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ABSTRACT
We present a detailed study of network evolution by analyzing four
large online social networks with full temporal information about
node and edge arrivals. For the first time at such a large scale,
we study individual node arrival and edge creation processes that
collectively lead to macroscopic properties of networks. Using a
methodology based on the maximum-likelihood principle, we in-
vestigate a wide variety of network formation strategies, and show
that edge locality plays a critical role in evolution of networks. Our
findings supplement earlier network models based on the inherently
non-local preferential attachment.

Based on our observations, we develop a complete model of net-
work evolution, where nodes arrive at a prespecified rate and select
their lifetimes. Each node then independently initiates edges ac-
cording to a “gap” process, selecting a destination for each edge ac-
cording to a simple triangle-closing model free of any parameters.
We show analytically that the combination of the gap distribution
with the node lifetime leads to a power law out-degree distribution
that accurately reflects the true network in all four cases. Finally,
we give model parameter settings that allow automatic evolution
and generation of realistic synthetic networks of arbitrary scale.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining

General Terms: Measurement, Experimentation

Keywords: Social networks, Graph generators, Network evolu-
tion, Maximum likelihood, Triadic closure, Transitivity

1. INTRODUCTION
In recent years a wide variety of models have been proposed

for the growth of complex networks. These models are typically
advanced in order to reproduce statistical network properties ob-
served in real-world data. They are evaluated on the fidelity with
which they reproduce these global network statistics and patterns.
In many cases, the goal is to define individual node behaviors that
result in a global structure such as power law node degree distri-
butions; in other cases, the goal is to match some other network
property such as small diameter.

Part of this work was done while the first and second authors were
visiting Yahoo! Research.
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For example, the observation of heavy-tailed degree distribu-
tions [10] led to hypothesis about edge creation processes (e.g.,
preferential attachment [1]) that could lead to this observation. In
fact, there are several edge creation processes that all lead to heavy-
tailed degree distributions and it is not clear which among them
captures reality best.

Here we take a different approach. Instead of only focusing on
the global network structure and then hypothesizing about what
kind of microscopic node behavior would reproduce the observed
macroscopic network structure, we focus directly on the micro-
scopic node behavior per se. For the first time at such a large scale,
we study a sequence of millions of individual edge arrivals, which
allows us to directly evaluate and compare microscopic processes
that give rise to global network structure.

Evaluation based on likelihood. Given that the microscopic be-
havior of nodes solely determines the macroscopic network proper-
ties, a good network model should match real-world data on global
statistics, while maximizing the likelihood of the low-level pro-
cesses generating the data. Towards this goal, we propose the use
of model likelihood of individual edges as a way to evaluate and
compare various network evolution models.

Likelihood has not been considered to date in the analysis of
evolution of large social networks mainly due to lack of data and
computational issues. Many early network datasets contained only
a single or a small number of snapshots of the data, making like-
lihood computations for evolutionary models infeasible. We study
four large social networks with exact temporal information about
individual arrivals of millions of nodes and edges. Here we are
therefore able to consider edge-by-edge evolution of networks, and
hence efficiently compute the likelihood that a particular model
would have produced a particular edge, given the current state of
the network. In contrast to previous work on evolution of large net-
works that used a series of snapshots to consider patterns at global
scale, we study the exact edge arrival sequence, which means we
are able to directly observe and model the fine-grained network
evolutionary processes that are directly responsible for global net-
work patterns and statistics.

A likelihood-based approach has several advantages over ap-
proaches based purely on global statistics:

(1) Models may be compared directly in a unified way, rather
than arguing whether faithful reproduction of, e.g., diameter is more
important than clustering coefficient and so forth.

(2) As our understanding of real-world networks improves, the
evaluation criterion, i.e., likelihood, remains unchanged while the
generative models improve to incorporate the new understanding.
Success in modeling can therefore be effectively tracked.

(3) Models may be meaningfully distinguished based on as-yet-
undiscovered properties of real-world data.



Data and model structure. We consider four large online social
network datasets — FLICKR (flickr.com, a photo-sharing web-
site), DELICIOUS (del.icio.us, a collaborative bookmark tag-
ging website), YAHOO! ANSWERS (answers.yahoo.com, a
knowledge sharing website), and LINKEDIN (linkedin.com, a
professional contacts website) — where nodes represent people and
edges represent social relationships. These networks are large with
up to millions of nodes and edges, and the time span of the data
ranges from four months to almost four years. All the networks
are in early stages of their evolution with the connected component
being small and the clustering coefficient increasing over time.

We consider models that can be decomposed into three core pro-
cesses, namely, the node arrival process (governs the arrival of new
nodes into the network), the edge initiation process (determines for
each node when it will initiate a new edge), and the edge destina-
tion selection process (determines the destination of a newly initi-
ated edge). Our networks do not include removal of nodes or edges,
so we do not model deletion (although we do model the “death” of
a node in the sense that it ceases producing new edges).

