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Subexponential logic is a variant of linear logic with a family of exponential

connectives—called subexponentials—that are indexed and arranged in a pre-order. Each

subexponential has or lacks associated structural properties of weakening and contraction.

We show that a classical propositional multiplicative subexponential logic (MSEL) with

one unrestricted and two linear subexponentials can encode the halting problem for two

register Minsky machines, and is hence undecidable. We then show how the additive

connectives can be directly simulated by giving an encoding of propositional multiplicative

additive linear logic (MALL) in an MSEL with one unrestricted and four linear

subexponentials.

1. Introduction

The decision problem for classical propositional multiplicative exponential linear logic

(MELL), consisting of formulas constructed from propositional atoms using the connectives

{⊗, 1,

&

,⊥, !, ?}, is perhaps the longest standing open problem in linear logic. MELL is

bounded below by the purely multiplicative fragment (MLL), which is decidable even in

the presence of first-order quantification, and above by MELL with additive connectives

(MAELL), which is undecidable even for the propositional fragment (Lincoln et al., 1992).

This paper tries to make the undecidable upper bound a bit tighter by considering the

question of the decision problem for a family of propositional multiplicative subexponential

logics (MSEL) (Nigam, 2009; Nigam and Miller, 2009), each of which consists of formulas

constructed from propositional atoms using the (potentially infinite) set of connectives

{⊗, 1,

&

,⊥} ∪
⋃

u∈Σ
{!u, ?u}, where Σ is a pre-ordered set of subexponential labels, called

a subexponential signature, that is a parameter of the family of logics. In particular, we

show that a particular MSEL with a subexponential signature consisting of exactly three

labels can encode a two register Minsky machine (2RM), which is Turing-equivalent. This

is the same strategy used in (Lincoln et al., 1992) to show the undecidability of MAELL,

but the encoding in MSEL is different—simpler—for the branching instructions, and shows

that additive behavior is not essential to implement testing for zero, which is the operator

that appears to be difficult—likely impossible—to encode in ordinary MELL.

This simple demonstration of undecidability raises an obvious proof-theoretic question:
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are the additive connectives redundant with multiplicatives and subexponentials? Recall

that, with the usual unrestricted exponential connectives of MAELL, certain compound

connectives with additive sub-components can be equivalently expressed without the

additive connectives: !(A & B) ≡ !A ⊗ !B and ?(A ⊕ B) ≡ ?A

&

?B. The standard

proofs of these equivalences make use of the contraction and weakening rules for ?, and

are therefore not suitable for the situation where ! and ? do not enjoy these structural

properties. Nevertheless, these equivalences encode an essential insight about how they

may be implemented. To illustrate, if we were able to interpret the ! connective as a label

for the current context, then the implication !A⊗ !B( !(A & B) can be read as:

To prove A & B in a given context, separately prove A and B each in a copy of the context.

We will show how the subexponential connectives can be used to build the operation of

copying a context. We use a fairly obvious strategy: to copy a context we need to run a

computation that duplicates each element of the context until quiescence, that is, until

every available formula has been copied. This much can be done with ordinary linear

logic. What subexponentials add is the ability to detect when the copying computation

is finished, and then, and only then, to progress to the next step. The full MALL proof

system is encoded in terms of these staged quiescent computations.

This short paper is organized as follows: in section 2 we sketch the one-sided sequent

formulation of MSEL and recall the definition of a 2RM. In section 3 we encode the

transition system of a 2RM in a MSEL with a particular signature. In section 4 we argue

that the encoding is adequate, i.e., that the halting problem for a 2RM is reduced to the

proof search problem for this MSEL-encoding, by appealing to a focused sequent calculus

for MSEL. Then, in section 5 we give an encoding of MALL in a different instance of MSEL,

and show that it adequately captures MALL proofs. The final section 6 discusses some

consequences.

Note: We use the classical dialect of linear logic to show these results. The intuitionistic

dialect has the same decision problem because it is possible to faithfully encode (i.e.,

linearly simulate the sequent proofs of) the classical dialect in the intuitionistic dialect

without changing the signature (Chaudhuri, 2010). This paper is an extended version

of (Chaudhuri, 2014).

2. Background

2.1. Propositional Subexponential Logic

Let us quickly recall propositional subexponential logic (SEL) and its associated sequent

calculus proof system. This logic is sometimes called subexponential linear logic (SELL),

but since it is possible for the subexponentials to have linear semantics it is redundant

to include both adjectives. Formulas of SEL (A,B, . . . ) are built from atomic formulas

(a, b, . . . ) according to the following grammar:

atomic multiplicative additive subexponential

A,B, . . . ::= a | A⊗B | 1 | A⊕B | 0 | !uA

| ¬ a | A

&

B | ⊥ | A & B | > | ?uA
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` a,¬ a init
`Γ, A `∆, B

`Γ,∆, A⊗B
⊗ ` 1 1

`Γ, A

`Γ, A⊕B
⊕1

`Γ, B

`Γ, A⊕B
⊕2 no rule for 0

`Γ, A,B

`Γ, A

&

B

& `Γ

`Γ,⊥ ⊥
`Γ, A `Γ, B

`Γ, A & B
& `Γ,> >

`Γ, A

`Γ, ?uA
?

