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Abstract

Mobile ad hoc networks (MANETs) operate in
highly dynamic environments with limited resources.
Current approaches to network configuration are static
and ad-hoc, and therefore frequently perform extremely
poorly. We describe our approach to network configura-
tion control that relies on automatically learning the re-
lationships among configuration parameters and main-
tains near-optimal configurations adaptively, even dur-
ing highly dynamic missions. We present a case study
demonstrating the feasibility of the approach.

Keywords: Auto-Configuration, Cross-layer Pa-
rameter Adaptation, Learning, Mobile, Wireless

Technical Area: (1) Network Parameter Configu-
ration, (2) Heterogeneous networks

1 Introduction
Mobile ad hoc networks (MANETs) operate in

highly dynamic, infrastructure-less and potentially hos-
tile environments, with limited bandwidth and energy
resources. Thus, it is desirable to adaptively allocate
these resources, so that network-level performance re-
quirements are met—in spite of inherently unreliable
wireless channels and ever-changing network topology.

This paper describes an approach to intelligent tun-
ing of protocol stack parameters to automatically con-
figure each node in the MANET. ORACLE, the Opti-
mizing Rapidly Adaptive Configuration Learning En-
gine, is a unique hybrid approach to network configura-
tion control, combining Machine Learning and network
modelling. Analytical network models capture useful
general principles, but are incomplete, incorrect, and
static. Traditional Machine Learning approaches reflect
actual operating conditions, but poorly transfer knowl-
edge to new domains and objective functions.

Our approach to MANET configuration relies on
automatically learning the relationships among param-
eters. It maintains near-optimal configurations adap-
tively, even during highly dynamic missions. Our ap-
proach tunes parameters in a fully distributed manner

so that a centralized processing node is not needed and
communication overhead and delays are minimized.

In this paper, we describe the mathematical prob-
lem formulation for MANET configuration, present the
general ORACLE approach, and finally present empiri-
cal results demonstrating the feasibility of the approach.

1.1 Comparison with Related Work
Adaptive techniques have been applied to improv-

ing network performance with some success. However,
the points outlined below limit their utility.

One parameter: Most prior approaches adjusted a
single parameter, e.g. data transmission rate [5, 12, 16],
congestion window [4, 13, 17], and frame length [18].
An exception is Ye et al [27], which optimized large
numbers of network parameters; however it is com-
pletely off-line and non-mobile.

One objective function: Most previous work de-
signed models that capture parameter interactions for
only one objective function, such as transmission er-
rors [9], routing [8, 11, 24, 25] and power consump-
tion [6, 23, 28]. Our approach does not depend on a
single a priori objective function.

Model-based design: The most notable drawback
of most approaches tried in MANET is that they are
hand built models of the interactions among parameters.
This approach to network configuration is not maintain-
able, particularly as protocols are redesigned, new pa-
rameters are exposed, or the objective function changes.

Mobility: Scalable approaches that rely on learned
models of the parameter interactions were not imple-
mented on mobile networks (e.g. adaptive routing [1],
reconfigurable links [20], network parameter optimiza-
tion [27]). Applications and protocols developed for the
fixed, wired environment do not adapt transparently to
the mobile, wireless environment [2].

ORACLE’s hybrid learning methods for adaptive
network configuration may be the only approach that
tunes parameters across multiple layers in the protocol
stack, with fully distributed local control and decision
making, in a mobile ad-hoc network.



2 Problem Formulation
Consider a MANET having N heterogeneous

nodes; each node i has a set of mi control parame-
ters, denoted xi ,(xi1,xi2, . . . ,ximi), e.g. data rate at
the PHY layer, maximum number of retransmissions
at the MAC layer, and hello interval for neighbour-
hood discovery at the routing layer. Control param-
eters are intentionally exposed by the protocol stack
for tuning; cross-layer issues are implicitly captured
by selecting control parameters from multiple layers.
Each node i also has a set of ni observables, denoted
yi ,(yi1,yi2, . . . ,yini). Observables include context that
can be observed, such as throughput, latency, net-
work topology, application start/end and mission con-
text. Note that there may be unobservable contex-
tual information, denoted z. To capture changes over
time, denote xi(t) to be the value of xi at time t, and
xi(t, ..., t ′) , (xi(t),xi(t + 1), . . . ,xi(t ′)); do likewise for
yi and z.