Our results. We begin with a series of analyses of our four net-
works, capturing the evolution of key network parameters, and eval-
uation of the extent to which the edge destination selection process
subscribes to preferential attachment. We show that the inherently
non-local nature of preferential attachment is fundamentally unable
to capture important characteristics in these networks. To the best
of our knowledge, this is the first direct large-scale validation of the
preferential attachment model in real networks.

Next, we provide a detailed analysis of the data in order to con-
sider parsimonious models for edge destination selection that incor-
porate locality. We evaluate a wide variety of such models using
the maximum-likelihood principle and choose a simple triangle-
closing model that is free of parameters. Based on the findings, we
then propose a complete network evolution model that accurately
captures a variety of network properties. We summarize our model
based on the three processes listed earlier.

Node arrival process. We find large variation in node arrival rates
over the four networks, ranging from exponential to sub-linear growth.
Thus we treat node arrival rate as input to our model.

Edge initiation process. Upon arrival, a node draws its lifetime
and then keeps adding edges until reaching its lifetime, with edges
inter-arrival rate following a power law with exponential cut-off
distribution. We find that edge initiations are accelerating with
node degree (age), and prove that this leads to power law out degree
distributions. The model produces accurate fits and high likelihood.

Edge destination selection process. We find that most edges (30%–
60%) are local as they close triangles, i.e., the destination is only
two hops from the source. We consider a variety of triangle-closing
mechanisms and show that a simple scheme, where a source node
chooses an intermediate node uniformly from among its neighbors,
and then the intermediate node does the same, has high likelihood.

Our model is simple and easy to implement. It precisely de-
fines the network evolution process, and we also give parameter
settings that allow others to generate networks at arbitrary scale or
to take a current existing network and further evolve it. We show
that our model produces realistic social network evolution follow-
ing the true evolution of network properties such as clustering co-
efficient and diameter; our purely local model gives rise to accurate
global properties.

2. RELATED WORK
Many studies on online social networks, world wide web, and bi-

ological networks focused on macroscopic properties of static net-
works such as degree distributions, diameter, clustering coefficient,
communities, etc; work in this area includes [10, 21, 2, 18, 8, 7].
Similarly, macroscopic properties of network evolution, like densi-
fication and shrinking diameters, were examined [16, 11, 19, 13].

Given that the classical Erdös–Rényi model cannot capture the
above network characteristics, a number of alternate network mod-
els have been proposed. The copying [14] and the preferential at-
tachment [1] models belong to this category. The Forest Fire model
[16] attempts to explain the densification and decreasing-diameter
phenomena observed in real networks. See [6] for a topic survey.

Recently, researchers examined the finer aspects of edge creation
by focusing on a small set of network snapshots. The role of com-
mon friends in community formation was analyzed by Backstrom
et al. [3]. Kleinberg and Liben-Nowell [17] studied the predictabil-
ity of edges in social networks. The role of triangle closure in so-
cial networks was long known to sociologists. Simmel theorized
that people with common friends are more likely to create friend-
ships and Krackhardt and Handcock [12] applied this theory to ex-
plain the evolution of triangle closures. A network model based on
closed triangles was proposed by Shi et al. [20].

The maximum-likelihood principle has been typically used to
estimate network model parameters [15, 22, 23] or for model se-
lection [4], which often requires expensive computations of high
dimensional integrals over all possible node arrival sequences. In
contrast, we use the likelihood in a much more direct way to evalu-
ate and compare different modeling choices at a microscopic level.

3. PRELIMINARIES

Datasets. For each of our four large network datasets, we know
the exact time of all the node/edge arrivals. Table 1 gives the ba-
sic statistics of the four networks. All the networks slowly densify
with a densification exponent [16] ρ ≈ 1.2. All the networks, ex-
cept DELICIOUS, have shrinking diameter. In FLICKR, ANSWERS,
and LINKEDIN, the effective diameter reaches the maximum value
of 10 when the network has around 50,000 nodes, and then slowly
decreases to the around 7.5; in DELICIOUS, the diameter is prac-
tically constant. Also, in all the networks, a majority of edges are
bidirectional (column Eb). The reciprocity is 73% in FLICKR, 81%
in DELICIOUS, and 58% in ANSWERS; LINKEDIN is undirected,
but we know the edge initiator. The fraction of nodes that belongs
to the largest weakly connected component is 69% in FLICKR, 72%
in DELICIOUS, 81% in ANSWERS, and 91% in LINKEDIN.

Notation. Let N, E, and T denote the total number of nodes,
edges, and the span of the data in days. Let Gt be a network com-
posed from the earliest t edges, e1, . . . , et for t ∈ {1, . . . , E}.
Let t(e) be the time when the edge e is created, let t(u) be the
time when the node u joined the network, and let tk(u) be the time
when the kth edge of the node u is created. Then at(u) = t− t(u)
denotes the age of the node u at time t. Let dt(u) denote the degree
of the node u at time t and d(u) = dT (u). We use [·] to denote a
predicate (takes value of 1 if expression is true, else 0).