(u ≤Σ ~v) `
Σ
?~v ~A,C

`
Σ
?~v ~A, !uC

!
(u ∈ UΣ) `

Σ
Γ

`
Σ

Γ, ?uA
weak

(u ∈ UΣ) `
Σ

Γ, ?uA, ?uA

`
Σ

Γ, ?uA
contr

Fig. 1. Inference rules for a cut-free one-sided sequent calculus formulation of SEL.

Only the rules on the last line are sensitive to the signature.

Each column in the grammar above is a De Morgan dual pair. A positive formula (depicted

with P or Q when relevant) is a formula belonging to the first line of the grammar, and a

negative formula (depicted with N or M) is a formula belonging to the second line. The

labels (u, v, . . . ) on the subexponential connectives !u and ?u belong to a subexponential

signature defined below. The additive fragment of this syntax is just used in this section

for illustration; we will not be using the additives in our encodings. The fragment without

the additives will be called multiplicative subexponential logic (MSEL).

Definition 1. A subexponential signature Σ is a structure 〈Λ, U,≤〉 where:

— Λ is a countable set of labels;

— U ⊆ Λ, called the unbounded labels; and

— ≤ ⊆ Λ× Λ is a pre-order on Λ— i.e., it is reflexive and transitive—and ≤-upwardly

closed with respect to U , i.e., for any u, v ∈ Λ, if u ∈ U and u ≤ v, then v ∈ U . y

We will assume an ambient signature Σ unless we need to disambiguate particular instances

of MSEL, in which case we will use Σ in subscripts. For instance, MSELΣ is a particular

instance of MSEL for Σ.

The true formulas of MSEL are derived from a sequent calculus proof system consisting

of sequents of the form `A1, . . . , An (with n > 0) and abbreviated as `Γ. The contexts

(Γ,∆, . . .) are multi-sets of formulas of SEL, and Γ,∆ and Γ, A stand as usual for the

multi-set union of Γ with ∆ and {A}, respectively. The inference rules for SEL sequents

are displayed in figure 1. Most of the rules are shared between SEL and linear logic and

will not be elaborated upon here. The differences are with the subexponentials, for which

we use the following definition.

Definition 2. For any n ∈ N and lists ~u = [u1, . . . , un] and ~A = [A1, . . . , An], we write

?~u ~A to stand for the context ?u1A1, . . . , ?
unAn. For ~v = [v1, . . . , vn], we write u ≤ ~v to

mean that u ≤ v1, . . . , and u ≤ vn. y

The rule for !, sometimes called promotion, has a side condition that checks that the

label of the principal formula is less than the labels of all the other formulas in the context.

This rule cannot be used if there are non-?-formulas in the context, nor if the labels of

some of the ?-formulas are strictly smaller or incomparable with that of the principal

!-formula. Both these properties will be used in the encoding in the next section. The
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structural rules of weakening and contraction apply to those principal ?-formulas with

unbounded labels.

2.2. Two Register Minsky Machines

Like Turing machines, Minsky register machines have a finite state diagram and transitions

that can perform I/O on some unbounded storage device, in this case a bank of registers

that can store arbitrary natural numbers. We shall limit ourselves to machines with two

registers (2RM) a and b, which are sufficient to encode Turing machines.

Definition 3. A 2RM is a structure 〈Q, ∗, C,−→〉 where:

— Q is a non-empty finite set of states;

— ∗ ∈ Q is a distinguished halting state;

— C is a set of configurations, each of which is a structure of the form 〈q, v〉, with q ∈ Q

and v : {a, b} → N , that assigns values (natural numbers) to the registers a and b in

state q;

— −→ ⊆ C × I × C is a deterministic labeled transition relation between configurations

where the label set I = {halt, incra, incrb, decra, decrb, isza, iszb} (called the

instructions).

By usual convention, we write −→ infix with the instruction atop the arrow. We require

that every element of −→ fits one of the following schemas, where in each case q, r ∈ Q

and q 6= r:

〈q, v〉 halt−−−−−−→ 〈∗, {a : 0, b : 0}〉 (with q 6= ∗)
〈q, {a : m, b : n}〉 incra−−−−−−→ 〈r, {a : m + 1, b : n}〉
〈q, {a : m, b : n}〉 incrb−−−−−−→ 〈r, {a : m, b : n + 1}〉

〈q, {a : m + 1, b : n}〉 decra−−−−−−→ 〈r, {a : m, b : n}〉
〈q, {a : m, b : n + 1}〉 decrb−−−−−−→ 〈r, {a : m, b : n}〉

〈q, {a : 0, b : n}〉 isza−−−−−−→ 〈r, {a : 0, b : n}〉
〈q, {a : m, b : 0}〉 iszb−−−−−−→ 〈r, {a : m, b : 0}〉

(1)

For a trace ~i = [i1, . . . , in], we write 〈q0, v0〉
~i−−→〈qn, vn〉 if 〈q0, v0〉

i1−−→· · · in−−→〈qn, vn〉.
The 2RM halts from an initial configuration 〈q0, v0〉 if there is a trace ~i such that

〈q0, v0〉
~i−−→〈∗, {a : 0, b : 0}〉. (The configuration 〈∗, {a : 0, b : 0}〉 will be called the halting

configuration.) The halting problem for a 2RM is the decision problem of whether the

machine halts from an initial configuration. y

The requirement that−→ be deterministic amounts to: 〈q, v〉 i−−→〈q1, v1〉 and 〈q, v〉 j−−→〈q2, v2〉
imply that i = j, q1 = q2, and v1 = v2. Note that a trace that does not end with a

halting configuration will not be considered to be halting, even if there is no possible

successor configuration. It is an easy exercise to transform a given 2RM into one where

every configuration has a successor except for the halting configuration.
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Theorem 1 ((Minsky, 1961)). The halting problem for 2RMs is recursively unsolvable.