Associated with the MANET is a real-valued scalar
measure J(t) that characterizes global, network-wide
performance at time t. J(t) could measure some com-
bination of throughput, latency, mission requirements,
user needs and other relevant factors. This mea-
sure is assumed to be a function f of all the con-
trol parameters, observable parameters, and unobserv-
able factors: J(t) = f (∀i ∈ N(xi(0, . . . , t),yi(0, . . . , t −
1)),z(0, . . . , t)). An exact analytical expression for f is
difficult to obtain, due to unobservable factors and com-
plex cross-layer and cross-node interactions.

The ultimate goal is to solve the following dis-
tributed optimization problem: Design a fully dis-
tributed algorithm where every node i determines its
control parameter values xi(t) using only its own
previous control values and observables xi(0, . . . , t −
1),yi(0, . . . , t− 1) such that J(t) is maximized for each
t, despite the lack of an exact analytical expression for
f . The algorithm design includes selecting observables;
e.g., it may be useful to share the previous control set-
tings of nearby nodes (x j 6=i(t ′ < t)).

3 ORACLE Approach
ORACLE builds a model of the performance sur-

face to predict MANET effectiveness as a function
of observables and control settings. Each node i
builds a local, memory-less approximation of f , Ĵi(t) =
f̂i(xi(t),yi(t)), simplifying the problem by assuming that
decisions made by nearby nodes will be observable in
yi. (For example, if a neighbour increases data rate,
the node will observe increased congestion.) To con-
figure the MANET, each node selects control values
that optimize performance on this surface at time t:
argmaxxi(t) f̂i(xi(t),yi(t)). (Note that the controller on

Figure 1. (a) Generic ANN; (b) a transfer function used
in each node of the hidden layer.

each node i will be different.)
We will first describe the techniques ORACLE uses

to model the performance surface and then describe is-
sues related to training the model.

3.1 Modelling the Performance Surface
We used artificial neural networks (ANNs) [15, 21]

to learn the models f̂i. ANNs effectively handle dis-
continuities in the performance space, outliers in the
data, and models with unknown functional forms. Once
trained, ANNs calculate the function quickly, ensuring
their utility in the MANET environment. An example is
shown in Figure 1; each node in the hidden layers has a
transfer function shown on the right.

Observables and control parameters form the in-
puts to the ANN. Observables may include mission traf-
fic, channel gains, fading parameters, and noise levels.
Control parameters may include transmit power, data
rates, and modulation schemes. The output of the ANN
is the predicted MANET effectiveness. MANET effec-
tiveness metrics could measure combinations of factors
such as throughput, battery life, latency, and application
quality of service. The case study below describes the
exact implementation of the ANN for our experiment.

A significant challenge for ORACLE is to accu-
rately model the extremely large search space—perhaps
as many as 1000 control parameters per node. To ad-
dress this challenge, we designed a hybrid learning
approach that leverages existing analytical models to
learn only the error in the analytical models (shown
in Figure 2)—thereby tackling a more feasible problem.
This approach enables ORACLE to effectively capture
the rich complexity of the domain and transfer learned
knowledge from one environment to another. Given that
analytical models are relatively rare and specific to a
problem, ORACLE can use models in multiple places
with different forms and advantages:

• Statespace reduction: e.g. relevant parameters,
current operating space

• Feature construction: e.g. coarse estimate of
MANET effectiveness, cross-layer interactions

• Within learned models: e.g. changing the form of
the model

• Guidance for optimization: e.g. constraints; prin-



cipal variables
In the experiments below, constructed features provided
a coarse estimate of global MANET throughput.

