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ABSTRACT

Given a huge real graph, how can we derive a representa-
tive sample? There are many known algorithms to compute
interesting measures (shortest paths, centrality, between-
ness, etc.), but several of them become impractical for large
graphs. Thus graph sampling is essential.

The natural questions to ask are (a) which sampling method
to use, (b) how small can the sample size be, and (c¢) how
to scale up the measurements of the sample (e.g., the di-
ameter), to get estimates for the large graph. The deeper,
underlying question is subtle: how do we measure success?

We answer the above questions, and test our answers by
doing thorough experiments on several, diverse real datasets,
spanning hundreds of thousands nodes and edges. We con-
sider several sampling methods, propose novel methods to
check the goodness of sampling, and develop a set of scaling
laws that describe relations between the properties of the
original graph and the sample.

In addition to the theoretical contributions, the practical
conclusions from our work are: Sampling strategies based
on edge selection do not perform well; simple uniform ran-
dom node selection performs surprisingly well. The best
performing methods are the ones based on random-walks
and “forest fire”; they match very accurately both static as
well as evolutionary graph patterns, with sample sizes down
to about 10% of the original graph.

1. INTRODUCTION

Given a large massive graph with millions or billions nodes,
how can we create a small, but “good” sample out of it?
In many applications we need to run expensive algorithms,
like simulations of internet routing protocols, peer-to-peer
gossip-like protocols, virus propagation and immunization
policies, or analysis of “viral marketing” scenarios.

For example, in studies of Internet routing protocols com-
puter communication researchers would like to do detailed
simulations like BGP (Border Gateway Protocol) simula-
tions, or flow level simulations, but the simulations on net-
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works with more than a few thousand nodes may be pro-
hibitively expensive [4].

The questions we ask here are:

e What is a good sampling method? Should we pick
random nodes? Random edges? Use some other strategy?

e What is a good sample size?

e How do we measure the goodness of a single sample,
as well as the goodness of a whole sampling method?

For the last question, we need to address two aspects:
What do we compare against? Do we want the sample graph
S to have similar (or scaled-down) properties as compared
to the original graph G7 Or, do we want the sample S to
be similar to what the graph G looked like back in the time
when it had the size of S? We refer to the former goal as
Scale-down goal, and to the latter as Back-in-time goal.

Next issue is to set up a list of graph properties that we
should aim for. The properties would be, say, the shape
of the degree distribution should be heavy tailed; the small
diameter, etc. Our goal here is not to find a sampling pro-
cedure and the corresponding (unbiased) estimator (scaling
rule) for a single property of the graph (e.g. number of edges,
diameter). We are more interested in finding a general sam-
pling method that would match a full set of graph properties
so that sampled graphs can be used to for simulations and
more complicated analyses.

The main results of this work are the following:

e We propose two different goals on sampling: the Back-
in-time goal and the Scale-down goal.

e For each of the above goals, we provide the most thor-
ough analysis and comparison in the published literature,
testing multiple sampling algorithms (10), on several real
datasets (5), with 14 graph properties and patterns, using 2
different evaluation methods.

e We are do a systematic evaluation of sampling algo-
rithms, introducing non-trivial statistical evaluation meth-
ods (the Kolmogorov-Smirnov D-statistic and random walk
inspired ideas), that go beyond simple eye-balling.

The best performing sampling methods are the following;:
for the Scale-down sampling goal, methods based on random
walks perform best. For the Back-in-time sampling goal,
we find out that “Forest Fire” type sampling and sampling
based on PageRank score of a node perform best.

The rest of the paper is organized as follows: first we sur-
vey the related work, then we formally define the problem,
describe the evaluation techniques and give a list graph sam-
pling algorithms we used. Section 4 presents experimental
results on both Scale-down and Back-in-time sampling goals.
We conclude with discussion and conclusion in section 5.