�

3. Encoding a 2RM

For a given 2RM, which we fix in this section, we will encode its halting problem as the

derivability of a particular MSEL sequent that encodes its labeled transition system and

the initial configuration. We will use the following subexponential signature in the rest of

this section.

Definition 4. Let Ξ stand for the signature 〈{∞, a, b} , {∞} ,≤〉 where ≤ is the reflexive-

transitive closure of ≤0 defined by a ≤0 ∞ and b ≤0 ∞. y

Definition 5 (encoding configurations). For c = 〈q, v〉, we write E(c) for the following

MSELΞ context:

?a ¬ ra, ?a ¬ ra, . . . , ?a ¬ ra︸ ︷︷ ︸
length = v(a)

, ?b ¬ rb, ?b ¬ rb, . . . , ?b ¬ rb︸ ︷︷ ︸
length = v(b)

,¬ q y

Definition 6 (encoding transitions). The transitions (1) of the 2RM are encoded as

a context Π with:

— to represent 〈q, v〉 halt−−−−→〈∗, {a : 0, b : 0}〉, the elements: q ⊗ ¬ h, h ⊗ !ara ⊗ ¬ h, h ⊗
!brb⊗ ¬ h, h⊗ !∞1 (for some h /∈ Q):

— to represent 〈q, {a : m, b : n}〉 incra−−−−→〈r, {a : m + 1, b : n}〉, the element q ⊗ (¬ r

&

?a ¬ ra);

— to represent 〈q, {a : m, b : n}〉 incrb−−−−→〈r, {a : m, b : n + 1}〉, the element: q ⊗ (¬ r

&

?b ¬ rb);

— to represent 〈q, {a : m + 1, b : n}〉 decra−−−−→〈r, {a : m, b : n}〉, the element: q⊗ !ara⊗¬ r;

— to represent 〈q, {a : m, b : n + 1}〉 decrb−−−−→〈r, {a : m, b : n}〉, the element: q⊗ !brb⊗¬ r;

— to represent 〈q, {a : 0, b : n}〉 isza−−−−→〈r, {a : 0, b : n}〉, the element: q ⊗ !b ¬ r; and

— to represent 〈q, {a : m, b : 0}〉 iszb−−−−→〈r, {a : m, b : 0}〉, the element: q ⊗ !a ¬ r.

Note that Π contains a finite number of elements. y

Definition 7 (encoding the halting problem). If Γ is A1, . . . , An, then let ?uΓ stand

for ?uA1, . . . , ?
u
An. The encoding of the halting problem for the 2RM from the initial

configuration c0 = 〈q0, v0〉 is the MSELΞ sequent ` ?∞Π, E(c0). y

Theorem 2. If the 2RM halts from c0, then `Ξ ?∞Π, E(c0) is derivable.

Proof. We will show that if c = 〈q1, v1〉
i−−→〈q2, v2〉 = d (for some i), then the following

MSELΞ rule is derivable:
` ?∞Π, E(d)

` ?∞Π, E(c)

This is largely immediate by inspection. Here are three representative cases.
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— The case of i = incra: it must be that v2(a) = v1(a) + 1 and v2(b) = v1(b), so

E(d) = E(c) \ {¬ q1} ,¬ q2, ?
a
ra. Moreover, q1 ⊗ (¬ q2

&

?a ¬ ra) ∈ Π. So:

`¬ q1, q1
init

` ?∞Π, E(c) \ {¬ q1} ,¬ q2, ?
a ¬ ra

` ?∞Π, E(c) \ {¬ q1} ,¬ q2

&

?a ¬ ra

&

` ?∞Π, E(c), q1 ⊗ (¬ q2

&

?a ¬ ra)
⊗

` ?∞Π, E(c)
contr, ?

The cases for incrb, decra, and decrb are similar.

— The case of i = isza: it must be that v2(a) = v1(a) = 0 and v2(b) = v1(b). Hence,

E(d) = E(c) \ {¬ q1} ,¬ q2 and ?ara /∈ E(c) ∪ E(d). Moreover, q1 ⊗ !b ¬ q2 ∈ Π. So:

`¬ q1, q1
init

` ?∞Π, E(c) \ {¬ q1} ,¬ q2

` ?∞Π, E(c) \ {¬ q1} , !b ¬ q2

!

` ?∞Π, E(c), q1 ⊗ !b ¬ q2

⊗

` ?∞Π, E(c)
contr, ?

The instance of ! is justified because b ≤ ∞ and b ≤ b, and there are no ?-formulas

labeled a or non-? formulas in the sequent. The case of iszb is similar.

— The case of i = halt. Here, we know that q1 ⊗ ¬ h ∈ Π, so:

`¬ q1, q1
init ` ?∞Π, E(c) \ {¬ q1} ,¬ h
` ?∞Π, E(c), q1 ⊗ ¬ h

⊗

` ?∞Π, E(c)
contr, ?

