constructs of the λ-calculus. Finally, extra abstractions
are introduced to allow propositions to depend on the constructs of the λ-
calculus (in Takeuti’s system, only the terms, but in general one might allow
predicates over types, too).

I’ll characterize the systems by giving the formation judgments only. Each
well-formed function space has abstraction and application terms as usual, with
β-reductions and so on. I’ll also suppress most of the contexts; hypotheses are
always global to the subderivation above the rule where they’re introduced, so
there’s no need to mention them all the time.

On the left we have the calculus Barendregt calls λ2; it’s just the polymor-
phic λ-calculus expressed as a generalized type system. On the right we have the
logic (initally another copy of λ2). I’m deliberately choosing the same letters for
like constructs on both sides: the charm of Takeuti’s system is in the stunning
number of interesting morphisms between the left- and right-hand sides, all
taking advantage of this analogy.

` Type : Kind ` Prop ∈ Class

` A : Type ` B : Type
` A→ B : Type

` φ ∈ Prop ` ψ ∈ Prop
` φ ⊃ ψ ∈ Prop

` K : Kind a : K ` B : Type
` ∀a : K . B : Type

` κ ∈ Class α ∈ κ ` φ ∈ Prop
` ∀α ∈ κ . φ ∈ Prop

The logic will be higher-order and impredicative, because it allows us to quan-
tify over propositions; for example, we can define absurdity as ∀α ∈ Prop . α.



However, the logic will not be impredicative in the same way HOL is, because
HOL identifies Class and Type (so every proposition or predicate is also a term),
while Takeuti carefully keeps them separate. In fact, HOL with polymorphic
types is inconsistent, as was shown by Girard (and later, for an even weaker
system, Coquand).

Next we introduce function spaces that allow proofs in the logic to abstract
over terms and constructors in the λ-calculus.

` A : Type x : A ` φ ∈ Prop
` ∀x : A . φ ∈ Prop

` K : Kind a : K ` φ ∈ Prop
` ∀a : K . φ ∈ Prop

As it stands, the dependency in ∀x : A . φ is useless, because propositions
cannot depend on terms. We want to also allow functions that map terms
and constructors into propositions. By analogy with the higher-order polymor-
phic λ-calculus, we introduce extra terminology for elements of these function
spaces, calling them predicates. For example, an element of A → B → Prop is
a predicate but not a proposition. The following analogical glossary may help.

Term M Proof π
Type A Proposition φ

Constructor A Predicate φ
Kind K Class κ

Takeuti includes only the rule for predicates on terms. I’ve shown the other
rule (for predicates on constructors) in brackets.

` A : Type ` κ ∈ Class
` A→ κ ∈ Class ` K : Kind a : K ` κ ∈ Class
` Πa : K . κ ∈ Class
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Now both ∀x : A . φ and ∀a : K . φ can actually be dependent—the latter in
multiple ways—even if we only adopt Takeuti’s rule. Example:

∀x : (∀a : K . B) . ∀a : K . ∀y : a . ∀α ∈ (a→ B → Prop) . α y (x a)

At the moment, the only element of Kind is Type, so the only polymorphic
function space is ∀a : Type . B. It’s also possible to extend both the λ-calculus
and the logic to ωth-order polymorphism (what Barendregt calls λω). Takeuti
doesn’t do this. ` K : Kind ` L : Kind

` K → L : Kind

2  ` κ1 ∈ Class ` κ2 ∈ Class
` κ1 → κ2 ∈ Class
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We can present these systems as generalized type systems in Barendregt’s
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sense: Sorts Type, Kind, Prop, Class
Axioms Type : Kind, Prop : Class
Rules (Type,Type), (Prop,Prop),

*(Kind,Type), *(Class,Prop),
*(Type,Prop),
*(Kind,Prop),
(Type,Class),

* [(Kind,Class)]1 ,
[(Kind,Kind)]2 , [(Class,Class)]2

This isn’t entirely trivial. In the table, I’ve marked each formation rule that
permits dependencies with a star. We have to consider carefully which depen-
dencies might be possible in the g.t.s. setting. (In the logical frameworks world
this is called subordination analysis—see the Twelf User’s Guide, for example.)
For each rule (s1, s2) we have to see whether an element of s2 can depend on an
element of an element of s1. Each rule (s1, s2) introduces such a dependency of
the elements of s2 on the elements of s1, as well as of the elements of elements
of s2 on the elements of elements of s1.