2. RELATED WORK

Sampling on graphs has been used in many different fla-
vors but very little has been done on matching a large set of
graph properties. Previous work focused on using sampling
to condense the graph to allow for better visualization [7,
12]. Works on graph compression focused on transform-
ing the graph to speed up algorithms [6]. Techniques for
efficiently storing and retrieving the web-graph were also
studied [1]. Internet modeling community [8] studied sam-
pling from undirected graphs and concluded that some graph
properties can be preserved by random-node selection with
sample sizes down to 30%. A recent work [2] studies separa-
bility and stability of various graph properties for a number
of different graph generation algorithms.

A seemingly related, but vastly different problem comes
from the area of web-crawling or P2P networks, where the
question is, how to select a random node from a graph, if we
only see a neighborhood [15]. This problem is not related
to ours, because we do have the full graph, and we can
easily pick nodes at random — the challenge for us is to
select a set of nodes so that the induced graph obeys general
characteristics, and so the sampled graphs can be used to
for simulations and more complicated analyses.

3. PROPOSED METHOD

3.1 Problem definition

In graph sampling we are given a large directed target
graph and the task is to create a small sample graph, that
will be similar (have similar properties). There are two ways
to look at the graph sampling: under the Scale-down goal
we want to match the static target graph, while under the
Back-in-time goal we want to match its temporal evolution.

3.1.1 Scale-down sampling goal

In Scale-down sampling we are given a large static directed
graph G on n nodes. We are also given the size of the sample
n'. The goal is to create a sample graph S on n’ nodes,
n' < n, that will be most similar to G, i.e. we want S to
have similar graph properties as G. For example, similar
degree distribution and/or diameter. We precisely define
“similar” in section 3.2.

3.1.2 Back-in-time sampling goal

The Back-in-time sampling goal corresponds to traveling
back in time and trying to mimic the past versions of G,
of which we only get to observe the final, static snap-shot.
Note that we also do not know the ages of nodes and edges.
Let G+ denote graph G at some point in time, when it had
exactly n’ nodes. Now, we want to find a sample S on n’
nodes that is most similar to graph G,,/, i.e. when graph G
was of the same size as S.

The hard part here is that we want to match patterns de-
scribing the temporal evolution together with the patterns
defined on a single snapshot of a graph, which also change
over time. If one would have node ages, then the best pos-
sible approach would be to simply roll-back the evolution
(addition/deletion of nodes and edges over time). Note that
our sampling algorithms do not know the age of individual
nodes and edges. So the question here is whether we can
roll-back the time without having any temporal information
(age of nodes/edges).

3.2 Evaluation techniques

3.2.1 Criteria for a static snapshot of a graph

First, we present a set of static graph patterns, which are
measured on a single snapshot of a graph. Given a graph
we measure the following nine graph properties. Essentially
we treat all as distributions to allow for proper scaling:

e S1: In-degree distribution: for every degree d, we count
the number of nodes with in-degree d. Typically it follows
a power-law and some other heavy tailed distribution [5].

e S2: Out-degree distribution.

e S3: The distribution of sizes of weakly connected com-
ponents (“wcc”): a set of nodes is weakly connected if for
any pair of nodes u and v there exists an undirected path
from u to v.

e S4: The distribution of sizes of strongly connected
components (“scc”): a set of nodes is strongly connected, if
for any pair of nodes u and v, there exists a directed path
from u to v and from v to u.

e S5: Hop-plot: the number P(h) of reachable pairs of
nodes at distance h or less; h is the number of hops [11].

e S6: Hop-plot on the largest WCC.

e S7: The distribution of the first left singular vector of
the graph adjacency matrix versus the rank.

e S8: The distributions of singular values of the graph
adjacency matrix versus the rank. Spectral properties of
graphs often follow a heavy-tailed distribution [3].

e S9: The distribution of the clustering coefficient Cy [16]
defined as follows. Let node v have k neighbors; then at most
k(k—1)/2 edges can exist between them. Let C, denote the
fraction of these allowable edges that actually exist. Then
Cy is defined as the average ), over all nodes v of degree d.

