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Abstract

One of the main barriers to automating a particular task
with a robot is the amount of time needed to program the
robot. Decreasing the programming time would facilitate
automation in domains previously off limits. In this pa-
per, we present a novel method for leveraging the previ-
ous work of a user to decrease future programming time:
predictive robot programming. The decrease in program-
ming time is accomplished by predicting waypoints in
future robot programs and automatically moving the ma-
nipulator end-effector to the predicted position. To this
end, we have developed algorithms that construct sim-
ple continuous-density hidden Markov models by a state-
merging algorithm based on waypoints from prior robot
programs. We then use these models to predict the way-
points in future robot programs. While the focus of this
paper is the application of predictive robot programming,
we also give an overview of the underlying algorithms
used and present experimental results.

1 Introduction and Motivation

Programming a manipulator robot is an arduous task.
A typical robot program consists of three main com-
ponents: a sequence of positions through which the
robot must travel, conditional branching statements,
and process-specific instructions. Of these constituent
problems, users spend the bulk of their time merely
defining the sequence of positions, called waypoints.
While critical to the success of all robot programs, defin-
ing the waypoints is currently an overly complex and
time-consuming process.

Robot programming has evolved into two mutually ex-
clusive paradigms, offline and online programming, each
having its advantages and disadvantages. In offline pro-
gramming, users move a simulated version of the robot
to each waypoint using a CAD model of the workspace.
In online programming, users move the robot itself to

each waypoint using some type of control device in the
actual workspace.

Offline-programming packages allow users to design a
robot program in simulation without bringing down
production and can optimize according to almost any
imaginable criterion. Typical optimizations involve pro-
duction speed, material usage, and power consump-
tion. Offline packages generally require that programs
be written in a sophisticated procedural-programming
language. The transfer of the offline program to the
robot controller requires translating the offline program-
ming language to a form that the robot can understand.
Not surprisingly, arcane problems can occur during this
translation, especially with process-specific instructions,
controller models, and inverse kinematics. To achieve
the high accuracy required in many applications, the
physical workspace must be well calibrated with the sim-
ulated environment. Otherwise, online fine-tuning will
be needed, which detracts from the largest benefit of
offline programming: lack of production downtime.

Despite the advantages of offline packages, online pro-
gramming is, by far, more commonly used in practice.
In online programming, an actual part is placed in the
workspace exactly as it would be during production and
the user moves the end-effector between waypoints us-
ing some type of control device, typically a joystick
or push buttons. Even though online systems gener-
ate procedural-programming code, users can create way-
points without editing this code and, as a result, is typi-
cally viewed as less intimidating and more intuitive than
offline programming. One potentially extreme disadvan-
tage of online systems is that production and program-
ming cannot occur in parallel, meaning production must
be halted during reprogramming. If reprogramming
cannot be completed during normal downtime, such as
weekends, then the company will incur cost in the form
of lost production. Therefore, the set of tasks viable
for online programming is constrained by programming
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time. A reduction in programming time would permit
robots into areas previously off limits. Although users
generally view online programming as less intimidating,
they still spend an inordinate amount of time simply
moving the robot between waypoints instead of trans-
ferring any real knowledge. Furthermore, due to the
difficult robot-positioning process, users tend to discard
their previous work and create waypoints from scratch
every time. This is very wasteful since robot programs
tend to contain repeated subtasks and product designs
contain many similarities to previous designs.

We have developed a Predictive Robot-Programming
(PRP) system that allows users to leverage their previ-
ous work to decrease future programming time. Specif-
ically, this system aims to assist users by predicting
where they may move the end-effector and automati-
cally positioning the robot at the predicted waypoint.
The premise of PRP is that previous actions are useful
in predicting the future. This is usually the case since,
as mentioned earlier, robot programs tend to contain
many similarities and common patterns. Complicating
any prediction scheme is the inherent imprecision and
poor repeatability of humans. Even with perfectly ac-
curate sensors there will be uncertainty as to what task
the user was trying to perform. Thus, any PRP system
must incorporate the notion of uncertainty during its
operation and our PRP system directly addresses un-
certainty during both modeling and prediction.