Maximum-likelihood principle. The maximum-likelihood esti-
mation (MLE) principle can be applied to compare a family of pa-
rameterized models in terms of their likelihood of generating the
observed data, and as a result, pick the “best” model (and parame-
ters) to explain the data. To apply the likelihood principle, we con-
sider the following setting: we evolve the network edge by edge,



Network T N E Eb Eu EΔ % ρ κ
FLICKR (03/2003–09/2005) 621 584,207 3,554,130 2,594,078 2,257,211 1,475,345 65.63 1.32 1.44

DELICIOUS (05/2006–02/2007) 292 203,234 430,707 348,437 348,437 96,387 27.66 1.15 0.81
ANSWERS (03/2007–06/2007) 121 598,314 1,834,217 1,067,021 1,300,698 303,858 23.36 1.25 0.92
LINKEDIN (05/2003–10/2006) 1294 7,550,955 30,682,028 30,682,028 30,682,028 15,201,596 49.55 1.14 1.04

Table 1: Network dataset statistics. Eb is the number of bidirectional edges, Eu is the number of edges in undirected network, EΔ is
the number of edges that close triangles, % is the fraction of triangle-closing edges, ρ is the densification exponent (E(t) ∝ N(t)ρ),
and κ is the decay exponent (Eh ∝ exp(−κh)) of the number of edges Eh closing h hop paths (see Section 5 and Figure 4).
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Figure 1: Probability pe(d) of a new edge e choosing a destina-
tion at a node of degree d.

and for every edge that arrives into the network, we measure the
likelihood that the particular edge endpoints would be chosen under
some model. The product of these likelihoods over all edges will
give the likelihood of the model. A higher likelihood means a “bet-
ter” model in the sense that it offers a more likely explanation of
the observed data. For numerical purposes, we use log-likelihoods.

4. PREFERENTIAL ATTACHMENT
In this section we study the bias in selection of an edge’s source

and destination based on the degree and age of the node.

4.1 Edge attachment by degree
The preferential attachment (PA) model [1] postulates that when

a new node joins the network, it creates a constant number of edges,
where the destination node of each edge is chosen proportional to
the destination’s degree. Using our data, we compute the probabil-
ity pe(d) that a new edge chooses a destination node of degree d;
pe(d) is normalized by the number of nodes of degree d that exist
just before this step. We compute:

pe(d) =

∑
t[et = (u, v) ∧ dt−1(v) = d]∑

t |{u : dt−1(u) = d}| .

First, Figure 1(a) shows pe(d) for the Erdős–Rényi [9] random
network, Gnp, with p = 12/n. In Gnp, since the destination node
is chosen independently of its degree, the line is flat. Similarly,
in the PA model, where nodes are chosen proportionally to their
degree, we get a linear relationship pe(d) ∝ d; see Figure 1(b).
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Figure 2: Average number of edges created by a node of age a.

Next we turn to our four networks and fit the function pe(d) ∝
dτ . In FLICKR, Figure 1(c), degree 1 nodes have lower probability
of being linked as in the PA model; the rest of the edges could be
explained well by PA. In DELICIOUS, Figure 1(d), the fit nicely fol-
lows PA. In ANSWERS, Figure 1(e), the presence of PA is slightly
weaker, with pe(d) ∝ d0.9. LINKEDIN has a very different pattern:
edges to the low degree nodes do not attach preferentially (the fit is
d0.6), whereas edges to higher degree nodes are more “sticky” (the
fit is d1.2). This suggests that high-degree nodes in LINKEDIN get
super-preferential treatment. To summarize, even though there are
minor differences in the exponents τ for each of the four networks,
we can treat τ ≈ 1, meaning, the attachment is essentially linear.

4.2 Edges by the age of the node
Next, we examine the effect of a node’s age on the number of

edges it creates. The hypothesis is that older, more experienced
users of a social networking website are also more engaged and
thus create more edges.

Figure 2 plots the fraction of edges initiated by nodes of a certain
age. Then e(a), the average number of edges created by nodes of
age a, is the number of edges created by nodes of age a normalized
by the number of nodes that achieved age a:

e(a) =
|{e = (u, v) : t(e) − t(u) = a}|

|{t(u) : t� − t(u) ≥ a}| ,

where t� is the time when the last node in the network joined.
Notice a spike at nodes of age 0. These correspond to the people

who receive an invite to join the network, create a first edge, and
then never come back. For all other ages, the level of activity seems
to be uniform over time, except for LINKEDIN, in which activity of
older nodes slowly increases over time.

4.3 Bias towards node age and degree
Using the MLE principle, we study the combined effect of node

age and degree by considering the following four parameterized
models for choosing the edge endpoints at time t.