3.2.2 Criteria for temporal graph evolution

We also study the five temporal graph patterns, that are
measured on a sequence of graphs over time. Essentially, we
measure a single number (e.g., diameter) of a graph and see
how it evolves with the graph size. Thus, we treat all these
criteria as distributions: each is a set of numbers, with one
number for each time-tick (a desirable sample size n’).

e T1: Densification Power Law (DPL) [9]: number of
edges versus the number of nodes over time. DPL states
that e(t) « n(t)*. The densification exponent a is typically
greater than 1, implying that the average degree of a node
in the graph is increasing over time.

e T2: The effective diameter of the graph over time,
which is defined as the minimum number of hops in which
90% of all connected pairs of nodes can reach each other.
It has been observed that the effective diameter generally
shrinks or stabilizes as the graph grows with time [9].

e T3: The normalized size of the largest connected com-
ponent (CC) over time.

e T4: The largest singular value of graph adjacency
matrix over time.

e T5: Average clustering coefficient C over time [16]: C
at time ¢ is the average C, of all nodes v in graph at time ¢.

3.2.3 Statistical tests for graph patterns

To compare the two graph patterns (static or temporal)
we use the Kolmogorov-Smirnov D-statistic. Usually D-
statistics is applied as a part of Komogorov-Smirnov test to
reject the null hypothesis. Here we simply use it to measure
the agreement between the two distributions. It is defined



as D = max,{|F'(z) — F(z)|}, where z is over the range of
the random variable, and F' and F’ are the two empirical
cumulative distribution functions of the data. Note that
the D-statistic does not address the issue of the scaling but
rather compares the shape of the (normalized) distribution.

Evaluation procedure: we use the D-statistic for both the
Scale-down and Back-in-time sampling goals to measure the
agreement between the true and the sample graph property:

For the Scale-down sampling goal, we are given a sample
graph S on n’ nodes and a target G on n nodes, n’ <
n. We measure the 9 distributions for static graphs, on
both G and S, and compare them using the D-statistic. We
logarithmically bin the z-axis for all the distributions S1-S9.

In case of Back-in-time sampling goal, we are given a se-
quence G of snap-shots of a temporally evolving graph G.
We are also given a sequence of sample graphs S;, where for
every t, St and G+ have the same number of nodes. For each
t, we measure 9 distributions for static graphs on G; and S
and compare them. We also measure 5 temporal graph pat-
terns on both sequences of graphs and compare them using
the D-statistic. Given that we have data on graphs over
time, we can perform the exact evaluation.

3.2.4 \Visiting probability

The intuition we use here is that in a good sample the
probability that a random walk, which starts at node v, vis-
its node w should be similar in sample S and target G. For
every node v in G (S) we calculate the the stationary prob-
ability of a random walk starting at node v. We then use
Frobenius norm to measure the difference in visiting prob-
ability. Due to space limitations we refer the reader to ex-
tended version of the paper for details on these experiments.

3.3 Sampling algorithms

Conceptually we can split the sampling algorithms into
three groups: methods based on randomly selecting nodes,
randomly selecting edges and the exploration techniques
that simulate random walks or virus propagation to find
a representative sample of the nodes.

As it will turn out in section 4, for Scale-down sampling
goal random walks perform best, while in Back-in-time sam-
pling goal random nodes and “Forest Fire” perform best.

3.3.1 Sampling by random node selection

First, we introduce three sampling algorithms based on
random node selection. The most obvious way to create a
sample graph is to uniformly at random select a set of nodes
N and a sample is then a graph induced by the set of nodes
N. We call this algorithm the Random Node (RN) sampling.
Authors in [14] showed that RN does not retain power-law
degree distribution. Note that here we are not interested
in limiting behavior or discussions whether a distribution is
a power-law or not. We simply want to find best sampling
method that gives the most similar degree distribution. So,
our conclusions are valid even if the original graph deviates
from exact power-law (which is often the case in practice).