In Section 2 we give an overview of the key ideas behind
modeling and predicting user actions. We describe the
learning algorithm in Section 3, the prediction scheme in
Section 4, and present experimental results in Section 5.
We place this research in the context of related work in
Section 6 and give conclusions in Section 7.

2 Modeling and Prediction

Conceptually, the PRP system operates in two distinct
phases (Figure 1). In the first phase, the PRP system
constructs a statistical model based on prior observa-
tions of user actions. During the second phase, the PRP
system computes predictions of future user observations
based on the model. There are several difficulties in
predicting and synthesizing user actions. Observations
obtained from sensors are, in general, noise corrupted
since all sensors have uncertainty associated with them.
However, the primary difficulty of predicting user ac-
tions is the inherent imprecision and poor repeatability
of humans. Even with perfectly accurate sensors there
will be uncertainty as to what task the user was trying
to perform. It is also unfeasible to instrument fully any
realistic working environment and, as a consequence,
there will be latent causes, or hidden variables, for cer-
tain user actions. In our model, we view these short-
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Figure 1: Conceptual diagram of the operation of the
PRP system. First, create a statistical model of user
actions from prior observations. Second, use the model
to compute predictions of future observations.

comings as sources of uncertainty and user observations
are considered noise corrupted. A robot program can
be described by the sequence of waypoints that specify
the location and orientation of the end-effector. In the
PRP domain, the user observations are the waypoints of
robot programs, which are real-valued vectors sampled
at discrete time intervals. Sequences of user observa-
tions are called tasks and the unknown set of all possible
tasks that the user may perform is called the repertoire.
Informally, the user generates a robot program by first
selecting a task from the repertoire according to an un-
known a priori distribution. When performing a task,
each user observation is generated by some hidden state
of the task. We assume that the user moves between
states in the task according to a stationary, but arbi-
trary, probability distribution that depends only on the
current state of the task. Since users tend not to think
in terms of latent random processes, it is impractical
to require a user to describe which internal state gener-
ated a given observation. Therefore, user observations
are unlabeled in the sense that there is no “ground-
truth” mapping between user observations and inter-
nal state. Since the internal states of the user are un-
known and all information is conveyed to our system via
noise-corrupted real-valued observations, we model user
actions as Continuous-Density Hidden Markov Models
(CDHMMs).

General-purpose six degree-of-freedom (6DOF) manip-
ulators can be described by a Cartesian-space loca-
tion and orientation of the end-effector. Using this
Cartesian-space end-effector description, a waypoint is
given by the homogeneous coordinate transform ma-
trix Gwn that maps some global reference frame G
to the frame of the nth waypoint. A robot program
can be described by the sequence of waypoints W =
{Gw0,

Gw1, . . . ,
GwN} that specify the location and ori-
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Figure 2: Though different in a global frame, G, the
relative movement of these patterns are the same.

entation of the end-effector at discrete intervals. The
relative change between waypoint m and waypoint n is
mwn = mwG

Gwn, where Gwn is premultiplied by the
inverse transform mwG. A relative-waypoint program is

written as W̃ = {0w1,
1w2, . . . ,

N−1wN} and describes
the relative change between sequential waypoints. Spec-
ifying robot programs by their relative-movement infor-
mation, instead of absolute positions, has the distinct
advantage of yielding rotation and translation indepen-
dence. For example, the two robot programs shown
in Figure 2 are quite different in absolute terms, but
have the same relative-movement description. Using
this relative-waypoint representation, the PRP system
is able recognize patterns and predict waypoints inde-
pendent of rotation and translation. Homogeneous co-
ordinate transforms are derived and discussed in many
references such as [3].

