
A proof-theoretic approach to certifying1

skolemization2

Kaustuv Chaudhuri, Matteo Manighetti, and Dale Miller3

Inria & LIX, École Polytechnique4

Palaiseau, France5

Abstract6

When presented with a formula to prove, most theorem provers for classical first-order logic7

process that formula following several steps, one of which is commonly called skolemization.8

That process eliminates quantifier alternation within formulas by extending the language of the9

underlying logic with new Skolem functions and by instantiating certain quantifiers with terms10

built using Skolem functions. In this paper, we address the problem of checking (i.e., certifying)11

proof evidence that involves Skolem terms. Our goal is to do such certification without using12

the mathematical concepts of model-theoretic semantics (i.e., preservation of satisfiability) and13

choice principles (i.e., epsilon terms). Instead, our proof checking kernel is an implementation of14

Gentzen’s sequent calculus, which directly supports quantifier alternation by using eigenvariables.15

We shall describe deskolemization as a mapping from client-side terms, used in proofs generated16

by theorem provers, into kernel-side terms, used within our proof checking kernel. This mapping17

which associates skolemized terms to eigenvariables relies on using outer skolemization. We also18

point out that the removal of Skolem terms from a proof is also influenced by the polarities given19

to propositional connectives.20

2012 ACM Subject Classification F.4.1. Mathematical logic: proof theory21

Keywords and phrases proof certificates, skolemization, sequent calculus, focusing22

1 Introduction23

Skolemization is a process (of which there are many variants) that removes strong quantifiers24

by instantiating such quantifiers with terms of the form f(x1, . . . , xn) where n ≥ 0, x1, . . . , xn25

is a list of distinct weakly quantified variables, and f is a Skolem constant.1 Exactly which26

list of such variables is used depends on which form of skolemization is employed, but, in27

all cases, the resulting formula contains no strong quantifiers. Theorem provers employ28

this preprocessing step in part because it removes quantifier alternation: when only weak29

quantifiers exist, standard first-order unification can be used to discover how all the remaining30

quantifiers can be instantiated. In particular, forward search strategies such as resolution do31

not need to implement an expensive eigenvariable condition.32

The correctness of skolemization in first-order classical logic is generally justified by33

referring to the model theory of classical logic. The main meta-theorem for skolemization34

is that if the skolemized instance of formula B is satisfiable then the formula B is also35

satisfiable. Given that this theorem is about satisfiability (and not truth), skolemization is36

often employed in a refutation procedure: if one can demonstrate that the skolemized version37

of ¬B is unsatisfiable (since, for example, one can derive an empty clause from it), then ¬B38

is unsatisfiable. Employing the model theory of first-order classical logic again, we know39

1 An occurrence of a quantifier in a formula is strong if a cut-free proof that introduces it uses an
eigenvariable to instantiate it. Otherwise, it is a weak quantifier instance.

XX:2 A proof-theoretic approach to certifying skolemization

that B is valid and, hence, by completeness we know that B has a proof in a complete proof40

system such as Gentzen’s LK sequent calculus [19].41

A central issue with skolemization is how to use evidence for the unsatisfiability of a42

skolemized version of ¬B to formally certify that B is a theorem. We are interested in43

certification in the sense of having proofs formally checked using computerized proof-checkers.44

One method to achieve this kind of certification is to first formally establish the model-45

theoretic properties of satisfiability and of equi-satisfiability of skolemization as meta-theorems46

in a formal reasoning system such as Coq or Isabelle/HOL. Such a meta-theorem would47

employ significant aspects of the foundations of ordinary mathematics, including axioms48

of extensionality, infinity, and choice [12]. Certifying B as a theorem would then amount49

to first checking the evidence for the unsatisfiability of the skolemized version of ¬B (for50

instance, by checking that a provided refutation is syntactically correct), and then appealing51

to the model-theoretic meta-theorem to conclude that ¬B is itself unsatisfiable, and hence52

that B is a theorem.53

A more direct and targeted certification can be achieved in theorem provers that contain54

a choice operator such as Hilbert’s ε-operator and its associated axioms. Such operators can55

be used to specify Skolem functions; for instance, the ε operator of Isabelle/HOL can be56

used to justify skolemization [6]. However, this still leaves unsolved the problem of certifying57

B using proof checkers that do not have such built-in operators, particularly in intuitionistic58

proof checkers that cannot support such operators (without the use of axiomatic extensions).59

1.1 Direct certification using the sequent calculus60

In this paper we are interested in a more direct approach: deskolemizing the evidence61

into a proof in a system such as Gentzen’s LK , which is complete for classical first-order62

logic without relying on choice operators or foundational axioms. This also avoids the63

need for powerful proof techniques that would be needed to establish the model-theoretic64

meta-theorems. Instead, one only needs to check that a proposed proof structure does,65

indeed, describe an LK proof.66

There are a number of reasons for preferring this certification approach. First, LK proofs67

are easy to import into a variety of other proof systems including higher-order logic and even68

intuitionistic proof systems. (See, for example, [18, 33] of proof evidence being imported69

into higher-order proof systems.) However, skolemization is not sound for higher-order logic70

(without choice) [25] and for intuitionistic logic, so the LK proofs that can be imported need71

to be for the original unskolemized formulas.72

Second, an LK -proof lets us achieve a high-degree of confidence in the correctness of73

the system. This is not only because of the pedigree of LK , but also because it is possible74

to check LK proofs syntactically without appealing to strong axioms such as choice. We75

can also envision applications that involve interacting with, browsing, and mining formal76

proof structures [22]. If the proof relies on just LK , then the resulting interactions should77

be rather direct and informative. Choice principles, choice operators, equi-satisfiability, etc.78

will likely make such interactions more obscure.79

1.2 Our approach to deskolemization80

Deskolemization has been widely studied for classical first-order logic. On the theoretical side81

various kinds of deskolemization results have been obtained for different forms of skolemization.82

For example, in [24, 25] it was shown that a certain type of skolemization (called outer83

skolemization in Section 2) can be deskolemized in expansion proofs without increasing the84

K. Chaudhuri, M. Manighetti, and D. Miller XX:3

size of the expansion proof. A different form of skolemization that is often used in automated85

theorem provers (called inner skolemization in Section 2) was studied in papers such as [3]86

and [4] where it was shown that eliminating Skolem functions can result in complex and87

expensive growth of proofs.88

In this paper we continue the study of checking and certifying proof evidence that contains89

Skolem functions by explicitly deskolemizing proof evidence and building LK -style sequent90

calculus proofs containing eigenvariables. Our approach to deskolemization can be described91

as follows. We identify two different actors involved with proof checking. The client is some92

theorem prover which wants to export checkable proofs and the kernel is a program that is93

entrusted to check proofs in a completely trustworthy fashion. In this setting, the kernel is a94

logic program and eigenvariables are an abstraction mechanism used by logic programs to95

hide some of the structure of terms [26]. Since it is impossible for a client to directly refer to96

such abstractions, the client must make use of various naming mechanisms in order to refer97

to those kernel-side abstractions. As we shall see, Skolem terms serve as one of these naming98

mechanisms.99

1.3 Summary of our contributions100

This paper makes the following contributions to the problem of deskolemizing proof evidence.101