A key design requirement for MANET is to limit
the amount of control knowledge that is shared among
nodes. In the experiment, the only information shared
among nodes is the measure of global MANET effec-
tiveness. All other observables and control values are lo-
cal observations on the node. Each node learns a model
of how local observables and local control parameters
affect global MANET effectiveness.

4 Case Study
We conducted an experiment to demonstrate the

feasibility of ORACLE’s learning approach to the
MANET configuration problem. Our goal was to have
each node independently observe local operating con-
ditions and select the best parameter values to optimize
global MANET performance.

4.1 Experiment Description
We performed our experiments in OPNET using a

simplified Lakehurst scenario (a testsite now commonly
used in American MANET research [3, 22]). Six vehi-
cles (nodes) moved in a ring of five waypoints around
a stationary command centre, as shown in Figure 3.
We simulated a four-stage battle, with different mobility
and communication parameters in each stage, as shown
in Table 1. We used 802.11 MAC and the AODV rout-
ing protocol.

We built one learning controller for each node.
The controllers used local information to decide con-
trol settings across multiple layers of the stack: Net-
work Layer: Hello advertisement interval at 1, 4, and 8
seconds; MAC: maximum number of retransmissions at
2,4,8; PHY: transmit power levels implicitly controlled
in 802.11b by varying data rates of 1, 2, 11 MBps.

Figure 2. The performance surface as a function of n di-
mensions of observable parameters and m dimensions
of control parameters. Analytical models guide the em-
pirical learner, speeding the learning process.

6 mobile nodes
5 waypoints

1 stationary node

Figure 3. Simplified Lakehurst scenario.

Phase Mobility / Data
1 - deploy No motion, 1024 byte packets, constant

bit rate (CBR)
2 - shape Slow mobility (5 minutes between way-

points), 100 byte packets, CBR
3 - decisive ops Fast (1 minute), 100 bytes, CBR
4 - consolidate No motion, 1024 bytes, CBR

Table 1. Simplified Lakehurst experiment: mobility and
communication parameters.

4.1.1 Training Data. We collected 117 files of train-
ing data, of the 33×7 = 10.4 billion possible configura-
tions. The files consisted of the 27 homogeneous cases
(i.e. nodes have identical parameters) and 90 heteroge-
neous cases. Each node collected these local statistics:

Application: velocity, heartbeatrate, packet size
AODV: total route requests sent, total route replies

sent, total route errors sent, route discovery time
MANET: traffic sent (bits/sec), traffic received

(bits/sec), delay (secs)
Radio receiver: bit errors per packet, utilization,

throughput (bits/sec), packet loss ratio, busy, col-
lision status

Radio transmitter statistic: busy
Wireless LAN: Control traffic received (bits/sec), con-

trol traffic sent (bits/sec), data traffic received
(bits/sec), data traffic sent (bits/sec), delay (sec),
dropped data packets (packets/sec), media access
delay (sec), throughput (bits/sec), retransmission
attempts (packets)

4.1.2 Experimental Procedure. ORACLE’s goal
was to optimize message global performance, as
measured by MANET throughput1, calculated by the
command centre. This throughput is the only non-local
observable used by the learners.

We built an ANN for each node, as described in

1MANET throughput is the message traffic only, and does not in-
clude control traffic. Given that latencies could cause packets to ‘ac-
cumulate,’ we used a five-second cumulative total to mitigate mea-
surement error.



Section 3. The inputs to the ANN were the 26 statis-
tics listed in Section 4.1.1, plus location information as
described below for each experiment. The output was
MANET global throughput. Each node learned a model
of how local observables and control parameters affect
global performance. Training data consisted of the
117 files described in Section 4.1.1— 70% to train the
ANNs, 10% to test them, and 20% to validate them.