Now, as long as there are any occurrences of ?ara or ?arb in E(c), we can apply one

of the decrementing rules h⊗ !ara⊗¬ h or h⊗ !brb⊗¬ h ∈ Π. The general case looks

something like this, where ∆ra = {¬ ra, . . . ,¬ ra} and ∆rb = {¬ rb, . . . ,¬ rb}.

` h,¬ h init

`¬ ra, ra init

` ?a ¬ ra, ra
?

` ?a ¬ ra, !ara
!
` ?∞Π, E(c) \ {¬ q1, ?

a
∆ra, ?

b
∆rb, ?

a ¬ ra} ,¬ h
` ?∞Π, E(c) \ {¬ q1, ?

a
∆ra, ?

b
∆rb, ?

a ¬ ra} , ?a ¬ ra,¬ h, h⊗ !ara⊗ ¬ h
⊗,⊗

` ?∞Π, E(c) \ {¬ q1, ?
a
∆ra, ?

b
∆rb, ?

a ¬ ra} , ?a ¬ ra,¬ h
contr, ?

There is a symmetric case for contracting the h ⊗ !brb ⊗ ¬ h. Eventually, the right

branch just becomes ` ?∞Π,¬ h, at which point we have:

` h,¬ h init

` 1 1

.... weak

` ?∞Π, 1

` ?∞Π, !∞1
!

` ?∞Π,¬ h, h⊗ !∞1
⊗

` ?∞Π,¬ h
contr, ?
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(~u ∈ UΣ)

`
Σ
?~u ~A,¬ a, [a]

[init]
(~u ∈ UΣ) `

Σ
?~u ~A,Ω1, [B] `

Σ
?~u ~A,Ω2, [C]

`
Σ
?~u ~A,Ω1,Ω2, [B ⊗ C]

[⊗]
(~u ∈ UΣ)

`
Σ
?~u ~A, [1]

[1]

`Ω, [A]

`Ω, [A⊕B]

[
⊕1

] `Ω, [B]

`Ω, [A⊕B]

[
⊕2

]
no rule for 0

(u ≤Σ ~v)

(~w ∈ UΣ) `
Σ
?~v ~A,C

`
Σ
?~v ~A, ?~w ~B, [!uC]

[!]
`Ω, N

`Ω, [N ]
[blur]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rules

&

, ⊥, &, > shared with the unfocused system

`Ω, [P ]

`Ω, P
decide

(u /∈ UΣ) `
Σ

Ω, [A]

`
Σ

Ω, ?uA
ldecide

(u ∈ UΣ) `
Σ

Ω, ?uA, [A]

`
Σ

Ω, ?uA
udecide

Fig. 2. Inference rules for a focused sequent calculus formulation of SEL.

4. Adequacy of the Encoding via Focusing

By the contrapositive of theorem 2, if the sequent `Ξ ?∞Π, E(c0) is not derivable, then

the 2RM does not halt from c0. This gives half of the reduction. For the converse of

theorem 2, we need to show how to recover a halting trace by searching for proofs of

a MSELΞ encoding of a halting problem. The best way to do this is to build a focused

proof which will have the derived inference rules in the above proof as the only possible

synthetic rules, in a sense made precise below. We will begin by sketching the focused

proof system for SEL that is sound and complete for the unfocused system of figure 1, and

then show how the synthetic rules for the encoding are in bijection for all instructions

(with a small correction needed for halt).

Focusing is a general technique to restrict the non-determinism in a cut-free sequent

proof system. Though originally defined for classical linear logic in (Andreoli, 1992), it is

readily extended to many other logics (Chaudhuri et al., 2008; Liang and Miller, 2009;

Nigam, 2009). This section sketches the basic design of a focused version of the rules

of figure 1, and omits most of the meta-theoretic proofs of soundness and completeness,

for which the general proof techniques are by now well known (Chaudhuri et al., 2008;

Miller and Saurin, 2007; Simmons, 2014). To keep things simple, we will define a focused

calculus by adding to the unfocused system a new kind of focused sequent, `Ω, [A], where

the formula A is under focus. Contexts written with Ω, which we call neutral contexts,

can contain only positive formulas, atoms, negated atoms, and ?-formulas. The rules of

the focused proof system for SEL are depicted in figure 2.

Focused sequents are created—reading from conclusion upwards to premises—from

unfocused sequents with neutral contexts by means of the rules decide, ldecide, or udecide.

In a focused sequent, only the formula under focus can be principal, and the focus persists

on the immediate subformulas of this formula in the premises, with the exception of the

rule [!]. In the base case, for [init], the focused atom must find its negation in the context,

while all formulas in the context must be ?-formulas with unbounded labels. When the

focused formula is negative, the focus is released with the [blur] rule, at which point any

of the unfocused rules {

&

,⊥,&,>} of figure 1 can be used to decompose the formula and

its descendants further. Eventually, when there are no more negative descendants—i.e.,

the whole context has the form Ω—a new focused phase is launched again and the cycle
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repeats. Note that the structural rules contr and weak of the unfocused calculus are

removed in the focused system. Instead, weakening is folded into [init], [!], and [1], and

contraction is folded into [⊗] and udecide. The rules contr and weak remain admissible

for either sequent form in the focused calculus.