1. We provide a modular method to deskolemize proof evidence involving Skolem functions.102

This modularity is achieved by extending the design of the kernel used in the Foundational103

Proof Certificate (FPC) framework for defining proof structures [11]. It builds Gentzen-104

style LK sequent calculus proofs using eigenvariables. For outer skolemization proof105

evidence (defined below), it leads to LK proofs free of Skolem functions.106

2. We provide a trustworthy implementation of this form of modular deskolemization using107

the higher-order logic programming language λProlog. Simple inspection of our kernel108

provides rather immediate confidence that our proof checker only certifies formulas that109

are, in fact, theorems. One must also trust (in our case) the implementation of λProlog.110

However, since we are only using the backtracking and higher-order unification features of111

the logic underlying λProlog, anyone can provide a reimplementation of these features and112

of our proof checker: in this way, one does not need to trust the particular implementations113

of λProlog we have used (Teyjus [28] and Elpi [15]).114

3. We give a precise characterization of the surprising interaction of skolemization and115

polarities arising from focused proofs. It turns out that positive polarities are just as116

dangerous as inner skolemization, which is already well known to be difficult to deskolemize117

syntactically [17, 4]. In either case, the culprit is the ability to suspend processing a118

connective that would have introduced the eigenvariable (in the unskolemized form) and119

operate on a different formula that nevertheless uses the eigenvariable by means of its120

Skolem term, causing leakage of eigenvariables from their scopes.121

2 Formulas and skolemization122

We work with the standard language of classical first-order logic. Terms (s, t, . . .) will, as123

usual, be built from variables (x, y, . . .) and function applications of the form f(t1, . . . , tn)124

where f is a function symbol of fixed arity n. If the argument list is empty (i.e., if n = 0),125

then we omit the parentheses in function applications. A collection of function symbols126

together with their arities is called a signature; for example, {c/0, f/1, g/2}. We assume that127

the set of terms generated from a signature is non-empty (for example, {f/1, g/2} is not a128

signature) and that a symbol is given at most one arity within a signature.129

XX:4 A proof-theoretic approach to certifying skolemization

Formulas (A,B, . . .) and literals (L) belong to the following grammar:130

A,B, . . . ::= L | A ∧B | > | A ∨B | ⊥ | ∀x.A | ∃x.A L ::= p | ¬ p131
132

Here, p ranges over atomic formulas that are always of the form a(t1, . . . , tn) where a is a133

predicate symbol of fixed arity n. As is customary, we shall assume that all formulas are in134

negation normal form: that is, negations have only atomic scope. This normal form is a135

mild one to assume since the size of a formula and its negation normal form are essentially136

the same. We write A⊥ for the de Morgan dual of A, given by the pairs p/¬ p, ∧/∨, >/⊥137

and ∃/∀. We shall also assume that no two occurrences of a quantifier (either ∀ or ∃) bind138

variables with the same name; this can always be achieved by α-conversion.139

Since we are focused on checking proofs, we shall describe skolemization as a process for140

replacing universally quantified formulas with Skolem terms. Formally, replacing universal141

quantifiers in this way is often called herbrandization while replacing existential quantifiers142

usually called skolemization. Since the intent of both operations is to ensure that strong quan-143

tifiers are removed and that eigenvariables are not used within proofs, it seems unnecessary144

to introduce a second term and remain with the more commonly used term skolemization.145

We shall assume that all first-order formulas for which we perform proof checking contain146

function symbols and constants from the fixed signature Σ0. In order to account for147

skolemization, we introduce another signature, Σsk, disjoint with Σ0, whose members are148

called Skolem functions, and which is such that for every arity n ≥ 0, there are a countably149

infinite number of members of Σsk of that arity.150

I Definition 1 (Skolemization). The following standard definitions are from [29].151

An outer skolemization step is a pair of formulas in which152

the first formula, say, B is such that it contains the subformula ∀x.C that is not in153

the scope of any universal quantifier and which is in the scope of existential quantifiers154

binding the variables x1, . . . , xn (n ≥ 0); and155

the second formula results from replacing that ∀x.C occurrence in B with the instance156

[f(x1, . . . , xn)/x]C where f is an n-arity symbol from Σsk that does not appear in B.157

An inner skolemization step is a pair of formulas that is defined analogously with the158

only difference being that the Skolem term used to instantiate x in C is f(y1, . . . , ym)159

where y1, . . . , ym are the free variables of the occurrence of ∀x.C.160

The formula E is the result of performing outer skolemization on B if there is a sequence161

of outer skolemization steps that carries B to E and where E does not contain any strong162

quantifiers (i.e., universal quantifiers). Similarly, the formula E is the result of performing163

inner skolemization on B if there is a sequence of inner skolemization steps that carries164

B to E and where E does not contain any strong quantifiers. J165

Note that, necessarily, m ≤ n in the two skolemization steps in the definition; moreover, all166

the variables in the list y1, . . . , ym are contained in the list x1, . . . , xn.167

I Example 2. The Drinkers formula ∃x. ∀y. (¬ d(x) ∨ d(y)) can be skolemized as follows.168

Outer: ∃x. (¬ d(x) ∨ d(f(x)))169

Inner: ∃x. (¬ d(x) ∨ d(f))170

Note that an LK proof of the outer skolemized form would require a contraction and two171

witness terms, c and f(c) (for some constant c), just like the LK proof of the original172

unskolemized formula. The inner skolemized form, on the other hand, has a simple LK proof173

that provides the witness f for x and doesn’t require a contraction. J174

The main result about skolemization is the following theorem. Its proof can be found in175

a number of textbooks and papers: see, in particular, [2] and [32, Section 4.5].176

K. Chaudhuri, M. Manighetti, and D. Miller XX:5

I Theorem 3. Let B be a first-order formula over the signature Σ0 and let E be either an177

inner or outer skolemization of B. If E is satisfiable then B is satisfiable. J178

3 Focused Sequent Calculus179

We argued in Section 1.1 that our view of certification was founded on building explicit180

sequent calculus proofs. This certification process can be viewed as a kind of protocol between181

two agents. One agent is the client, who has constructed some evidence such as a resolution182

refutation or an expansion proof. The other agent is the proof-checker, which we also call183

the kernel, which is a trusted implementation of a particular proof system such as the LK184

sequent calculus. The client needs to convince the kernel of the veracity of its evidence, so it185

will have to guide the kernel towards building a complete sequent proof. Note that there is186

no need to store the proof that the kernel builds – it is enough that the kernel performs it.187

Given this description of the certification process, it is immediately apparent that em-188

ploying the original LK sequent calculus of Gentzen is problematic. The main issue is the189

amount of information the client must provide to guide the construction of an LK proof.190

Nearly every sequent can be the conclusion of a structural rule (weakening and contraction),191

a cut rule, and a (possibly large) number of introduction rules for all the formulas in the192

sequent. And, once the client instructs the kernel to attempt one such inference rule, its193

corresponding premises will then need to be guided in a similar way.194

Fortunately, not every choice in building a proof is the same. Some choices are important,195

because they introduce fresh information into the proof such as witness terms or choice196

paths, and making the wrong choice or guess can cause a failed proof attempt. Other choices197

are unimportant: for instance, the choice of the name of an eigenvariable or the order in198

which conjunctive branches are proved, cannot possibly break a proof attempt. A careful199

study of such choices in the proof leads us to polarities and focusing, two recent advances in200

the proof theory of the sequent calculus (and several related formalisms). First developed201

for sequent calculi for linear logic [1, 20] and then extended to a wide variety of classical,202

intuitionistic, and modal logics and other proof systems, focusing can be seen as a way of203

organizing proofs in such a way that choice points are minimized and the two types of choices204

are clearly separated. Moreover, judicious use of polarities allows a general proof system to205

mimic a wide spectrum of other proof systems. Thus, focused proofs form the basis of the206

foundational proof certificate framework, where the kernel is based on a focused variant of207