D: dt(v)τ DR: τ · dt(v) + (1 − τ ) · 1/N(t) A: at(v)τ DA: dt(v) · at(v)τ
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Figure 3: Log-likelihood of an edge selecting its source and destination node. Arrows denote τ at highest likelihood.

• D: The probability of selecting a node v is proportional to its
current degree raised to power τ : dt(v)τ .

• DR: With probability τ , the node v is selected preferentially
(proportionally to its degree), and with probability (1 − τ ), uni-
formly at random: τ · dt(v) + (1 − τ ) · 1/N(t).

• A: The probability of selecting a node is proportional to its age
raised to power τ : at(v)τ

• DA: The probability of selecting a node v is proportional the
product of its current degree and its age raised to the power τ :
dt(v)· at(v)τ .

Figure 3 plots the log-likelihoods under different models, as a
function of τ . The red curve plots the log-likelihood of selecting a
source node and the green curve for selecting the destination node
of an edge.

In FLICKR the selection of destination is purely preferential:
model D achieves the maximum likelihood at τ = 1, and model
DA is very biased to model D, i.e., τ ≈ 1. Model A has worse like-
lihood but model DA improves the overall log-likelihood by around
10%. Edge attachment in DELICIOUS seems to be the most “ran-
dom”: model D has worse likelihood than model DR. Moreover
the likelihood of model DR achieves maximum at τ = 0.5 sug-
gesting that about 50% of the DELICIOUS edges attach randomly.
Model A has better likelihood than the degree-based models, show-
ing edges are highly biased towards young nodes. For ANSWERS,
models D, A, and DR have roughly equal likelihoods (at the optimal
choice of τ ), while model DA further improves the log-likelihood
by 20%, showing some age bias. In LINKEDIN, age-biased models
are worse than degree-biased models. We also note strong degree
preferential bias of the edges. As in FLICKR, model DA improves
the log-likelihood by 10%.

We notice that selecting an edge’s destination node is harder than
selecting its source (the green curve is usually below the red). Also,
selecting a destination appears more random than selecting a source
— the maximum likelihood τ of the destination node (green curve)
for models D and DR is shifted to the left when compared to the
source node (red), which means the degree bias is weaker. Simi-
larly, there is a stronger bias towards young nodes in selecting an
edge’s source than in selecting its destination. Based on the obser-
vations, we conclude that PA (model D) performs reasonably well
compared to more sophisticated variants based on degree and age.

5. LOCALITY OF EDGE ATTACHMENT
Even though our analysis suggests that PA is a reasonable model

for edge destination selection, it is inherently “non-local” in that
edges are no more likely to form between nodes which already have
friends in common. In this section we perform a detailed study of
the locality properties of edge destination selection.

We first consider the following notion of edge locality: for each
new edge (u, w), we measure the number of hops it spans, i.e.,
the length of the shortest path between nodes u and w immediately
before the edge was created. In Figure 4 we study the distribution of
these shortest path values induced by each new edge for Gnp (with
p = 12/n), PA, and the four social networks. (The isolated dot
on the left counts the number of edges that connected previously
disconnected components of the network.)

For Gnp most new edges span nodes that were originally six
hops away, and then the number decays polynomially in the hops.
In the PA model, we see a lot of long-range edges; most of them
span four hops but none spans more than seven. The hop distribu-
tions corresponding to the four real-world networks look similar to
one another, and strikingly different from both Gnp and PA. The
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Figure 4: Number of edges Eh created to nodes h hops away.
h = 0 counts the number of edges that connected previously
disconnected components.

number of edges decays exponentially with the hop distance be-
tween the nodes (see Table 1 for fitted decay exponents κ). This
means that most edges are created locally between nodes that are
close. The exponential decay suggests that the creation of a large
fraction of edges can be attributed to locality in the network struc-
ture, namely most of the times people who are close in the network
(e.g., have a common friend) become friends themselves.

These results involve counting the number of edges that link
nodes certain distance away. In a sense, this overcounts edges
(u, w) for which u and w are far away, as there are many more
distant candidates to choose from — it appears that the number of
long-range edges decays exponentially while the number of long-
range candidates grows exponentially. To explore this phenomenon,
we count the number of hops each new edge spans but then nor-
malize the count by the total number of nodes at h hops. More
precisely, we compute

pe(h) =

∑
t[et connects nodes at distance h in Gt−1]∑

t(# nodes at distance h from the source node of et)
.

First, Figures 5(a) and (b) show the results for Gnp and PA mod-
els. (Again, the isolated dot at h = 0 plots the probability of a
new edge connecting disconnected components.) In Gnp, edges
are created uniformly at random, and so the probability of linking
is independent of the number of hops between the nodes. In PA,
due to degree correlations short (local) edges prevail. However, a
non-trivial amount of probability goes to edges that span more than
two hops. (Notice the logarithmic y-axis.)