Theorem 3. The SEL sequent `Γ is provable in the unfocused system of figure 1 if and

only if it is provable in the focused system of figure 2.

Proof. Straightforward adaptation of existing proofs of the soundness and completeness

of focusing, such as (Chaudhuri et al., 2008; Miller and Saurin, 2007; Simmons, 2014).

An instance for SEL can be found in (Nigam, 2009, chapter 5).

Theorem 4. The 2RM halts from c0 if `Ξ ?∞Π, E(c0) is derivable.

Proof. We will show instead that the 2RM halts from c0 if the sequent `Ξ ?∞Π, E(c0) is

derivable in the focused calculus, and we will moreover extract the halting trace from

such a focused proof. The required result will then follow immediately from theorem 3,

since any provable SEL sequent has a focused proof.

Let a focused proof of `Ξ ?∞Π, E(c) (for c = 〈q, v〉) be given. We proceed by induction

on the lowermost instance of udecide in this proof. Note that the MSELΞ context ?∞Π, E(c)

is neutral; moreover, all the elements of E(c) are either negated atoms or ?-prefixed

negated atoms with bounded labels. So, the only rules of the focusing system that apply

to this sequent are ldecide or udecide. However, if we use ldecide, then the premise becomes

unprovable, as there is no way to remove an occurrence of ¬ ra or ¬ rb from a context

that also contains ¬ q. Thus, the only possible rule will be an instance of udecide, with

the focused formula in the premise being one of the Π. First, consider the case where

the focused formula does not contain h, i.e., it corresponds to one of the instructions

in I \ {halt}. In each of these cases, the focused phase that immediately follows is

deterministic. As a characteristic case, suppose the focused formula is q ⊗ !b ¬ r; then we

have:

`¬ q, [q]
[init]

` ?∞Π, E(c) \ {¬ q} ,¬ r
` ?∞Π, E(c) \ {¬ q} , [!b ¬ r]

[!]

` ?∞Π, E(c), [q ⊗ !b ¬ r]
[⊗]

` ?∞Π, E(c)
udecide

The right premise is now itself neutral and an encoding of a different configuration. We

can appeal to the inductive hypothesis to find a halting trace for it, to which we can

prepend the instruction isza to get the halting trace from c. A similar argument can be

used for the other instructions in I \ {halt}.
This leaves just the formulas involving h for the lowermost udecide. We cannot select

any formula but q ⊗ ¬ h from Π, for the derivation would immediately fail because h /∈ Q

and there is no ¬ h in E(c) to use with [init]. So, as the formula selected is q ⊗ ¬ h, we
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have:

`¬ q, [q]
[init]

` ?∞Π, E(c) \ {¬ q} ,¬ h
` ?∞Π, E(c) \ {¬ q} , [¬ h]

[blur]

` ?∞Π, E(c), [q ⊗ ¬ h]
⊗

` ?∞Π, E(c)
udecide

The context of the right premise is now neutral, so the only rule that applies to it is udecide.

A simple nested induction will show that sequents of this form ` ?∞Π, E(c) \ {¬ q} ,¬ h
are always derivable in the focused calculus. Therefore, the trace that corresponds to the

configuration c is just the singleton halt.

Corollary 1. The derivability of MSELΞ sequents is recursively unsolvable.

Proof. Directly from theorems 1, 2, and 4.

5. Directly Encoding MALL

Since MSELΞ is Turing-equivalent, it can obviously be used to simulate a theorem prover

that implements a complete search procedure for MAELL. Thus, in an indirect fashion,

we see that additive behavior can be encoded using multiplicatives and subexponentials

alone. In this section we will give a more direct demonstration of this ability by showing

how to simulate propositional MALL in a propositional MSEL.

We use the propositional version to keep the result as strong as possible. As a price, the

encoding needs to be specialized to every subformula of the endsequent, and is therefore

exponentially bigger than the MALL sequent we start with. If we were to use a first-order

variant of MSEL with the same signature, then our encoding would be polynomial in the

size of the MALL sequent, since the theory of MALL would be of constant size. This is indeed

the technique used by many of the encodings of various proof systems in SEL (Nigam

et al., 2014).

Definition 8. Let Υ stand for the signature 〈{∞, l, r, lr, lin} , {∞} ,≤〉 where ≤ is the

reflexive-transitive closure of ≤0 defined by l ≤0 ∞, r ≤0 ∞, lr ≤0 l, lr ≤0 r and

lin ≤0 ∞. In other words, ≤ has the following lattice.

∞

l r lin

lr y

Recall that MALL formulas are built from literals (atoms or negated atoms) and the

connectives {⊗, 1,

&

,⊥,⊕, 0,&,>}. As this is a sub-language of SEL, we use the same

inference system as in Figure 1. We will build an MSELΥ sequent whose MSEL proofs are

in bijection to the MALL proofs of `Γ.

Notation 1. We write A ε B to indicate that A is a subformula of B. Likewise A ε Γ

means that A ε B for some B ∈ Γ. y
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Definition 9 (atomic formulas). If Γ is a multiset of MALL formulas, then we add the

following atomic formulas to the collection of atoms used in the MSELΥ encoding of Γ.

— The atom rule to represent the conclusions and premises of every MALL inference

rule.