LK known as LKF [23, 11].208

Formulas in LKF are like those of LK , but the formulas are divided into two polarities,209

positive (P,Q, . . .) and negative (N,M, . . .), that we explain further below. The notion of210

duals is extended form the unpolarized case with the pairs ∧+++/∨−, >+++/⊥− , ∨+++/∧−, and ⊥+++/>− .211

A,B, . . . ::= P | N (formulas)212

P,Q, . . . ::= p | A ∧+ B | >+ | A ∨+ B | ⊥+ | ∃x.A (positive formulas)213

N,M, . . . ::= ¬ p | A ∧− B | >− | A ∨− B | ⊥− | ∀x.A (positive formulas)214
215

For the propositional connectives, the polarity amounts to an annotation on the connective216

(written with a superposed + or −); quantifiers and literals, on the other hand, have a unique217

polarity. The polarized versions of the propositional connectives are equivalent: A ∧+++ B and218

A ∧− B are not only equi-provable, but each implies the other. However, positive and negative219

formulas have very different proofs, both in size and in shape.220

Intuitively, the introduction rules for negative formula are invertible: that is, these rules221

have the property that their collection of premises are equivalent to their conclusions. Thus,222

XX:6 A proof-theoretic approach to certifying skolemization

Asynchronous rules

Σ`Γ ⇑A,Θ Σ`Γ ⇑B,Θ
Σ`Γ ⇑A ∧− B,Θ Σ`Γ ⇑ >− ,Θ

Σ`Γ ⇑A,B,Θ
Σ`Γ ⇑A ∨− B,Θ

Σ`Γ ⇑Θ
Σ`Γ ⇑ ⊥− ,Θ

Σ, y`Γ ⇑ [y/x]A,Θ
Σ`Γ ⇑ ∀x.A,Θ

y /∈ Σ

Synchronous rules

Σ`Γ ⇓A Σ`Γ ⇓B
Σ`Γ ⇓A ∧+++ B Σ`Γ ⇓ >+++

Σ`Γ ⇓A
Σ`Γ ⇓A ∨+++ B

Σ`Γ ⇓B
Σ`Γ ⇓A ∨+++ B

Σ`(wf t) Σ`Γ ⇓ [t/x]A
Σ`Γ ⇓ ∃x.A

Identity rules

Σ`Γ,¬ p ⇓ p init
Σ`Γ ⇑A Σ`Γ ⇑A⊥

Σ`Γ ⇑ · cut

Structural rules

Σ`Γ, P ⇓ P
Σ`Γ, P ⇑ · decide

Σ`Γ, R ⇑Θ
Σ`Γ ⇑R,Θ store

Σ`Γ ⇑N
Σ`Γ ⇓N release

In the store rule, R is a positive formula or a literal

Figure 1 Rules of LKF . Γ is a multiset of positive formulas or literals, and Θ is a list of formulas.

the order in which these rules are applied is irrelevant and does not need to be communicated223

by the client; we say that the kernel works asynchronously. For instance, the rules for ∧− and224

∨− are the following (modulo certain minor differences):225

`A,∆ `B,∆
`A ∧− B,∆

`A,B,∆
`A ∨− B,∆226

227

A positive (non-atomic) formula, on the other hand, has inference rules that are not necessarily228

invertible, meaning that its introduction rule may involve a choice and its premise(s) may229

not be equivalent to its conclusion. Applying such a rule involves an essential choice that230

must be communicated by the client, so we say that the kernel works synchronously. For ∨+++ ,231

for instance, the synchronous rules are:232

`A,∆
`A ∨+++ B,∆

`B,∆
`A ∨+++ B,∆233

234

These rules encode an essential choice between the two operands A and B. The two polarized235

variants of ∨ can equivalently be seen as encoding two separate kinds of choice: internal (i.e.,236

made by the kernel) and external (communicated to the kernel).237

Following a technique pioneered by Andreoli [1], we separate the two kinds of inference238

rules by means of two kinds of sequents:239

Σ`Γ ⇓A synchronous sequent with A under focus
Σ`Γ ⇑Θ asynchronous sequent

240

The context Γ, called the store, is a multiset of positive formulas or literals, and Θ, called241

the asynchronous zone, is a list of formulas. Σ is the signature, which not only contains the242

arities of the function symbols as before but also includes the set of eigenvariables that can243

be free in the terms to the right of ` . We say that a term t is well-formed in Σ, written244

Σ`(wf t) to mean that all the function symbols in t are used with the correct arities defined245

in Σ, and that all the free variables of t are contained in the set of eigenvariables in Σ.246

The full list of inference rules for LKF is in Figure 1. A proof in LKF can be seen as247

an alternation of two kinds of phases, reading the rules from conclusion to premises. The248

K. Chaudhuri, M. Manighetti, and D. Miller XX:7

synchronous phase starts with a sequent of the form Σ`Γ ⇑ · as conclusion;2 a positive249

formula is chosen for focus and in the entire phase the focused formula is required to be250

principal. The client needs to communicate all the choices and witness terms made during251

the synchronous phase to the kernel. The synchronous phase ends with the init rule when252

the focused formula is an atom (and the client may need to tell the kernel which is the dual253

literal), or may transition to the asynchronous phase with the release rule that is applicable254

when the focus is a negative formula. Note that in the init rule if the dual of the focused255

formula is not in the context then the proof attempt is considered a proof attempt failure256

since there is no other inference rule available to prove a focus on a positive literal; if this257

happens, the kernel may try to backtrack over other essential choices in the same or an earlier258

synchronous phase of search. In the asynchronous phase a rule is applied to the leftmost259

formula in the asynchronous zone; if it is a positive formula or a literal, it is stored, and260

in every other case an asynchronous rule is used to decompose this formula. Finally, when261

the asynchronous zone is empty, i.e., when we are back to a neutral sequent, then the cycle262

begins anew.263

Let B be an unpolarized formula and let B̂ be a polarized formula that results from264

placing either a + or − superscript on every connective and constant where allowed. We265

shall also assume that atomic formulas are polarized arbitrarily: they could be all negative,266

all positive, or some mixture of these two, and the occurrences of ¬ are adjusted accordingly.267

The following theorem is proved in [23].268

I Theorem 4 (Soundness and Completeness). Let B be a formula of first-order classical logic.269

If B is a theorem, then ·` · ⇑ B̂ is derivable for every polarized version B̂ of B. Furthermore,270

if ·` · ⇑ B̂ is provable for some polarized version B̂ of B, then B is a theorem. J271

4 Augmented LKF and foundational proof certificates272

In this section we will describe how we use the LKF system to build a protocol for mediating273

the communications between a client, who already has some proof evidence in hand, and274

the kernel, (a.k.a. the proof checker). This protocol is the basis for the foundational proof275

certificates framework [11]. The key idea is to augment the LKF proof system as follows.276