3 Creating the Model

In this section, we describe how observations from dis-
parate tasks are assimilated into a common model rep-
resenting the repertoire of the user. Essentially, the
algorithm operates by first building the maximal-state
Directed Acyclic Graph (DAG) suggested by the prior
user observations and then repeatedly merges statisti-
cally similar states so that a simple CDHMM results
(Figure 3). While not given in this paper, it can be
shown that this algorithm produces CDHMMs with an
irreducible number of states and is a type of locally min-
imal graph (a more formal derivation and proof is given
in [4] along with the computational complexity of the
learning algorithm). Creating simple CDHMMs, such
as those produced by this algorithm, are of particular
importance in domains such as PRP, where the avail-
ability of training data is severely limited. By creating
simple models, the algorithm has fewer tunable parame-
ters to assign and can be successfully trained on smaller
data sets.

The set of prior observations to the state-merging
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Figure 3: Hypothetical DAG before assimilating the set
of prior observations (left) and after state-merging algo-
rithm (right).

CDHMM algorithm is the set of robot programs cre-
ated by users. We make no restrictions that the pro-
grams correspond to the same physical task (e.g. paint-
ing a car or arc welding a boat hull). The programs can
describe fundamentally different physical tasks and can
have different numbers of waypoints. For convenience,
we rewrite each relative waypoint into a stacked column
vector, xn = vec(n−1wn). To determine if two states,
vi and vj , are similar we form the hypothesis that the
multisets of observations assigned to the states, Xvi and
Xvj , were drawn from the same distribution, in other
words created by the same latent state in the repertoire
of the user. The similarity hypothesis is accepted if

Pr
{
d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉) ≤ ε

}
> 1− δ, (1)

where 〈A〉 is the sample mean of the multiset A, ε ∈
[0,∞) is a non-negative threshold, and δ ∈ (0, 1] is the
probability of rejection. In our work, the distance metric
from Equation 1 is defined as

d(A,u) ,
∑

x∈A
(x− u)

T
Σ−1(x− u),

which is a sum of squared Mahalanobis distances. If we
assume that user errors follow a Gaussian distribution,
we can compute ε as a function of δ from

ε ∈
{
y

∣∣∣∣
δ

2
= Q(y)

}
, (2)

where Q(y) is the area under a zero-mean unit Gaus-
sian from y to infinity (Q(y) =

∫∞
y
N (0, 1)dt),

and has a unique solution. Therefore, if
d(Xvi ∪Xvj , 〈Xvi ∪Xvj 〉) ≤ ε, then the states vi
and vj are merged, yielding a simpler model and the
merged node is assigned the union of the two multisets
of observations, Xvi ∪ Xvj . After all similar states are
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merged, the observation-generation pdf for each state is
based on the statistics of the observations assigned to
the state. The transition probabilities between states
are found by simple frequency counts.

4 Predicting The Future

Once the model is created, the PRP system computes
predictions of future waypoints while the user is pro-
gramming a new task. Since many robot programs
contain repeated subsequences, we compute predictions
based on a horizon, h, of observations from the cur-
rent task and discard observations beyond the horizon.
Prediction can be based on many criteria, such as Maxi-
mum Likelihood (ML) etc., and in this work we compute
the Expected Value (EV) of future waypoints. Given a
model and observations from the current task, the ex-
pectation of the next observation is

x̂n = E
cn
{x}= E

cn

{
E

x|cn{x}
}
. (3)

The prediction, x̂n, represents the expected change in
position of end-effector from its current position, based
on the estimated repertoire of the user. The complete
derivation for the computation of Equation 3 is given
in [4], but we summarize it here. Using standard HMM
notation (i.e. [6]), aj|i is the transition probability from
state i to state j, bj(x) is the likelihood of observation

x in state j, and αjn−1 is the conjunctive likelihood of
being in state j at time n−1 and observing the current
task. Using this notation, Equation 3 can be computed
as

x̂n
·
=
∑

j

∑
i

aj|iαin−1

∑
k

αkn−1

︸ ︷︷ ︸
(?)