In contrast to uniform we also explore non-uniform sam-
pling strategies. One way is to set the probability of a
node being selected into the sample to be proportional to
its PageRank weight. We refer to this as Random PageRank
Node (RPN) sampling. Random Degree Node (RDN) sam-
pling has even more bias towards high degree nodes. Here
the probability of a node being selected is proportional to its

degree. Intuitively this method will have problems match-
ing degree distribution, since there are too many high degree
nodes in the sample. We also expect it to give samples with
constant diameter almost independent of sample size.

3.3.2 Sampling by random edge selection

Similarly to selecting nodes at random, one can also se-
lect edges uniformly at random. We refer to this algorithm
as Random Edge (RE) sampling. There are several prob-
lems with this idea: sampled graphs will be very sparsely
connected and will thus have large diameter and will not
respect community structure. A slight variation of random
nodes is Random Node-Edge (RNE) sampling, where we first
uniformly at random pick a node and then uniformly at ran-
dom pick an edge incident to the node. Intuitively, RE sam-
pling is slightly biased to high degree nodes, since they have
more edges incident to them. RNE removes this bias.

Based on recommendation from [8] we also implemented
the Hybrid (HYB) approach, where with probability w we
perform a step of RNE sampling and with probability 1 —w
we perform a step of RE sampling. We set w = 0.8, which
was found to perform best [8].

3.3.3 Sampling by exploration

The common idea in this last family of sampling tech-
niques is that we first select a node uniformly at random
and then explore the nodes in the vicinity.

In Random Node Neighbor (RNN) sampling we select a
node uniformly at random together with all of its out-going
neighbors. This is suitable for very large disk resilient graphs
since it imitates reading an edge file. As we will see it
matches well the out-degree distribution, but fails in match-
ing in-degrees and the community structure.

Next, we present two ideas based on random walks. First
the Random Walk (RW) sampling, we uniformly at random
pick a starting node and then simulate a random walk on the
graph. At every step with probability ¢ = 0.15 (the value
commonly used in literature) we fly back to the starting node
and re-start the random walk. There is problem of getting
stuck, for example, if the starting node is a sink, and/or it
belongs to a small, isolated component. The solution is: If,
after a very long number of steps, we do not visit enough
nodes to meet the required sample size, we select another
starting node and repeat the procedure. In our experiments
we run the random walk for 100 * n steps.

A very similar idea to Random Walk sampling is the Ran-
dom Jump (RJ) sampling. The only difference here is that
with probability ¢ = 0.15 we jump at random to any node in
the graph. Note that this algorithm does not have problems
of getting stuck or not being able to visit enough nodes.

The Forest Fire (FF) sampling inspired by the work on
temporal graph evolution. Randomly pick a seed node and
then begin “burning” outgoing links and the corresponding
nodes. If a link gets burned, the node at the other endpoint
gets a chance to burn its own links, and so on recursively.
Model has two parameters: forward (ps) and backward (ps)
burning probability. The exact definition is given in [9].

3.3.4 Other sampling strategies

One could easily think of other simple sampling strategies.
In particular, authors in [8] also explore contraction based
methods, and depth and breath first search graph traversal,
but none of them performed well overall.
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Figure 1: Scale-down sampling goal

One could also use ideas from graph clustering and graph
partitioning. These algorithms are usually computationally
intensive and do not scale well to very large graphs. Graph
sampling becomes important with massive graphs, where
real-world algorithms become too expensive and one has to
reside to sampling. This simplicity is essential.

4. EXPERIMENTAL EVALUATION

In the following section we present the results of exper-
iments on several real graphs. We show results for both
Scale-down and Back-in-time sampling goals. We also ex-
plore how the quality of the sample degrades with the sample
size and conclude with a set of scaling rules that help is scale
the properties of the sample to the target graph.