A proof certificate is threaded through every sequent and inference rule: these certificates277

are term structures that contain the client’s proof evidence.278

Additional premises are added to the LKF inference rules: these premises manipulate279

and extract information from proof certificates.280

There are two kinds of additional premises added to inference rules. The first kind, the clerks,281

are added to asynchronous rules: clerks perform routine maintenance of proof certificate282

information. The second kind, the experts, are added to synchronous rules and they are283

responsible for attempting to find important information within the proof certificate to guide284

the possible choices of the kernel. For instance an expert may inform the kernel which of the285

two rules to use for ∨+++ -introduction or which witness term to use for ∃-introduction.286

The augmented version of LKF , called LKFa, uses the following kinds of sequents.287

Ξ; Σ`Γ ⇓A synchronous sequent with A under focus
Ξ; Σ`Γ ⇑Θ asynchronous sequent

288

Here, Ξ stands for a proof certificate, which is explained in more detail below; note, however,289

that certificates do not affect the meaning of a sequent, and hence are a passive and abstract290

2 We will sometimes call such sequents neutral.

XX:8 A proof-theoretic approach to certifying skolemization

Asynchronous rules

Ξ1; Σ`Γ ⇑A,Θ Ξ2; Σ`Γ ⇑B,Θ ∧c(Ξ0,Ξ1,Ξ2)
Ξ0; Σ`Γ ⇑A ∧− B,Θ Ξ0; Σ`Γ ⇑ >− ,Θ

Ξ1; Σ`Γ ⇑A,B,Θ ∨c(Ξ0,Ξ1)
Ξ0; Σ`Γ ⇑A ∨− B,Θ

Ξ1; Σ`Γ ⇑Θ ⊥c(Ξ0,Ξ1)
Ξ0; Σ`Γ ⇑ ⊥− ,Θ

Ξ1; Σ, (copy t y)`Γ ⇑ [y/x]A,Θ ∀c(Ξ0,Ξ1, t)
Ξ0; Σ`Γ ⇑ ∀x.A,Θ

y /∈ Σ

Synchronous rules

Ξ1; Σ`Γ ⇓A Ξ2; Σ`Γ ⇓B ∧e(Ξ0,Ξ1,Ξ2)
Ξ0; Σ`Γ ⇓A ∧+++ B

>e(Ξ0)
Ξ0; Σ`Γ ⇓ >+++

Ξ1; Σ`Γ ⇓Ai ∨e(Ξ0,Ξ1, i)
Ξ0; Σ`Γ ⇓A1 ∨

+++ A2
i ∈ {1, 2}

Σ`(copy t s) Ξ1; Σ`Γ ⇓ [s/x]A ∃e(Ξ0,Ξ1, t)
Ξ0; Σ`Γ ⇓ ∃x.A

Identity rules

inite(Ξ0, l)
Ξ0; Σ`Γ, l:¬ p ⇓ p init

Ξ1; Σ`Γ ⇑A Ξ2; Σ`Γ ⇑A⊥ cute(Ξ0,Ξ1,Ξ2, A)
Ξ0; Σ`Γ ⇑ · cut

Structural rules

Ξ1; Σ`Γ, l:P ⇓ P decidee(Ξ0,Ξ1, l)
Ξ0; Σ`Γ, l:P ⇑ · decide

Ξ1; Σ`Γ ⇑N releasee(Ξ0,Ξ1)
Ξ0; Σ`Γ ⇓N release

Ξ1; Σ`Γ, l:R ⇑Θ storec(Ξ0,Ξ1, l)
Ξ0; Σ`Γ ⇑R,Θ store

In the store rule, R is a positive formula or a literal

Figure 2 Rules of LKFa, an augmented version of LKF . Γ is a multiset of pairs of the form l:R
where l is an index and R is a positive formula or literal, and Θ is a list of formulas.

participant from a logical perspective. Their sole purpose will be in guiding the construction291

of LKFa proofs. Both of the structures Σ and Γ are generalized in LKFa over what they292

were in LKF . In particular, Σ is now more than a signature: it is a set of pairings of the293

form (copy t y) where t is a client-side term (containing, for example, Skolem functions) that294

is associated to the eigenvariable y (that is, a kernel-side term). In a similar fashion, the295

context Γ is extended to be a set of pairs of the form l:R where l is an index and R is a296

positive formula or a literal. The exact structure of indexes and client terms are not specified297

by the kernel but are a detail provided by the definition of a proof certificate format. The298

context Θ is as before in LKF .299

There are several important things to observe about the LKFa calculus shown in Figure 2.300

First, predicates with subscript e are experts and those with subscript c are clerks. We drop301

the explicit reference to the polarity of clerks and experts since these can be inferred easily:302

e.g., we write ∧c instead of ∧−c since clerks are defined only for negative connectives. Second,303

the first argument to the expert or clerk is always the proof certificate of the conclusion, and304

can be interpreted as an input. The other proof certificate arguments can be interpreted305

as outputs yielding the continuation proof certificates for the premises (if any). There are306

also additional arguments that may be indexes (in the case of inite, decidee, and storec), a307

client-side name to associate with an eigenvariable (in the case of ∀c), rule selectors (in the308

K. Chaudhuri, M. Manighetti, and D. Miller XX:9

case of ∨e), witness terms (in the case of ∃e), or formulas (in the case of cute).309

Specifications and implementations of previous versions of proof checkers for the Founda-310

tional Proof Certificate framework [7, 10, 11] did not address the fact that client-side terms311

might be different than kernel-side terms. Since substitution terms are not always part of312

some particular presentation of proof evidence (since unification during proof checking can313

reconstruct such substitutions), the difference between client-side and kernel-side terms does314

not always need to be addressed in proof checkers. As we have seen, however, there can be315

significant differences between these two classes of terms and we now describe how to extend316

the previous approach of FPC-based checkers to account for that difference.317

The predicate (copy · ·) in the LKFa proof system can be formally defined using318

copy-clauses, a standard technique used to encode both term-level equality and substitutions319

in logic programming [27]. The copy-clauses based on the signature {a/0, f/1, g/2} have the320

following λProlog specification. (We do not assume any advance knowledge of λProlog: for321

more information about that language, see [?].)322

323
copy a a.324
copy (f X) (f U) :- copy X U.325
copy (g X Y) (g U V) :- copy X U, copy Y V.326327

It is easy to show that if t and s are two closed terms over the signature {a/0, f/1, g/2},328

then (copy t s) is provable from these clauses if and only if t = s. Obviously, any arbitrary329

first-order signature can be translated into such a set of copy-clauses: in particular, if Σ is330

such a first-order signature then we write C(Σ) to denote the set of copy-clauses determined331

by that signature.332

The inference rules in Figure 2 can be implemented directly in λProlog, as has been333

described in several other papers [7, 10, 11]. Although such implementations can be small,334

we present here only a few clauses. First, two simple clauses.335

336
async Cert ((A or- B)::R) :- orC Cert Cert ’, async Cert ’ (A::B::R).337
sync Cert (A or+ B) :- orE Cert Cert ’ C,338