∫

x

xbj(x)dx

︸ ︷︷ ︸
(�)

. (4)

Essentially, Equation 4 states that the expectation of
the next observation is the sum of expected values of
each state (�), weighted by the probability that the
state generates the next observation given observations
from the current task (?). Computing (�) is usually
straightforward as many distributions are parameter-
ized by their mean and (?) can be computed at typical
dynamic-programming costs.

Regardless of the criterion used (EV, ML, etc.), a pre-
diction will exist even if the observations are not consis-
tent with the estimated repertoire. Prediction schemes
must incorporate a value that indicates how confident
the system is in its prediction. The confidence value,
φn ∈ [0, 1], should indicate the internal model uncer-
tainty arising from observing the current task. Confi-
dence of φn = 1, indicates that the observations fit per-
fectly with the model, while φn = 0 indicates minimum

Figure 4: The four patterns for user demonstrations
with 13, 6, 10, and 10 waypoints respectively.

Figure 5: Creating waypoints for the patterns in Fig-
ure 4 with an ABB IRB140.

certainty. The confidence value should also be indepen-
dent of the number of observations and states in the
model. Let the number of states in the CDHMM be
|Q|. In our work, we define confidence as the Kullback-
Leibler divergence taken log base |Q| between the next-
state random variable, cn, and the uniform distribution

φn ,
DKL(cn ‖ 1

|Q| )

log2 |Q|
= 1− H(cn)

log2|Q|
. (5)

Since cn is a discrete random variable with |Q| possible
outcomes, its entropy is H(cn) ∈ [0, log2 |Q|], implying
φn ∈ [0, 1]. Loosely speaking, φn is the distance of the
current uncertainty of the model from complete uncer-
tainty (the uniform density). When the confidence, φn,
exceeds some predetermined threshold then x̂n is con-
sidered a valid prediction.
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Figure 6: CDHMMs constructed from small δ (left)
and large δ (right).

5 Experimental Results

We collected user observations from forty-four robot
programs that described different tasks. In our termi-
nology, the repertoire of the user consists of the four
tasks shown in Figure 4. The two right-most programs,
comprised of ten waypoints each, represent standard
arc-welding tasks. The two left-most programs, com-
prised of thirteen and six waypoints respectively, are
planar geometric movements. To create a program, a
user moves the robot end-effector with a joystick (Fig-
ure 5). When the user feels that the end-effector is suf-
ficiently close to the desired waypoint, he presses a but-
ton on the teach pendant. The robot programs were
assimilated into a CDHMM and the learning algorithm
took well under a second to construct an estimated user
repertoire. To give some intuition of the effects of the
rejection probability, δ (Equation 2), we show the topol-
ogy of CDHMMs created using a small rejection prob-
ability (39 states, 51 transitions) and a large rejection
probability (85 states, 139 transitions) in Figure 6. It
is typical that a larger rejection probability, δ, results
in more CDHMM states since this allows the algorithm
fewer opportunities to merge states (cf. Equation 1). As
with any machine-learning algorithm, there is a danger
of overfitting the data as δ becomes “too large” and does
not allow the algorithm to merge truly similar states.

To determine the prediction accuracy of the PRP sys-
tem, we computed the prediction performance against
human-generated data. The leave-one-out statistics of
the Cartesian-space prediction error are summarized in
Table 1. With an appropriate value of δ, the average
prediction error of the system was roughly 2.5 centime-
ters. The mean linear movement between waypoints in

Small δ mean std
Prediction Error 4.260 cm 1.580 cm

Percent Error 22.42% 8.316%
States 52.53 2.872

Transitions 89.46 8.646

Large δ mean std
Prediction Error 2.587 cm 1.291 cm

Percent Error 13.61% 6.789%
States 185.7 2.740

Transitions 284.5 4.325
Table 1: Leave-one-out statistics for CDHMMs with
variations on δ.

Prediction mean std change
Criterion (sec) (sec)

None 292.2 78.61 N/A
φn > 0.8, h = 3 193.2 34.02 −33.88%
φn > 0.5, h = 2 178.0 33.39 −39.08%

Table 2: Programming time required to complete the
tasks in Figure 4 with no prediction, high-confidence pre-
diction, and low-confidence prediction.