— For every C ε Γ, the atom fC to represent an occurrence of C. If Γ is the multiset

{A1, . . . , An}, then we write fΓ to stand for the multiset {fA1 , . . . , fAn}.
— For every A⊕B ε Γ, the atom chA,B to represent the choice between A and B.

— The atoms cp, restl and restr to represent stages in the copying procedure for

contexts.

— The atom gc to represent stages in the deletion procedure for contexts.

We assume that none of these atomic formulas occurs as a subformula of Γ. y

We will use the above subexponential signature and collection of atomic formulas to

encode the MALL inference system specialized to the endsequent `Γ. This encoding will be

in the form of a theory ΘΓ that will be a collection of formulas with !s and ?s interspersed

to place and check occurrences.

Definition 10 (MALL encoding theory). If Γ is a multiset of MALL formulas, then

the theory ΘΓ is made up of the following elements.

— For every atom a ε Γ,

rule⊗ !lin ¬ fa ⊗ !lin ¬ f¬ a.

— For every A⊗B ε Γ, the formula:

rule⊗ !lin ¬ fA⊗B ⊗
(
?linfA

&

¬ rule
)
⊗
(
?linfB

&

¬ rule
)
.

— If 1 ε Γ, then:

rule⊗ !lin ¬ f1.

— For every A

&

B ε Γ, the formula:

rule⊗ !lin ¬ f
A

&

B
⊗
(
?linfA

&

?linfB

&

¬ rule
)
.

— If ⊥ ε Γ, then:

rule⊗ !lin ¬ f⊥ ⊗ ¬ rule.

— For every A⊕B ε Γ, the formulas:

rule⊗ !lin ¬ fA⊕B ⊗ ¬ chA,B ,

chA,B ⊗
(
?linfA

&

¬ rule
)
,

chA,B ⊗
(
?linfB

&

¬ rule
)
.

— For every A & B ε Γ, the formulas:

rule⊗ !lin ¬ fA&B ⊗ ¬ cp,
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restl⊗ !lin
(
?linfA

&

¬ rule
)
,

restr⊗ !lin
(
?linfB

&

¬ rule
)
.

— To implement copying, the following formula for every C ε Γ:

cp⊗ !lin ¬ fC ⊗
(
?lfC

&

?rfC

&

¬ cp
)
.

To detect when copying is finished, the additional formula:

cp⊗ !lr(!l ¬ restl⊗ !r ¬ restr).

— Once copying is finished, to implement the transferal of formulas from the temporary

subexponential labels l or r to the main label lin, the following formulas for every

C ε Γ:

restl⊗ !l ¬ fC ⊗
(
?linfC

&

¬ restl
)
,

restr⊗ !r ¬ fC ⊗
(
?linfC

&

¬ restr
)
.

Note that the transferal process ends with one of the latter two steps in the theory

elements for A & B above.

— If > ε Γ, then the following two formulas to initiate and terminate deletion:

rule⊗ !lin ¬ f> ⊗ ¬ gc, gc.

— To implement deleting the context during a proof of >, the following formula for every

C ε Γ:

gc⊗ !lin ¬ fC ⊗ ¬ gc.

Note: since Γ has finitely many subformulas, it must be that ΘΓ is finite. y

This brings us to the encoding of MALL contexts.

Definition 11 (encoding MALL contexts). If Γ is a multiset of MALL formulas, then

E(Γ) stands for the multiset

?∞ΘΓ,
{
?linfC : C ∈ Γ

}
,¬ rule.

y

We will now prove the following adequacy theorem.

Theorem 5. If Γ0 is a multiset of MALL formulas, then `
MALL

Γ0 if and only if `
MSELΥ

E(Γ0).

Proof. Let us first show that the encoding can simulate MALL proofs, i.e., if `
MALL

Γ0

then `
MSELΥ

E(Γ0). We will establish this by showing that all the inference rules of MALL

are simulated by the encoding, i.e., for every MALL inference rule of the form

`Γ1 · · · `Γn

`Γ0
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there is a derived MSELΥ inference rule for

`E(Γ1) · · · ` E(Γn)
`E(Γ0)

Note that this proof only makes sense if the MALL inference system has the subformula

property—otherwise, E(Γ1), . . . , E(Γn) would not be fragments of E(Γ0)—which is the

case for us since our proof system (Figure 1) is cut-free. There are the following cases.

— Case of init: here, we know that

E(a,¬ a) = ?∞
(
rule⊗ !lin ¬ fa ⊗ !lin ¬ f¬ a

)
,

?linfa, ?
lin

f¬ a,¬ rule.

so:

` rule,¬ rule init ` !lin ¬ fa, ?linfa
!, ?, init

` !lin ¬ f¬ a, ?
lin

f¬ a

!, ?, init

` rule⊗ !lin ¬ fa ⊗ !lin ¬ f¬ a, ?
lin

fa, ?
lin

f¬ a,¬ rule
⊗

` ?∞
(
rule⊗ !lin ¬ fa ⊗ !lin ¬ f¬ a

)
, ?linfa, ?

lin
f¬ a,¬ rule

?