Finally, the ANNs controlled a test run. The ANN
on each node observed local conditions and selected the
control values that predicted the highest global MANET
throughput. (Note that the ANNs did not change during
the run, and hence calculated values extremely rapidly.)

In Experiment #1, below, we demonstrate that a
completely distributed learning approach improves per-
formance over common alternate approaches. In Exper-
iment #2, we explored issues of knowledge transfer, and
demonstrate that a hybrid learning approach performs
better than the basic learner.

4.2 Experiment #1: Learner compared to
standard approaches

The first experiment asked whether the configura-
tion problem could be solved through a learning ap-
proach, comparing a Batch Decision Learner (BDL)
with the two most common approaches to configuring
a MANET. The optimal static homogeneous configura-
tion was the training configuration that generated the
highest throughput during scenario Phase 3 (decisive
ops); each node had the same configuration settings and
the configuration did not change during the scenario.
The omniscient, omnipotent human “red team” knew
the mobility patterns and communication propagation
properties of the environment, and could set heteroge-
neous configurations for the control parameters at each
time stamp in the scenario.

The BDL ANNs used the statistics listed in Sec-
tion 4.1.1 as input, plus each node used its current node
position (x,y). Figures 4 and 5 show the quality of the
learned models for two nodes. The x-axis shows the ac-
tual throughput for the current observations, and the y-
axis shows the estimated throughput. Mobility is clearly
a factor in the ANN’s ability to model the environment.

Table 2 and Figures 6 and 7 compare the results of
a dynamic learning system to the static homogeneous
configuration and to the best dynamic “red team” con-
figuration. The test environment was identical to the
training environment. The learning algorithm outper-
forms both the human red team and the static homo-
geneous configuration (except for the highly optimized
Phase 3).

Figure 4. Model accuracy for a stationary node.

Figure 5. Model prediction accuracy for a mobile node.

4.3 Experiment #2: Knowledge Transfer
The second experiment tested knowledge transfer.

We compared performance of the BDL with a Hybrid
Decision Learner (HDL) when the training and testing
environments are different. The hybrid learner com-
bines analytical models with empirical models.

We built a BDL and an HDL ANN for each
MANET node. Training data consisted of the statistics
listed in Section 4.1.1, plus each node knew the identity
and distance to its closest three neighbours2.

HDL had an additional feature representing an ana-
lytical model of global MANET throughput using only
locally observable information; this model attempts to
capture routing issues in the MANET. Each node i es-
timates global throughput T̂G according to: T̂G(i) =
2×∑ j=7

j=1(T̂i j×Pj7) where

• T̂i j is an estimate of the throughput from node i to

2Identity is already known through standard routing protocols; dis-
tance is calculated by sharing current location.



Phase End BDLearner Dynamic RedTeam Static Homogeneous
1 1,470,136,320 1,376,018,432 94% 929,852,352 63%
2 520,424,320 375,285,152 72% 491,068,800 94%
3 96,661,600 72,932,000 75% 97,412,864 101%
4 1,350,628,704 1,086,611,456 80% 930,668,544 69%

Table 2. MANET throughput for the three control approaches. BDL performed notably better than the dynamic red team
and static homogeneous configurations. Percentages reflect performance compared to BDL.

Figure 6. MANET throughput for three control ap-
proaches. This experiment shows that learning out-
performs both the optimal static setting and a dynamic
human expert.

Figure 7. Cumulative MANET throughput for three con-
trol approaches.

node j. T̂i j decreases as the distance between the
nodes increases.

• Pj7 is the probability that node j can reach node 7
(stationary command centre). Pj7 = 1.0 if node j
is less than 200m from node 7 and drops linearly
to 0.0 until node j is farther than 600m from node
7.

Figure 8 shows the distribution of throughput val-
ues as calculated by the HDL model and compared to
actual throughput, showing that the model is only a
rough guide to the ANN.