((C = left , sync Cert ’ A);339
(C = right , sync Cert ’ B)).340341

Here, the proof theory judgments Ξ; Σ`Γ ⇑Θ and Ξ; Σ`Γ ⇓A are represented by the atomic342

formulas (async Cert Theta) and (sync Cert A), respectively: the encoding of Σ and Γ343

are captured by features found in the (intuitionistic) logic underlying λProlog. Thus, the344

two clauses above implement the intended meaning of the focused introduction rules for ∨−345

and ∨+++ , respectively.346

The introduction rules for the quantifiers employ the copy-clauses to translate client-side347

terms to kernel-side terms. In particular, consider the following two λProlog clauses specifying348

the introduction of the quantifiers.349

350
async Cert ((all B)::R) :- allCx Cert Cert ’ T,351

pi w\ copy T w => async Cert ’ ((B w)::R).352
sync Cert (some B) :- someE Cert Cert ’ T, copy T S, sync Cert ’ (B S).353354

Note that the universal quantification of λProlog (pi w\) implements the eigenvariable355

feature needed for the LKFa proof system and that the implication => is used to extend356

the program clauses for copy with a new atomic clause (copy T w), which is only usable357

within the scope of w. In this way, the Σ context in Figure 2 is implemented via λProlog’s358

intuitionistic context.359

The copy-clauses can now be used uniformly to perform deskolemization in the following360

sense. Assume that both the kernel and client agree on the signature Σ0 and that the361

copy-clauses C(Σ0) derived from that signature are added to the kernel specification. As362

proof checking progresses, new atomic copy-formulas are added to the Σ context whenever a363

XX:10 A proof-theoretic approach to certifying skolemization

strong quantifier is encountered (via the first clause displayed above). Whenever the client364

computes (via the existential expert someE) a client-side term T is then translated to the365

kernel-side formula S by the query copy T S.366

I Example 5. Assume that the base signature for both the client and the kernel is Σ =367

{a/0, f/1, g/2}. Also assume that the client is using h/1 as a Skolem function and that368

the kernel has introduced two eigenvariables x and y and that Γ contains exactly the two369

associations (copy (h a) x) and (copy (h (f a)) y). Attempting to prove the λProlog370

query C(Σ),Γ ` (copy (g (h (f a)) (f (h a))) X), for some logic variable X, will have a371

unique solution, namely, the one that binds X to (g y (f x)). It is this step that performs372

deskolemization. Note, however, that we do not necessarily assume that deskolemization373

is determinate. In particular, if the Γ context contained the atoms (copy (h a) x) and374

(copy (h a) y), then there are two solutions to the query (copy (g (h a) (f a)) X),375

namely, binding X to either (g x (f a)) or (g y (f a)). J376

Nondeterminism in deskolemization is not a soundness problem in the context of the kernel377

we have described here: instead, this nondeterminism may cause the kernel to backtrack and378

to examine more than one deskolemization in order to finish proof checking.379

Observe that given an LKFa sequent, we can easily obtain a corresponding LKF sequent380

by removing the proof certificate, replacing every instance of (copy t x) in the signature381

with (wf x), and dropping the indexes on the formulas in the store. Call this its underlying382

sequent. The following property is proved by a simple structural induction on LKFa proofs.383

I Theorem 6 (Soundness of LKF a). If an LKFa sequent is derivable, then its underlying384

sequent is derivable in LKF and the unpolarized version of that sequent is provable in LK. J385

It is important to note that LKFa is sound by construction: no specification for the clerks386

and experts provided by the client can lead the kernel to prove a non-theorem. Such a strong387

soundness property is a critical feature of a proof checking kernel.388

What is formally called an FPC is a collection of type declarations describing the389

constructors for certificates and indexes and a collection of clauses specifying the clerk390

and expert relations. Once these collections are added to the λProlog specification of the391

inference rules in Figure 2, one has a proof checker that will check one particular format392

of proof certificates. Many such formats have been so defined using FPCs: these include393

resolution refutations, sequent calculus proofs, expansion trees, Frege proofs, and rewriting394

proofs [8, 9, 11]. The notion of formulas and terms within the kernel may both be different395

from those notions used by the client. Polarization then becomes a mapping from client-side396

to kernel-side formulas. In a similar way, deskolemization is a mapping from client-side to397

kernel-side terms.398

We can state a kind of completeness theorem for how skolemized proof evidence can be399

used as proof evidence for the original unskolemized theorems. Assume that B is a closed400

formula and let C be the result of applying outer skolemization to B. Also assume that we401

are given an FPC, P, that polarizes all occurrences of propositional connectives negatively402

and that defines proof checking for skolemized proof evidence with a skolemized theorem.403

Thus, we can assume that this FPC does not need to define the experts ∧e, ∨e, and >e404

(since the positive propositional connectives do not appear) as well as the clerk ∀c (since a405

skolemized formula has no strong quantifiers). Finally, let P ′ be the FPC that results from406

adding to P the following clause.407

408
allCx Cert Cert T.409410

K. Chaudhuri, M. Manighetti, and D. Miller XX:11

Given that these various assumptions hold, then we can prove the following: if it is checkable411

that the certificate Ξ satisfies the FPC P as a proof of C then the certificate Ξ satisfies the412

FPC P ′ as a proof of B. Thus, if the client satisfies two major requirements on proof evidence—413

namely, that propositional connectives are polarized negatively and that skolemization is the414

outer variety—then the same skolemized proof evidence used with a skolemized formula can415

immediately be seen as proof evidence of the unskolemized theorem.416

5 Experiments with an implementation417

We have implemented the proof checking kernel described in this paper and have conducted418

several experiments with it. The full code can be found at the following Github repository:419

https://github.com/chaudhuri/proofcert-deskolemize/. It has been trivial to incor-420

porate previous FPCs (those that assumed that client-side and kernel-side terms coincide) to421

execute on this extended proof checker. One immediate experiment consists of transforming422

LK proofs of skolemized end-sequents to LK (via LKFa) proofs of the original (unskolemized)423

formulas. (Here, we are assuming that the right introduction rules for disjunction and con-424

junction are the invertible rules since these match directly their negatively biased versions.)425

The repository contains two additional and more significant examples. One involves simple426

reasoning using geometric formulas: in that setting, Skolem terms are used in a rather natural427

and familiar fashion. In the rest of this section, we describe the other example provided since428

it is more involved and universal in its scope.429

Expansion trees [25] are a proof formalism that generalizes the notion of Herbrand disjunc-430

tions to formulas with arbitrary quantifiers (and to formulas with higher-order quantification).431

There are also two variations of expansion trees: one using select variables to instantiate432

strong quantifiers and one using Skolem terms to instantiate strong quantifiers. We have433

implemented three procedures for checking different kinds of proof evidence based on this434

formalism: one for expansion trees with select variables, one replacing select variables with435

Skolem terms, and one for expansion trees of skolemized formulas (thus, containing neither436

Skolem terms nor select variables).437

Expansion trees such as those we will now describe are used, in fact, in the deskolemization438

procedure of [4]. Also, the GAPT system [16] contains an implementation of that procedure.439

5.1 Expansion trees with select variables440

As we described in Section 2, we assume that formulas are in negation normal form.441