Figures 5(c)–(f) show the plots for the four networks. Notice
the probability of linking to a node h hops away decays double-
exponentially, i.e., pe(h) ∝ exp(exp(−h)), since the number of
edges at h hops increases exponentially with h. This behavior is
drastically different from both the PA and Gnp models. Also note
that almost all of the probability mass is on edges that close length-
two paths. This means that edges are most likely to close triangles,
i.e., connect people with common friends.
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Figure 5: Probability of linking to a random node at h hops
from source node. Value at h = 0 hops is for edges that connect
previously disconnected components.

Figure 6: Triangle-closing model: node u creates an edge by
selecting intermediate node v, which then selects target node w
to which the edge (u, w) is created.

Column EΔ in Table 1 further illustrates this point by presenting
the number of triangle-closing edges. FLICKR and LINKEDIN have
the highest fraction of triangle-closing edges, whereas ANSWERS

and DELICIOUS have substantially less such edges. Note that here
we are not measuring the fraction of nodes participating in trian-
gles. Rather, we unroll the evolution of the network, and for every
new edge check to see if it closes a new triangle or not.

5.1 Triangle-closing models
Given that such a high fraction of edges close triangles, we aim

to model how a length-two path should be selected. We consider
a scenario in which a source node u has decided to add an edge to
some node w two hops away, and we are faced with various alter-
natives for the choice of node w. Figure 6 illustrates the setting.
Edges arrive one by one and the simplest model to close a trian-
gle (edge (u, w) in the figure) is to have u select a destination w
randomly from all nodes at two hops from u.

To improve upon this baseline model we consider various models
of choosing node w. We consider processes in which u first selects
a neighbor v according to some mechanism, and v then selects a
neighbor w according to some (possibly different) mechanism. The
edge (u, w) is then created and the triangle (u, v, w) is closed. The
selection of both v and w involves picking a neighbor of a node. We
consider five different models to pick a neighbor v of u, namely,
node v is chosen



FLICKR random deg0.2 com last−0.4 comlast−0.4

random 13.6 13.9 14.3 16.1 15.7
deg0.1 13.5 14.2 13.7 16.0 15.6
last0.2 14.7 15.6 15.0 17.2 16.9
com 11.2 11.6 11.9 13.9 13.4

comlast0.1 11.0 11.4 11.7 13.6 13.2

DELICIOUS random deg0.3 com last−0.2 comlast−0.2

random 11.7 12.4 13.8 13.2 15.1
deg0.2 12.2 12.8 14.3 13.7 15.6

last−0.3 13.8 14.6 16.0 15.3 17.2
com 13.6 14.4 15.8 15.2 17.1

comlast−0.2 14.7 15.6 16.9 16.3 18.2

ANSWERS random deg0.3 com last−0.2 comlast−0.2

random 6.80 10.1 11.8 9.70 13.3
deg0.2 7.18 10.5 12.2 10.1 13.7

last−0.3 9.95 13.4 15.0 12.8 16.4
com 6.82 10.3 11.8 9.80 13.4

comlast0.2 7.93 11.5 12.9 10.9 14.5

LINKEDIN random deg0.1 com last−0.1 comlast−0.1

random 16.0 16.5 18.2 17.2 18.5
deg0.1 15.9 16.4 18.0 17.0 18.4

last−0.1 19.0 19.5 21.1 20.0 21.4

Table 2: Triangle-closing models. First pick intermediate node
v (fix column), then target node w (fix row). The cell gives per-
cent improvement over the log-likelihood of picking a random
node two hops away (baseline).

• random: uniformly at random,
• degτ : proportional to degree raised to power τ , d(v)τ ,
• com: prop. to the number of common friends c(u, v) with u,
• lastτ : proportional to the time passed since v last created an

edge raised to power τ ,
• comlastτ : proportional to the product of the number of com-

mon friends with u and the last activity time, raised to power τ .

As stated before, we can compose any two of these basic mod-
els to choose a two-hop neighbor, i.e., a way to close the triangle.
For instance, the last0.1-com model will work as follows: u will
employ the last0.1 model to select node v, v will employ the com
model to select node w, and then u will add an edge to w, closing
the triangle (u, v, w). We consider all 25 five possible composite
models for selecting a two-hop neighbor and evaluate them by the
likelihood that the model generated all the edges that closed length-
two paths in the real network.

Table 2 shows the percent improvement of various triangle-closing
models over the log-likelihood of choosing a two-hop neighbor uni-
formly at random as a destination of the edge (the baseline). The
simplest model, random-random, works remarkably well and has
many desirable properties. It gives higher probability to nodes with
more length-two paths, discounting each path by roughly 1/d(v).
Moreover, it is also biased towards high-degree nodes, as they have
multiple paths leading towards them.