4.3.1 Scenario A: New Mobility. The training sce-
narios are as described in Section 4.1.1. In the test sce-
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Figure 8. HDL’s estimates of throughput T̂g provide only
a very rough estimate of actual throughput Tg.

Throughput BDL HDL Imprvmt
Phase 1 1,192,591,360 1,660,256,256 139%
Phase 2 514,967,808 566,825,728 110%
Phase 3 107,325,600 112,959,200 105%
Phase 4 1,246,363,648 1,604,278,240 129%
Total 3,061,248,416 3,944,319,424 129%

Table 3. HDL outperforms BDL by approximately 30%,
showing that HDL more effectively transfers previous ex-
perience to a new domain—altered mobility patterns.

nario, node 1 moved around the ring, while nodes 2 to
7 remained stationary in the upper corner.

Table 3 and Figures 9 and 10 compare the results
of using the BDL controller and using the HDL con-
troller. The results show that the hybrid learning ap-
proach transfers knowledge more effectively to a new
domain. The results are more pronounced in heavier
traffic conditions.

4.3.2 Scenario B: New Communications Envi-
ronment. For the training environment, we used a
FreeSpace with a line-of-sight closure pathloss model
for terrain under normal conditions. For the test en-
vironment, we used the Longley Rice Propagation
pathloss model with these parameters: Surface refrac-
tivity at 370; relative permittivity at 7; ground conduc-
tivity at 0.002.

Table 4 and Figures 11 and 12 show shows that the
hybrid learner outperforms the basic learner when trans-



Figure 9. MANET throughput for HDL and BDL.

Figure 10. New mobility patterns: Cumulative (by
phase) MANET throughput for HDL and BDL.

ferred to this new domain; again, the results are more
pronounced for heavier traffic conditions. (In phase
3, BDL outperforms HDL, showing an opportunity for
tracking the accuracy of the learned models and dynam-
ically switching among them.) Throughout the mission,
HDL successfully transferred 127% of the traffic that
the BDL transferred.

5 Conclusions and Future Work
In this paper, we present ORACLE, a distributed

learning approach to tuning network configuration pa-
rameters for a MANET. We pose the problem formally
and describe the techniques used to learn the relation-
ships among configuration parameters and to adaptively
optimize mission objectives. We then use simulations
to demonstrate the feasibility of ORACLE as well its
effectiveness in transferring learned knowledge to new

Throughput BDL HDL Imprvmt
Phase 1 1,192,591,360 1,660,256,256 139%
Phase 2 527,997,536 525,056,928 99%
Phase 3 103,145,600 96,675,200 93%
Phase 4 1,259,855,616 1,627,142,176 129%
Total 3,083,590,112 3,909,130,560 127%

Table 4. HDL outperforms BDL by approximately 30%,
effectively transferring knowledge to a new environment.

Figure 11. Experiment #2B shows that a hybrid learner
transfers previous experience much more effectively to
a new domain— altered communications conditions. (a)
Throughput

Figure 12. New communications conditions: Cumula-
tive (by phase) MANET throughput for HDL and BDL.

objective functions and environments. Each node in the
MANET has its own independently trained controller
that observes only local conditions but successfully im-
proves the global MANET performance.

There are many avenues for further work; some of
the more interesting ones are outlined below:

• To update models continuously (rather than off-
line), performance feedback needs to be dis-
tributed correctly to the nodes. We intend to de-
velop a rapid, low-overhead feedback mechanism
using distributed averaging techniques [26, 19].

• To learn models more rapidly than neural net-
works while still maintaining flexibility and accu-
racy, we intend to develop ensemble methods [7]
that rely on locally-trained neural networks and
multiple local regressions [10, 14] and select the
most effective controller dynamically.

• To increase learning speed while maintaining ac-
curacy, we will reduce the state space by deter-
mining parameter significance and sensitivity.

• To improve knowledge transfer results, we will
incorporate more analytical models that can be
leveraged by the hybrid learner. We will also



track the accuracy of the models and dynamically
adjust their trust values.
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