By this reasoning, we have the following dependency structure:

Things Depend on

Terms Terms, Constructors (directly)
Kinds (transitively)

Constructors Constructors, Kinds
Kinds Kinds

Proofs Proofs, Predicates, Terms, Constructors (directly)
Classes, Kinds (transitively)

Predicates Predicates, Classes, Terms, Constructors, Kinds
Classes Classes, Constructors, [Kinds]1

With this table, it’s easy to verify that whether or not any of the bracketed
rules is included in the system, all the dependencies mentioned in the formation
rules can really be non-trivial. Conversely, the formation rules (Type,Type),
(Prop,Prop), (Type,Class), [(Kind,Kind)]2, and [(Class,Class)]2 can never be
dependent, as the full forms given above indicate.

It should probably also be said that if we work within a signature made up
of various constants, the constants all have to be elements of things that are
themselves elements of sorts; we can’t introduce constants c : Kind or c ∈ Class,
for example.

Having done all this analysis, we can now write the actual syntax of the logic:
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K,L ::= Type | [K → L]2 κ ::= Prop | [κ1 → κ2]2 |
A→ κ | [Πa : K . κ]1

A,B ::= a | A→ B | ∀a : K . B | φ, ψ ::= α | φ ⊃ ψ | ∀α ∈ κ . φ |
[λa : K . B]2 | [AB]2 ∀x : A . φ | ∀a : K . φ |

[λα ∈ κ . φ]2 | [φ ψ]2 |
λx : A . φ | φM |
[λa : K . φ]1 | [φ A]1 |
[φ ∈ κ]2

M,N ::= x | λx : A .M |M N | π ::= ξ | λξ ∈ φ . π | π1 π2 |
Λa : K .M |M A | Λα ∈ κ . π | π φ |
[M : A]2 Λx : A . π | π M |

Λa : K . π | π A |
π ∈ φ

Variable forms a : K | b : K | x : A | y : A | α ∈ κ | β ∈ κ | ξ ∈ φ | ζ ∈ φ
Now you see why I wanted to suppress all but the formation rules...

Really the most important thing to remember is the table of sorts, axioms,
and rules expressing the logic as a generalized type system.

Projecting the Logic Onto the Functional Language

The first interesting morphism on this logic maps all the constructs on the
right (the logical part) into the constructs on the left (the functional part), and
throws away everything to do with the constructs on the left. Wadler calls this
the ‘Girard Projection’, but since Girard treated HOL (more or less), and its
variants, not Takeuti’s system, this seems to me to be something of a misnomer.

Recalling our g.t.s. table

Sorts Type, Kind, Prop, Class
Axioms Type : Kind, Prop : Class
Rules (Type,Type), (Prop,Prop),

*(Kind,Type), *(Class,Prop),
*(Type,Prop),
*(Kind,Prop),
(Type,Class),

* [(Kind,Class)]1 ,
[(Kind,Kind)]2 , [(Class,Class)]2

it’s easy to see what’s going on: we’re mapping Prop into Type and Class into
Kind, the function space formed by (Prop,Prop) into (Type,Type), (Class,Prop)
into (Kind,Type), and (Class,Class) into (Kind,Kind). Each thing on the right
becomes its counterpart on the left.

But what about the things in the logic that don’t have counterparts in
the functional language? These just get dropped. A function space formed by
(Type,Prop) becomes (the translation, recursively, of) its range. Similarly for
the others. This is possible because of the dependency structure of the language.
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Each of the function spaces that gets smashed has a domain in the functional
language (which is getting dropped) and a range in the logic (which is translated
recursively).

Yadda, yadda, yadda...

Embedding the Functional Language in the Logic

The next interesting morphism takes a program in the functional language on
the left, and lifts it into a proof in the logic on the right. Wadler calls this (with,
I believe, more justice) the ‘Reynolds Embedding’.

Yadda, yadda, yadda...
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