The deg1.0-random model weighs each node w by roughly the
number of length-two paths between u and w. However, we find
that it performs worse than random-random. For the more gen-
eral degτ -random, the optimal value of τ varies from 0.1 to 0.3
over all the four networks, and this model provides meaningful im-
provements only for the ANSWERS network.

The com model considers the strength of a tie between u and v,
which we approximate by the number of common friends c(u, v) of
nodes u and v; the larger the value, the stronger the tie. By selecting
v with probability proportional to c(u, v), we get a substantial gain
in model likelihood. A factor that further improves the model is the
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Figure 7: Exponentially distributed node lifetimes.

recency of activity by v, captured by lastτ . By selecting nodes that
have recently participated in a new edge with higher probability,
we get another sizable improvement in the model likelihood. These
two capture the finer details of network evolution.

In summary, while degree helps marginally, for all the networks,
the random-random model gives a sizable chunk of the perfor-
mance gain over the baseline (10%). Due its simplicity, we choose
this as the triangle-closing model for the rest of the paper.

Note that the above methodology could be extended to edge
creations other than triangle-closing. We chose to focus on the
triangle-closing edges for two reasons. First, a high fraction of all
edges created fall into this category, and hence an understanding of
triangle-closing edges is an important first step towards understand-
ing the overall network evolution. Second, with the exception of
quite simplistic models, it is computationally infeasible to compute
the likelihood at a distance greater than two hops as the number of
nodes and possible paths increases dramatically.

6. NODE AND EDGE ARRIVAL PROCESS
In this section we turn our focus to the edge initiation process

that determines which node is responsible for creating a new edge
(Section 6.1), and then to the process by which new nodes arrive
into the network (Section 6.2).

6.1 Edge initiation
In the following we assume that the sequence and timing of node

arrivals is given, and we model the process by which nodes initiate
edges. We begin by studying how long a node remains active in the
social network, and then during this active lifetime, we study the
specific times at which the node initiates new edges.

6.1.1 Node lifetime
To avoid truncation effects, we only consider those nodes whose

last-created edge is in the first half of all edges in the data. Recall
that the lifetime of a node u is a(u) = td(u)(u) − t1(u). We
evaluate the likelihood of various distributions and observe that
node lifetimes are best modeled by an exponential distribution,
p�(a) = λ exp(−λa). Figure 7 gives the plot of the data and the
exponential fits, where time is measured in days. In Table 5, the
row corresponding to λ gives the values of fitted exponents. We
note that the exponential distribution does not fit well the nodes
with very short lifetimes, i.e., nodes that are invited into the net-
work, create an edge and never return. But the distribution provides
a very clean fit for nodes whose lifetime is more than a week.



degree d power power law log stretched
law exp. cutoff normal exp.

1 9.84 12.50 11.65 12.10
2 11.55 13.85 13.02 13.40
3 10.53 13.00 12.15 12.59
4 9.82 12.40 11.55 12.05
5 8.87 11.62 10.77 11.28

avg., d ≤ 20 8.27 11.12 10.23 10.76

Table 3: Edge gap distribution: percent improvement of the
log-likelihood at MLE over the exponential distribution.
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Figure 8: Edge gap distribution for a node to obtain the second
edge, δ(1), and MLE power law with exponential cutoff fits.

6.1.2 Time gap between the edges
Now that we have a model for the lifetime of a node u, we must

model that amount of elapsed time between edge initiations from
u. Let δu(d) = td+1(u)− td(u) be the time it takes for the node u
with current degree d to create its (d+1)-st out-edge; we call δu(d)
the edge gap. Again, we examine several candidate distributions to
model edge gaps. Table 3 shows the percent improvement of the
log-likelihood at the MLE over the exponential distribution. The
best likelihood is provided by a power law with exponential cutoff:
pg(δ(d);α, β) ∝ δ(d)−α exp(−βδ(d)), where d is the current de-
gree of the node. (Note that the distribution is neither exponential
nor Poisson, as one might be tempted to assume.) We confirm these
results in Figure 8, in which we plot the MLE estimates to gap dis-
tribution δ(1), i.e., distribution of times that it took a node of degree
1 to add the second edge. In fact, we find that all gaps distributions
δ(d) are best modeled by a power law with exponential cut-off (Ta-
ble 3 gives improvements in log-likelihoods for d = 1, . . . , 5 and
the average for d = 1, . . . , 20.)