I Definition 7 (Expansion trees).442

A literal or logical constant is an expansion tree for itself.443

If Q1 and Q2 are expansion trees of A1 and A2, then (eOr Q1 Q2) and (eAnd Q1 Q2)444

are expansion trees for A1 ∨A2 and A1 ∧A2 respectively445

If u is a variable (called a select variable) and Q is an expansion tree of [u/x]A, then446

(eAll u Q) is an expansion tree for ∀x.A.447

If t1, . . . , tn is a list of expansion terms and if Qi is an expansion tree for [ti/x]A (for448

i ∈ 1..n), then (eSome [(t1, Q1), . . . , (tn, Qn)]) is an expansion tree for ∃x.A. J449

Expansion terms can contain select variables, of course. The formal, stand-alone definition450

of expansion trees requires additional correctness conditions to be assumed (that a certain451

propositional formula derived from the expansion tree is a tautology and that a certain452

relationship on select variables is acyclic) but these conditions are not needed here since453

they will be replaced by the proof checking kernel itself. Select variables within expansion454

https://github.com/chaudhuri/proofcert-deskolemize/

XX:12 A proof-theoretic approach to certifying skolemization

kind et type.

type eTrue , eFalse et.
type eLit et.
type eAnd , eOr et -> et -> et.
type eAll i -> et -> et.
type eSome list (pair i et) -> et.

Figure 3 The datatype for expansion trees. The kind declaration introduces a new primitive
type et and the type declarations introduce new constructors for this primitive type.

kind address type.
type root address .
type lf , rg , dn address -> address .

type idx address -> index .

typeabbrev context list (pair address et).
type astate , dstate context -> context -> cert.
type sstate context -> pair address et -> cert.

Figure 4 Certificate constructors for expansion trees. The primitive types index and cert are
declared as part of the kernel. The type address is introduced for this particular FPC.

orC (astate Left ((pr Add (eOr E1 E2)):: Qs))
(astate Left ((pr (lf Add) E1)::(pr (rg Add) E2):: Qs)).

andC (astate Left ((pr Add (eAnd E1 E2)):: Qs))
(astate Left ((pr (lf Add) E1):: Qs))
(astate Left ((pr (rg Add) E2):: Qs)).

someE (sstate Left (pr Add (eSome ((pr Term ET):: nil)))
(dstate Left ((pr (dn Add) ET):: nil)) Term.

allCx (eAll Term Cert) Cert Term.

Figure 5 Some of the clerks and experts for expansion trees. All of these λProlog clauses
are simply atomic formulas that perform some pattern matching and simple transformations on
certificates.

trees are rather similar to Skolem terms: select variables can be seen as nothing but another455

mechanism for naming eigenvariables, in the spirit of client vs. kernel terms.456

The datatype for expansion trees can be formalized by the λProlog signature in Figure 3457

and the more general notion of certificate based on expansion trees is given in Figure 4.458

There, proof certificates (terms of type cert) are built from three constructors: astate459

is consumed during the asynchronous phase and records two contexts representing some460

information about the storage zone Γ and the asynchronous zone Θ; sstate is consumed461

during the synchronous phase and records the storage and the formula under focus; and462

dstate is used to break focusing on adjacent existential introductions. Formulas are paired in463

the certificate with the expansion trees to which they are associated. Addresses are essentially464

paths through the proposed theorem: they are used to uniquely describe subformulas. For465

example, such addresses are used to link stored formulas (note that indexes contain addresses)466

with expansion trees sorted within certificate terms.467

The main clerks and experts are specified in Figure 5. Since connectives are polarized468

negatively, most of the work is carried out by clerks that simply consume expansion trees469

and reorganize internal components of certificates. When proof checking encounters a strong470

quantifier, the expansion-tree-cum-certificate contains the select variable associated to it:471

we then use the allCx to instruct the kernel to create a new eigenvariable and associate472

the client’s select variable as a name for that eigenvariable. When proof checking meets an473

K. Chaudhuri, M. Manighetti, and D. Miller XX:13

existential node, together with the list of terms by which the existential should be instantiated,474

we can simply communicate one of the client’s expansion terms to the kernel which then475

proceed to translate it to a kernel term. Note that in the code, we have made the assumption476

that only one term is present in the list: this is due to how contraction is treated which is477

done by the expert for the decide rule (not shown here).478

Note that the mechanism we have described as deskolemization is exactly the same479

mechanism that can replace variable names (select variables) with eigenvariables. Note also480

that if the expansion tree that is being checked uses a select variable more than once to481

name different eigenvariables, the checker will need to deal with nondeterminism in sorting482

out which assignment of select variable to eigenvariable leads to a proper proof. Similar to483

the comment in Example 5, such non-unique naming is not a soundness problem: it can,484

however, raise the cost and complexity of proof checking.485

5.2 Skolem expansion trees486

Skolem expansion trees [25] are essentially the same as expansion trees except that select487

variables are replaced by Skolem terms. It turns out that the FPC (given in Figures 3, 4,488

and 5) for regular expansion trees works without change in the setting where select variables489

are replaced by Skolem constants. In a sense, Skolem terms act as names in the same way as490

select variables acted as names of eigenvariables. Critical to the perspective that Skolem491

terms and select variables act as names is the fact that the copy clauses used within the492

kernel are never extended to copy a select variable or a Skolem function themselves. In493

particular, it is important that copy clauses do not treat Skolem functions in the same way494

as function symbols in the basic signature Σ0.495

5.3 Expansion trees of skolemized formulas496

We now turn our attention to the setting where the client has an expansion tree relative to a497

skolemized formula but we would like to use it as proof evidence of the original, unskolemized498

formula. In this case, since there are no strong quantifiers left in the skolemized formula, the499

expansion tree will not contain any select variables (nor any Skolem terms). Accordingly, we500

modify the allCx clerk to be the clause we introduced at the end of Section 4.501

502
allCx Cert Cert T.503504

Thus, when the checker finds a strong quantifier it will simply associate to the newly created505

eigenvariable a logic variable (here, T) as the name for it. This variable will ultimately be506

instantiated to be an actual Skolem term (through the interaction of proof checking and507

unification).508

6 Additional observations509

As we observed at the end of Section 4, the proof checking kernel described in this paper510

can handle outer skolemization well (at least in the case where the propositional connectives511

are polarized negatively). Unfortunately, pure outer skolemization can often insert Skolem512

functions with more arguments than are strictly necessary. Often automated theorem provers513

benefit from having Skolem terms with a lower arity [31]. Thus, a natural question to ask is514

whether or not various methods used in practice for obtaining fewer arguments to Skolem515

functions can be certified.516

XX:14 A proof-theoretic approach to certifying skolemization

6.1 Miniscoping and the cut rule517

An important transformation technique on quantified formulas is miniscoping, which consists518

in pushing quantifiers inwards as much as possible, in order to minimize the scope of519

quantifiers. The miniscoped form of a formula is its normal form with respect to the rewrite520

system given by the following rules.521

∀x. (A ∧B) −−→ (∀x.A) ∧ (∀x.B) ∃x. (A ∨B) −−→ (∃x.A) ∨ (∃x.B)522

Qx. (A ? B) −−→ (Qx.A) ? B Qx. (B ? A) −−→ B ? (Qx.A) Qx.B −−→ B (†)523
524

where Q ∈ {∀,∃} and ? ∈ {∧,∨}. In the three rules that are marked by (†), we assume that525