— Case of ⊗: we know that:

E(Γ,∆, A⊗B) = ?∞ΘΓ,∆,A⊗B , ?
lin

fΓ, ?
lin

f∆, ?
lin

fA⊗B ,¬ rule.

where

ΘΓ,∆,A⊗B 3
(
rule⊗ !lin ¬ fA⊗B ⊗

(
?linfA

&

¬ rule
)
⊗
(
?linfB

&

¬ rule
))

. (R)

Moreover, ΘΓ,∆,A⊗B is the same set of formulas as ΘΓ,A,Θ∆,B , R, so the latter is

related to the former by a sequence of contractions. So, we have:

` ?∞ΘΓ,A, ?
lin

fΓ, ?
lin

fA,¬ rule ` ?∞Θ∆,B , ?
lin

f∆, ?
lin

fB ,¬ rule
` ?∞ΘΓ,∆,A⊗B , ?

lin
fΓ, ?

lin
f∆, ?

lin
fA⊗B ,¬ rule.

contr∗, ?,⊗, !, init

where the two additional closed branches are not shown.

— The case of 1 is a trivial analogue of the previous case.

— The cases of

&

and ⊥ are completely straightforward.

— The case of ⊕: we know that

E(Γ, A⊕B) = ?∞ΘΓ,A⊕B , ?
lin

fΓ, ?
lin

fA⊕B ,¬ rule.

where

ΘΓ,A⊕B ⊇ rule⊗ !lin ¬ fA⊕B ⊗ ¬ chA,B , (C)

chA,B ⊗
(
?linfA

&

¬ rule
)
, (CA)

chA,B ⊗
(
?linfB

&

¬ rule
)
. (CB)

Note that both ΘΓ,A and ΘΓ,B are reachable from ΘΓ,A⊕B by a sequence of weakenings.

So, we have the following derivation as one possibility, where many irrelevant details
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and closed branches are omitted for lack of space.

` ?∞ΘΓ,A, ?
lin

fΓ, ?
lin

fA,¬ rule
` ?∞ΘΓ,A, ?

∞
CA, ?

lin
fΓ,¬ chA,B

? on ?∞CA,⊗, !, init

` ?∞ΘΓ,A, ?
∞
C, ?∞CA, ?

lin
fΓ, ?

lin
fA⊕B ,¬ rule.

? on ?∞C,⊗, !, init

` ?∞ΘΓ,A⊕B , ?
lin

fΓ, ?
lin

fA⊕B ,¬ rule
contr∗,weak∗, ?

The other possibility is that CA is weakened and CB is contracted, which is symmetric.

— Case of &: we know that:

E(Γ, A & B) = ?∞ΘΓ,A&B , ?
lin

fΓ, ?
lin

fA&B ,¬ rule

where:

ΘΓ,A&B ⊇ rule⊗ !lin ¬ fA&B ⊗ ¬ cp, (R1){
cp⊗ !lin ¬ fC ⊗

(
?lfC

&

?rfC

&

¬ cp
)

: C ε Γ0

}
, (R2,∗)

cp⊗ !lr(!l ¬ restl⊗ !r ¬ restr), (R3){
restl⊗ !l ¬ fC ⊗

(
?linfC

&

¬ restl
)

: C ε Γ0

}
, (R4,∗){

restr⊗ !r ¬ fC ⊗
(
?linfC

&

¬ restr
)

: C ε Γ0

}
. (R5,∗)

restl⊗ !lin
(
?linfA

&

¬ rule
)
, (R6)

restr⊗ !lin
(
?linfB

&
¬ rule

)
. (R7)

Moreover, both ΘΓ,A and ΘΓ,B are related to ΘΓ,A&B by contraction and weakening.
The derivation begins as follows, where we now also elide the rule names for lack of
space, but note just which of R1, . . . , R7 above were principal.

` ?∞ΘΓ,A, ?
lin

fΓ, ?
lin

fA,¬ rule
` ?∞ΘΓ,A,Ψ2 \ ?∞ {R4,∗} , ?linfΓ,¬ restl

R6

` ?∞ΘΓ,A,Ψ2, ?
l
fΓ,¬ restl

R4,∗

` ?∞ΘΓ,B , ?
lin

fΓ, ?
lin

fB ,¬ rule
` ?∞ΘΓ,B ,Ψ3 \ ?∞ {R5,∗} , ?linfΓ,¬ restr

R7

` ?∞ΘΓ,B ,Ψ3, ?
r
fΓ,¬ restr

R5,∗

` ?∞ΘΓ,A, ?
∞ΘΓ,B ,Ψ1 \ ?∞ {R1, R2,∗} ,Ψ2,Ψ3, ?

l
fΓ, ?

r
fΓ,¬ cp

R3

` ?∞ΘΓ,A, ?
∞ΘΓ,B ,Ψ1 \ ?∞ {R1} ,Ψ2,Ψ3?

lin
fΓ,¬ cp

R2,∗

` ?∞ΘΓ,A, ?
∞ΘΓ,B , ?