Figure 4 was 19 centimeters, meaning that the average
prediction error of the system was roughly 13% of to-
tal distance traveled by the end-effector. This low error
indicates that the algorithms can compute accurate pre-
dictions based on fairly small training sets.

However, a user of the system will be more interested
in the reduction of the time required to create robot
programs. In this scenario, the user is asked to com-
plete one of the tasks from Figure 4, with predictions
computed from the estimated repertoire based on the
prior observations. If the PRP system computes a valid
prediction (i.e. confidence from Equation 5 exceeds a
threshold) then the user can allow the PRP system to
move the end-effector to the predicted waypoint. It is
not uncommon for the user to decide that the predic-
tion must be refined using the joystick, and this fine-
tuning time was included as well. If an obstacle is in
the path to the prediction, the user can stop the PRP
system from moving the robot by releasing the dead-
man switch on the teach pendant. The first row of Ta-
ble 2 summarizes the time taken to program the tasks
in Figure 4 with no predictions from the PRP system.
The second row shows the programming time when the
PRP system suggests only high-confidence predictions
(φn > 0.8) based on a relatively long horizon (h = 3)
of observations from the current program. The third
row shows the programming time when the PRP sys-
tem is allowed to suggest “sloppy” predictions, those of
potentially low confidence (φn > 0.5) based on a rel-
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atively short horizon (h = 2). In the cases when the
PRP system was permitted to compute predictions, the
decrease in programming time was both substantial and
statistically significant. It is also worth noting that al-
lowing low-confidence predictions rather than only high-
confidence predictions tended to reduce programming
time, though the difference between the two prediction
criteria was not statistically significant. This suggests
that users still find less accurate, low-confidence predic-
tions helpful.

6 Related Work

Though there have been few attempts at decreasing
online robot-programming time using machine-learning
techniques, the underlying ideas of our PRP system have
been explored. The seminal work on HMM applications
is [6] and the archetypal HMM-training technique is the
forward-backward algorithm. However, this algorithm
has several long-standing problems, such as its tendency
to leave many superfluous parameters in the model, its
reliance on large training sets, and requiring a fixed
HMM topology. In many domains, assuming a model
topology a priori is not possible and training data may
be extremely difficult to obtain, as in PRP. Central to
the development of the algorithms mentioned in this pa-
per (and derived formally in [4]) are the low availability
of training data and an unknown model topology. The
“standard tricks” to reduce the number of parameters in
an HMM, such as left-right models or assuming diago-
nal covariance matrices (in the continuous case), do not
perform well on the small training sets allowed by PRP.
Researchers have developed a variety of techniques to
address the short-comings of the forward-backward al-
gorithm, such as parameter extinction [2] and topology
discovery [8]. However, these powerful techniques rely
on large training sets. There are results that suggest
globally optimal HMM training is intractable [1] and
attention has shifted to special subclasses of HMMs [7]
to derive more optimistic results.

In the man-machine-interface domain, prediction and
synthesis based on user observations goes by the name
of Learning By Observation, Programming by Demon-
stration, Teaching by Example, or some permutation
thereof. In [5], researchers used Dynamic Time Warping
(DTW) to decompose observations of human tasks into
symbolic, predefined primitives. In [9], researchers ap-
plied the standard forward-backward algorithm to syn-
thesize human operation of telerobotic tasks.

7 Conclusions

In order to decrease online robot-programming time,
we have developed algorithms for a novel application:

predictive robot programming. Our PRP system oper-
ates in two phases. The first phase constructs a simple
CDHMM by a state-merging algorithm based on way-
points from prior robot programs. This CDHMM is
used during the second phase to compute predictions of
waypoints in future robot programs. By using a relative-
waypoint representation, our PRP system can recognize
patterns and compute predictions independent of rota-
tion and translation. We also presented experimental
results showing that our PRP system decreased robot-
programming time significantly.
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