For each δ(d) we fit a separate distribution and Figure 9 shows
the evolution of the parameters α and β of the gap distribution, as
a function of the degree d of the node. Interestingly, the power
law exponent α(d) remains constant as a function of d, at almost
the same value for all four networks. On the other hand, the expo-
nential cutoff parameter β(d) increases linearly with d, and varies
by an order of magnitude across networks; this variation models
the extent to which the “rich get richer” phenomenon manifests
in each network. This means that the slope α of power-law part
remains constant, only the exponential cutoff part (parameter β)
starts to kick in sooner and sooner. So, nodes add their (d + 1)st

edge faster than their dth edge, i.e., nodes start to create more and
more edges (sleeping times get shorter) as they get older (and have
higher degree). So, based on Figure 9, the overall gap distribution
can be modeled by pg(δ|d; α, β) ∝ δ−α exp(−βdδ).
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Figure 9: Evolution of the α and β parameters with the current
node degree d. α remains constant, and β linearly increases.
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Figure 10: Number of nodes over time.

Given the above observation, a natural hypothesis would be that
nodes that will attain high degree in the network are in some way
a priori special, i.e., they correspond to “more social” people who
would inherently tend to have shorter gap times and enthusiasti-
cally invite friends at a higher rate than others, attaining high de-
gree quickly due to their increased activity level. However, this
phenomenon does not occur in any of the networks. We com-
puted the correlation coefficient between δ(1) and the final degree
d(u). The correlation values are −0.069 for DELICIOUS, −0.043
for FLICKR, −0.036 for ANSWERS, and −0.027 for LINKEDIN.
Thus, there is almost no correlation, which shows that the gap dis-
tribution is independent of a node’s final degree. It only depends on
node lifetime, i.e., high degree nodes are not a priori special, they
just live longer, and accumulate many edges.

6.2 Node arrivals
Finally, we turn to the question of modeling node arrivals into the

system. Figure 10 shows the number of users in each of our net-
works over time, and Table 4 captures the best fits. FLICKR grows
exponentially over much of our network, while the growth of other
networks is much slower. DELICIOUS grows slightly superlinearly,
LINKEDIN quadratically, and ANSWERS sublinearly. Given these
wild variations we conclude the node arrival process needs to be
specified in advance as it varies greatly across networks due to ex-
ternal factors.

7. A NETWORK EVOLUTION MODEL
We first take stock of what we have measured and observed so

far. In Section 6.2, we analyzed the node arrival rates and showed
that they are network-dependent and can be succinctly represented
by a node arrival function N(t) that is either a polynomial or an
exponential. In Section 6.1, we analyzed the node lifetimes and
showed they are exponentially distributed with parameter λ. In
Section 4.1, we argued that the destination of the first edge of a



Network N(t)
FLICKR exp(0.25t)

DELICIOUS 16t2 + 3000t + 40000
ANSWERS −284t2 + 40000t − 2500
LINKEDIN 3900t2 + 76000t − 130000

Table 4: Node arrival functions.

node is chosen proportional to its degree (i.e., preferentially at-
tached). In Section 6.1, we analyzed the time gaps between edge
creation at a node and showed they can be captured by a power
law with exponential cutoff, with parameters α, β. In Section 5,
we showed that most of the edges span two hops, and the simple
random-random triangle-closing model works well.

Motivated by these observations, we now present a complete net-
work evolution model. Our model is parameterized by N(·), λ, α, β,
and operates as follows.

1. Nodes arrive using the node arrival function N(·).
2. Node u arrives and samples its lifetime a from the exponen-

tial distribution p�(a) = λ exp(−λa).
3. Node u adds the first edge to node v with probability propor-

tional to its degree.
4. A node u with degree d samples a time gap δ from the distri-

bution pg(δ|d; α, β) = (1/Z)δ−α exp(−βdδ) and goes to
sleep for δ time steps.

5. When a node wakes up, if its lifetime has not expired yet, it
creates a two-hop edge using the random-random triangle-
closing model.

6. If a node’s lifetime has expired, then it stops adding edges;
otherwise it repeats from step 4.

The values of N(·) for the four networks are given in Table 4
and the values of α, β, λ are given in Table 5.

Note that one could also use more sophisticated edge placement
techniques, like random surfer model [5] or other triangle-closing
techniques as discussed in Section 5.1. For example, in step 5, a
node u can pick a sequence of nodes (u = w0, w1, . . . , wk = w),
where each wi is picked uniformly from the neighbors of wi−1, and
the sequence length k is chosen from the distribution in Figure 4.
Node u then links to w.

7.1 Gaps and power law degree distribution
We now show that our model, node lifetime combined with gaps,

produces power law out-degree distribution. This is interesting as
a model of temporal behavior (lifetime plus gaps) gives rise to a
network property.

THEOREM 1. The out-degrees are distributed according to a
power law with exponent 1 + λΓ(2−α)

βΓ(1−α)
.