x is not free in B. Miniscoping only involves changing the scopes of quantifiers, and does526

not otherwise change the logical structure of formulas: clearly the original and miniscoped527

formulas are logically equivalent. In particular, it is an easy matter to prove that B entails B̃,528

where B̃ is the miniscoped version of B. In fact, building a checkable proof certificate that529

the sequent `B̃⊥, B is a simple matter and could follow the method for building certificates530

for term rewriting proof systems [9].531

If we now skolemize B̃ and obtain proof evidence that is certifiable using the mechanisms532

described in this paper, then we have actually managed to get a (hybrid) proof certificate for533

the original formula B: simply use the cut inference rule in LKF and LKFa to build a proof534

of `B from the proofs of `B̃⊥, B and `B̃. Note that we allow cut rules to be present within535

proof certificates and that “skolem-elimination” does not imply “cut-elimination”. If we were536

only interested in cut-free deskolemized proofs, then there can be a dramatic increase in the537

size of a cut-free proof for `B given a cut-free proof of `B̃ [5].538

Optimization techniques for skolemization can be rather sophisticated: see, for exam-539

ple, [21] for a technique using BDDs that reduces dependencies on weak variables when540

performing skolemization. Any such optimization technique is compatible with our deskolem-541

ization procedure by means of cuts, just as with miniscoping, assuming an entailment between542

the optimized formulas and the original theorem can be proved and certified.543

6.2 Skolemization and polarities544

When stating the conditions for the applicability of our deskolemization procedure, we have545

asked that the client use only negative connectives, with the existential as the only positive.546

Positive connectives have the property that they force the proof checker to end a sequence of547

asynchronous rules, and possibly move the focus to a different subformula. A skolemized548

proof evidence could at this point use names for any eigenvariable. However, it might well be549

the case that the eigenvariable that corresponds to such a name has still not been instantiated,550

because it was to be created by an universal quantifier placed after the positive connective551

that caused the focus shift.552

As a short example, consider the formula ((∀x. ¬ p(x))∧¬ q)∨∃x. (p(x)∨ q). Suppose we553

have proof evidence in the form of an LK proof for its skolemization (¬ p(c)∧¬ q)∨∃x. (p(x)∨q),554

with c a fresh Skolem constant. This means that we could be handled one of the following555

two proofs:556557

`¬ p(c), p(c), q init `¬ q, p(c), q init

`¬ p(c) ∧ ¬ q, p(c) ∨ q
∧,∨

`(¬ p(c) ∧ ¬ q) ∨ ∃x. (p(x) ∨ q)
∨,∃(c)

`¬ p(c), p(c), q init

`¬ p(c),∃x. (p(x) ∨ q)
∃(c),∨

`¬ q, p(c), q init

`¬ q,∃x. (p(x) ∨ q)
∃(c),∨

`(¬ p(c) ∧ ¬ q) ∨ ∃x. (p(x) ∨ q)
∨,∧558

559

Let’s try to check the first proof against the unskolemized formula. The certificate will560

instruct the kernel to first apply the disjunction, and then instantiate the existential using the561

K. Chaudhuri, M. Manighetti, and D. Miller XX:15

term c. The kernel will try to translate the client term c to a kernel term; however c is not562

in the signature, and there is no copy-clause generated by instantiating eigenvariables. Thus563

the check will fail! Indeed, this proof certificate also violates the precondition: if we polarize564

the skolemized formula negatively and try to check the LK proof against it, we can see that565

the kernel after applying the disjunction must proceed eagerly on the negative connectives566

and apply the negative conjunction. When instructed not to do so by the certificate, the567

check will fail. We can see that the negative polarization forces the proof to consume all the568

scope, and introduce all the needed eigenvariables, before proceeding with the existentials.569

6.3 The topic of inner skolemization570

Inner skolemization (see Definition 1) was introduced and proved sound by Andrews in [2].571

His soundness proof fundamentally involved a model theoretic justification. As a result,572

we know of no systematic and proof theoretic means to certify proof evidence that results573

from using inner skolemization. However it is well known that deskolemization of inner574

skolemization is problematic [17]. The problem of inner skolemization turns out to be very575

similar to that of positive polarities: in either case, since we are able to suspend processing576

of the formula that would have yielded the eigenvariable in the corresponding unskolemized577

case, we get a “leakage” of variables (via their Skolem terms) from their scopes.578

7 Related and future work579

Summarizing, we have proposed an extension to the framework of Foundational Proof580

Certificates, that allows us to modularly extend definitions for various kinds of proof evidence581

in order to be able to check skolemized proofs. We have described the implementation of the582

improved kernel, and discussed some implemented examples.583

There have been several different approaches to deskolemization in the past. Ours stands584

in contrast to the paper [30] by Reger and Suda, where certificates are allowed to involve585

inference rules that preserve satisfaction instead of provability: this was proposed there to586

treat, for example, skolemization. We shall not consider such extensions to proof certificates.587

The problematics discussed in Section 6 are well known in the literature. The running588

example is a simplified form of the proof with exponential deskolemization from [4]; Färber589

and Kaliszyk [17] provide a method that can ultimately be seen as an instance of our590

approach, and show that there are problems with inner skolemization—we provided here591

a better explanation of this phenomenon. De Nivelle [14] performs deskolemization by592

introducing new predicate symbols that simulate Skolem functions. In contrast, we have593

tried to certify proofs by staying inside the original signature. The same author in [13]594

introduces reductions from various optimized skolemizations to a standard one in the spirit595

of our discussion at the beginning of Section 6; however that standard is inner skolemization,596

which is then certified by introducing a choice operator.597

In the future we wish to study more the interaction between positive polarities and598

skolemization. Other lines of work include extending this to the higher-order setting.599

Skolemization works similarly with higher-order quantification [25], and we expect our600

approach to naturally extend to this case.601

References602

1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic603

and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.604

http://dx.doi.org/10.1093/logcom/2.3.297

XX:16 A proof-theoretic approach to certifying skolemization

2 Peter B. Andrews. Theorem proving via general matings. J. ACM, 28(2):193–214, 1981.605

doi:10.1145/322248.322249.606

3 Jeremy Avigad. Eliminating definitions and skolem functions in first-order logic. ACM607

Transactions on Computational Logic, 4:402–415, 2003.608

4 Matthias Baaz, Stefan Hetzl, and Daniel Weller. On the complexity of proof deskolemiza-609

tion. J. of Symbolic Logic, 77(2):669–686, 2012. doi:10.2178/jsl/1333566645.610

5 Matthias Baaz and Alexander Leitsch. On skolemization and proof complexity. Fundamenta611

Informaticae, 20(4):353–379, 1994. URL: https://content.iospress.com/articles/612

fundamenta-informaticae/fi20-4-4, doi:10.3233/FI-1994-2044.613

6 Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. Scalable fine-614

grained proofs for formula processing. In Leonardo de Moura, editor, 26th Interna-615

tional Conference on Automated Deduction (CADE), volume 10395 of LNCS, pages 398–616

412. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-63046-5_25, doi:617

10.1007/978-3-319-63046-5_25.618

7 Roberto Blanco, Zakaria Chihani, and Dale Miller. Translating between implicit and ex-619

plicit versions of proof. In Leonardo de Moura, editor, Automated Deduction - CADE620