∞ {R1, R2,∗, R3}︸ ︷︷ ︸
Ψ1

, ?∞ {R4,∗, R6}︸ ︷︷ ︸
Ψ2

, ?∞ {R5,∗, R7}︸ ︷︷ ︸
Ψ3

, ?linfΓ, ?
lin

fA&B ,¬ rule
R1

` ?∞ΘΓ,A&B , ?
lin

fΓ, ?
lin

fA&B ,¬ rule
contr∗

There are three crucial points. The first is the inference corresponding to R3: this

rule requires all the subexponential labels in the context to be above lr, which is

the case since both lr ≤ l and lr ≤ r. This rule could not be applied any earlier

(lower) because lin � lr; it had to wait until the R2,∗ rules would transfer all the

?lin formulas. Once this outer test succeeds, we apply the ⊗ rule, and have two inner

tests; the left test checks for the emptiness of r since l � r, and the right test does

the converse. This guarantees that all the ?l formulas are indeed sent to the left

branch, and the ?r formulas to the right branch. The other two crucial points are the

applications corresponding to R6 and R7. In each case, the !lin guard checks that the
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l or r formulas (as applicable) are absent since lin � l and lin � r. Neither of these

rules could have been applied any earlier, while there were still ?l or ?r formulas left

to transfer back to lin.

— Finally, the case of >: we know that:

E(Γ,>) = ?∞ΘΓ,>, ?
lin

fΓ, ?
lin

f>,¬ rule.

where:

ΘΓ,> ⊇ rule⊗ !lin ¬ f> ⊗ ¬ gc, (R1){
gc⊗ !lin ¬ fC ⊗ ¬ gc : C ε Γ0

}
. (R3,∗)

gc, (R2)

We have:

` gc,¬ gc init

` ?∞R2,¬ gc
R3

` ?∞ {R2, R3,∗} , ?linfΓ,¬ gc
R2,∗

` ?∞ {R1, R2, R3,∗} , ?linfΓ, ?
lin

f>,¬ rule
R1

` ?∞ΘΓ,>, ?
lin

fΓ, ?
lin

f>,¬ rule
weak∗

As in the previous case, the key rule R2 could not be applied any earlier (lower) if

there were any ?lin formulas left, since lin is a linear subexponential.

In the reverse direction, we follow the strategy of Theorem 4 and show that the above

derived inferences are the only possible ones in a focused proof system. The argument

is fairly straightforward: in each case, the use of the atoms rule, ch, cp, restl, restr,

and gc guarantee that only the relevant formulas from ΘΓ0
can be decided on; any other

decision would immediately fail. The f atoms further limit the selection of the elements

of ΘΓ0
to those that are the encoding of the correct principal formulas. As already argued

above, the computations in ⊕, &, and > are carefully guarded with !s to prevent any

interleaving and to ensure the correct distribution of the linear resources; any other

distribution would lead to a failure within the same phase of focusing. Thus, from a

focused MSELΥ proof of `E(Γ0), if we abstract the proof to keep only those sequents that

contain ¬ rule, and then erase everything except the f-atoms, we would get a proof tree

that is isomorphic to a MALL proof of `Γ0.

6. Perspectives

The conclusion of Section 4 is that it is not the additives that make MAELL undecidable

but rather the fact that the additives can be used to implement a kind of limited test for

a portion of the linear resources. Thus, if we have access to such tests using other logical

means, then the decision problem can still be undecidable. Section 5 further shows that if

we have such alternative tests, then we can in fact implement the additive connectives.

Thus, these alternative tests are in fact stronger than the additive connectives. A natural

question then is: are the mechanisms provided by subexponentials strictly stronger than
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additives? Once again, there is an indirect negative answer in the sense of implementing

a complete theorem prover for a MSEL using the Turing-equivalence of MAELL. It would

be good to have a more direct encoding of any MSEL in MAELL, but it is not obvious how

to construct such encodings.

We submit the two technical theorems in Sections 4 and 5 as arguments for a philo-

sophical view of MSEL as a logic of ordinary computers. A standard computer—with a

Von Neumann architecture, say, but this is not important—is manifestly able to maintain

a bank of counters and to observe and act upon the value of any particular counter. It is

unnatural, though, to allow such a computer to take computational steps that depend

on a different computation in a parallel reality that is identical to the present reality

in all but a principal aspect. The encoding of Minsky machines in MAELL requires such

nonstandard computationsl steps. On the other hand, every action that is expressible in

MSEL corresponds to a natural single-threaded computational feature: ⊗ corresponds to

separation,

&

to concurrency, ? to placement or context switching, and ! to waiting or

sequentialization.

There are a number of other logical systems that provide some kind of staged compu-

tation or provide mechanisms for testing for properties of a subset of linear resources.

Probably the most widely known is the computational monad approach pioneered by

Concurrent LF (Watkins et al., 2003), which was then implemented in the Lollimon logic

programming language (López et al., 2005). This idea can be seen as extending linear

logic with a lax modality and then giving it an operational mode of computation up

to quiescence. As far as we are aware, the decidability of the propositional fragment of

this logic is still open. In the non-linear world there are far too many techniques for

incorporating staged computations to survey in this article. We simply note that most

propositional non-linear modal logics turn out to be decidable.

Any MSEL with only linear subexponentials will be decidable because contraction

is the only way to make a proof infinitely deep. This work leaves open the questions

of decidability of an arbitrary MSEL with a two-element signature where at least one

subexponential is unbounded. Such logics lie between MSELΞ and MELL itself and may

have easier decision problem than the latter.

Finally, this undecidability result should be taken as a word of caution for the increas-

ingly popular uses of SEL as a logical framework for the encodings of other systems (Nigam

et al., 2013; Nigam et al., 2011, e.g.). If one is to avoid encoding a decidable problem in

terms of an undecidable one, subexponentials must be used very carefully.

Acknowledgements We thank Giselle Reis for many fruitful discussions about encoding
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