PROOF SKETCH. We first compute the normalizing constant Z
of the gap distribution pg(δ|d; α, β):

Z =

∫ ∞

0

δ−αe−βdδdδ =
Γ(1 − α)

(βd)1−α
. (1)

Let a be the lifetime sampled from the exponential distribution
p�(a) = λ exp(−λa). Recall the edge creation process: a node
adds its first edge and samples the next gap δ(1) according to pg(·),
sleeps for δ(1) time units, creates the second edge, samples a new
gap δ(2) according to pg(·), sleeps for δ(2) units, and so on until
it uses up all of its lifetime a. This means that for a node u with
lifetime a = a(u) and final degree D = d(u), we have

D∑
d=1

δ(k) ≤ a. (2)

FLICKR DELICIOUS ANSWERS LINKEDIN

λ 0.0092 0.0052 0.019 0.0018
α 0.84 0.92 0.85 0.78
β 0.0020 0.00032 0.0038 0.00036

true 1.73 2.38 1.90 2.11
predicted 1.74 2.30 1.75 2.08

Table 5: Predicted by Theorem 1 vs true degree exponents.

Analogous to (1), we obtain the expected time gap E(δ|d; α, β) for
a node of degree d:

E(δ|d;α, β) =
Γ(2 − α)

Γ(1 − α)
(βd)−1. (3)

Combining (2) and (3), we relate the lifetime a and the expected
final degree D of a node:

D∑
d=1

Γ(2 − α)

Γ(1 − α)
(βd)−1 =

Γ(2 − α)

Γ(1 − α)
β−1

D∑
d=1

d−1 ≤ a. (4)

Notice that
∑D

d=1 d−1 = Θ(lnD). From (4), the final degree D
of a node with lifetime a is

D ≈ exp
(Γ(1 − α)

Γ(2 − α)
βa

)
.

Thus, D is an exponential function of the age a, i.e., D = r(a) =

exp(μa), where μ = Γ(1−α)
Γ(2−α)

β. Since node lifetimes are exponen-
tially distributed with parameter λ, we now compute the distribu-
tion of D as a function of λ and μ as follows:

D ∼ p�(r
−1(D))

∣∣∣dr−1(D)

dD

∣∣∣ =
λ

μD
e−(λ/μ) log D =

λD−(1+λ/μ)

μ
.

Thus, the degree distribution in our gap model follows a power law
with exponent 1 + λ/μ, completing the proof.

Validation of the model. We validate the accuracy of our model-
ing assumptions by empirically estimating the lifetime λ, and gap
distribution α, β parameter values for each network. We then ap-
ply Theorem 1, which yields the power-law degree exponents pro-
duced by our model. Then we empirically measure the true power
law degree exponents of the four networks and compare them to
predictions of Theorem 1. Table 5 shows the results. Note the pre-
dicted degree exponents remarkably agree with the true exponents,
validating our model. This is interesting as we specified the model
of temporal node behavior (lifetime+gaps) that results in a accurate
structural network property (power-law degree distribution).

7.2 Unfolding network evolution
To further our understanding of the network evolution, espe-

cially the edge creation process, we perform the following semi-
simulation. We consider the real network GT/2 and evolve it from
t = T/2, . . . , T using the random-random model to obtain a net-
work G′

T . At the end of the evolution, we compare the macroscopic
properties of G′

T and GT . For completeness, we also compare the
results to the vanilla PA model.

More precisely, we evolve GT/2 by considering all the edges
that were created after time T/2 between the nodes in GT/2. (We
do not allow new nodes to join GT/2.) We consider two different
processes to place these new edges. In the first process (PA), we
select two nodes preferentially, with probabilities proportional to
their degrees, and add an edge. In the second process (RR), we use
the random-random triangle-closing model, i.e., we first select a
node preferentially and then pick a node two hops away using the
random-random model.
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Figure 11: We take FLICKR network at first half of its evolution. Then we simulate the evolution using our model and PA for the
second half, and compare the obtained networks with the real FLICKR network. Notice our model matches the macroscopic statistical
properties of the true FLICKR network very well, and in fact much better than PA.

Figure 11 shows results for FLICKR: clustering coefficient, de-
gree distribution, and pairwise distance histogram for the true data,
and the two simulations. The random-random model matches the
true network well and outperforms than the PA process. Similar re-
sults also hold for other networks; we omit these plots for brevity.

8. CONCLUSIONS
In this paper we present a microscopic analysis of the edge-by-

edge evolution of four large online social networks. The use of the
maximum-likelihood principle allows us to quantify the bias of new
edges towards the degree and age of nodes, and to objectively com-
pare various models such as preferential attachment. In fact, our
work is the first to quantify the amount of preferential attachment
that occurs in networks.

Our study shows that most new edges span very short distances,
typically closing triangles. Motivated by these observations, we de-
velop a complete model of network evolution, incorporating node
arrivals, edge initiation, and edge destination selection processes.
While node arrivals are mostly network-specific, the edge initia-
tion process can be captured by exponential node lifetimes and a
“gap” model based on a power law with exponential cutoff. We
arrive at an extremely simple yet surprisingly accurate description
of the edge destination selection in real networks. Our model of
network evolution can be used to generate arbitrary-sized synthetic
networks that closely mimic the macroscopic characteristics of real
social networks.
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