26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, Au-621

gust 6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages622

255–273. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-63046-5_16, doi:623

10.1007/978-3-319-63046-5_16.624

8 Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier Checkers. In Hans De625

Nivelle, editor, Proceedings of the 24th Automated Reasoning with Analytic Tableaux and626

Related Methods (TABLEAUX), number 9323 in LNCS, pages 201–210. Springer, 2015.627

9 Zakaria Chihani and Dale Miller. Proof certificates for equality reasoning. In Mario Benev-628

ides and René Thiemann, editors, Post-proceedings of LSFA 2015: 10th Workshop on Log-629

ical and Semantic Frameworks, with Applications. Natal, Brazil., number 323 in ENTCS,630

2016. doi:10.1016/j.entcs.2016.06.007.631

10 Zakaria Chihani, Dale Miller, and Fabien Renaud. Checking foundational proof certificates632

for first-order logic (extended abstract). In J. C. Blanchette and J. Urban, editors, Third633

International Workshop on Proof Exchange for Theorem Proving (PxTP 2013), volume 14634

of EPiC Series, pages 58–66. EasyChair, 2013.635

11 Zakaria Chihani, Dale Miller, and Fabien Renaud. A semantic framework for proof evidence.636

J. of Automated Reasoning, 59:287–330, 2017. doi:10.1007/s10817-016-9380-6. URL:637

http://dx.doi.org/10.1007/s10817-016-9380-6, doi:10.1007/s10817-016-9380-6.638

12 Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic Logic, 5:56–68,639

1940.640

13 Hans de Nivelle. Extraction of proofs from the clausal normal form transformation. In641

CSL: 16th Workshop on Computer Science Logic, volume 2471 of LNCS, pages 584–598.642

LNCS, Springer-Verlag, 2002.643

14 Hans de Nivelle. Translation of resolution proofs into short first-order proofs without choice644

axioms. Information and Computation, 199(1-2):24–54, 2005.645

15 Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: fast,646

embeddable, λProlog interpreter. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and647

Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning -648

20th International Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceed-649

ings, volume 9450 of LNCS, pages 460–468. Springer, 2015. URL: http://dx.doi.org/10.650

1007/978-3-662-48899-7_32, doi:10.1007/978-3-662-48899-7_32.651

16 Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner, and Sebastian652

Zivota. System description: GAPT 2.0. In Nicola Olivetti and Ashish Tiwari, editors, Pro-653

http://dx.doi.org/10.1145/322248.322249
http://dx.doi.org/10.2178/jsl/1333566645
https://content.iospress.com/articles/fundamenta-informaticae/fi20-4-4
https://content.iospress.com/articles/fundamenta-informaticae/fi20-4-4
https://content.iospress.com/articles/fundamenta-informaticae/fi20-4-4
http://dx.doi.org/10.3233/FI-1994-2044
https://doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
https://doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1016/j.entcs.2016.06.007
http://dx.doi.org/10.1007/s10817-016-9380-6
http://dx.doi.org/10.1007/s10817-016-9380-6
http://dx.doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.1007/978-3-662-48899-7_32

K. Chaudhuri, M. Manighetti, and D. Miller XX:17

ceedings of the 8th International Joint Conference on Automated Reasoning, IJCAR 2016,654

volume 9706 of LNCS, pages 293–301. Springer, 2016. doi:10.1007/978-3-319-40229-1.655

17 Michael Färber and Cezary Kaliszyk. No choice: Reconstruction of first-order ATP proofs656

without skolem functions. In Pascal Fontaine, Stephan Schulz 0001, and Josef Urban,657

editors, Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning658

(PAAR), volume 1635 of CEUR Workshop Proceedings, pages 24–31. CEUR-WS.org, 2016.659

18 Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto, and Alwen Fer-660

nanto Tiu. Expressiveness + automation + soundness: Towards combining SMT solvers and661

interactive proof assistants. In Holger Hermanns and Jens Palsberg, editors, TACAS: Tools662

and Algorithms for the Construction and Analysis of Systems, 12th International Confer-663

ence, volume 3920 of LNCS, pages 167–181. Springer, 2006. doi:10.1007/11691372_11.664

19 Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The665

Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935.666

doi:10.1007/BF01201353.667

20 Jean-Yves Girard. A new constructive logic: classical logic. Math. Structures in Comp.668

Science, 1:255–296, 1991. doi:10.1017/S0960129500001328.669

21 Jean Goubault. A BDD-based simplification and skolemization procedure. Logic Journal670

of the IGPL, 3(6):827–855, 1995.671

22 Ulrich Kohlenbach and Paulo Oliva. Proof mining in L1-approximation. Annals of Pure672

and Applied Logic, 121(1):1–38, 2003.673

23 Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and clas-674

sical logics. Theoretical Computer Science, 410(46):4747–4768, 2009. doi:10.1016/j.tcs.675

2009.07.041.676

24 Dale Miller. Proofs in Higher-order Logic. PhD thesis, Carnegie-Mellon University, August677

1983. URL: http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/th.pdf.678

25 Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.679

26 Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi, editor, Logic680

and Computer Science, pages 329–359. Academic Press, 1990. URL: http://www.lix.681

polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf.682

27 Dale Miller. Unification of simply typed lambda-terms as logic programming. In Eighth683

International Logic Programming Conference, pages 255–269, Paris, France, June 1991.684

MIT Press.685

28 Gopalan Nadathur and Dustin J. Mitchell. System description: Teyjus — A compiler and686

abstract machine based implementation of λProlog. In H. Ganzinger, editor, 16th Conf.687

on Automated Deduction (CADE), number 1632 in LNAI, pages 287–291, Trento, 1999.688

Springer.689

29 Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In690

Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I,691

chapter 6, pages 335–367. Elsevier Science B.V., 2001.692

30 Giles Reger and Martin Suda. Checkable proofs for first-order theorem proving. In693

Giles Reger and Dmitriy Traytel, editors, ARCADE 2017, 1st International Workshop694

on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements,695

volume 51 of EPiC Series in Computing, pages 55–63. EasyChair, 2017. URL: http:696

//www.easychair.org/publications/paper/5W2B.697

31 J. Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning. MIT Press,698

2001.699

32 Joesph R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.700

33 Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli. SMT701

proof checking using a logical framework. Formal Methods in System Design, 42(1):91–118,702

2013.703

http://dx.doi.org/10.1007/978-3-319-40229-1
http://dx.doi.org/10.1007/11691372_11
http://dx.doi.org/10.1007/BF01201353
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://dx.doi.org/10.1016/j.tcs.2009.07.041
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/th.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.easychair.org/publications/paper/5W2B
http://www.easychair.org/publications/paper/5W2B
http://www.easychair.org/publications/paper/5W2B

XX:18 A proof-theoretic approach to certifying skolemization

34 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press,704

2 edition, 2000.705

	Introduction
	Direct certification using the sequent calculus
	Our approach to deskolemization
	Summary of our contributions

	Formulas and skolemization
	Focused Sequent Calculus
	Augmented LKF and foundational proof certificates
	Experiments with an implementation
	Expansion trees with select variables
	Skolem expansion trees
	Expansion trees of skolemized formulas

	Additional observations
	Miniscoping and the cut rule
	Skolemization and polarities
	The topic of inner skolemization

	Related and future work