4.1 Dataset description

We consider five different datasets: a static graph and
four graph with temporal information, which allows us to
also evaluate them for the Back-in-time sampling goal.

Citation networks: The HEP-TH and HEP-PH cita-
tion graphs from the e-print arXiv which cover all the cita-
tions within a dataset of n=29,555 papers with e= 352,807
citations, and n=30,567, e=348,721 respectively. The data
in both graphs covers papers from Jan 1992 to Apr 2003 (10
years) and represents essentially the complete history of the
section. For each year Y (1992 < Y < 2003) we create a
citation graph using all papers published before year Y.

Autonomous systems: A graph of routers comprising
the Internet can be organized into sub-graphs called Au-
tonomous Systems (AS) [10] . The dataset contains 735
daily instances spanning 785 days from November 8 1997
to January 2 2000. Graphs range in size from n=3,011 and
e=10,687 to n=6,474 and e=26,467. To mimic the temporal
evolution we took 20 graphs uniformly spanning the number
of nodes between the largest and the smallest AS graph.

Bipartite affiliation network: Using the arXiv data,
we also constructed a bipartite affiliation graph. There is a
node for each paper and for each author, and an edge con-
necting people to the papers they authored. The network
is derived from the astro physics category in the arXiv. We
place a time-stamp on each node: the submission date of
each paper, and for each person, the date of their first sub-
mission to the arXiv. The data for affiliation graph covers
the period from April 1992 to March 2002. It has n=>57,381
nodes (19,393 authors, 37,988 papers) and e=133,170 edges.

Network of trust is a static snapshot of a who-trusts-
whom network from epinions.com [13]. We only had access
to a single snapshot of the network, which contains n="75,879
nodes and e=508,960 edges.

4.2 Scale-down sampling goal

We begin by introducing the experimental results on Scale-
down sampling, where the goal is to create a sample graph
S, that will match the properties of the target graph G.

4.2.1 Matching the graph patterns

We begin by presenting illustrative examples of behavior
of sampling algorithms from section 3.3. We run each ten
times on each of five datasets and plot the static patterns.

Figure 1(a) shows the in-degree distribution of target graph
and the sampled graphs for a sample size of 10%. For pre-
sentational purposes we do not plot the results of all 10
sampling algorithms. We plot three qualitatively different
behaviors: RDN, RJ and RW sampling algorithms observe
very similar behavior — we only show RW. These algorithms
are biased towards high degree nodes and densely connected
parts of the graph. Observe how the tail of degree distri-
bution is over estimated at the cost of under represented
nodes with small degrees. The second class consists of FF,
RPN and RN (we only plot FF), which are not biased to-
wards high degree nodes. Observe that degree distribution
is well matched and has about the same shape (slope) as
the true degree distribution. The last cluster are RE, RNE
and HYB, which are all based on random edge selection.
When the size of the sample is small, the resulting samples
are very sparsely connected and the high degree nodes are
under represented and the slope of degree distribution is too
steep. We notice roughly the same three classes of behavior
with the same members for most of our experiments.

Figure 1(b) plots the logarithmically binned distribution
of clustering coefficient. The plot shows the average fraction
of triangles present around the nodes with degree d. Intu-
itively, it gives us clues about the community structure in
the graph. We make the following observations:

The sample size is small, so the RN and RNN are far
away. Edge selection techniques (RE, RNE and HYB) give
too sparse samples which contain no triangles.

4.2.2 Evaluation using the D-statistic

Next, we evaluate the sampling algorithms against all 14
graph static and temporal patterns. We present the results
in table 1. Each entry in the table is obtained by averaging
the D-statistic over 10 runs, 5 datasets, and 20 sample sizes
per dataset. For Scale-down sampling criteria the temporal
patterns are essentially flat, since regardless of a sample size
we want to match the property of the final graph.

For each column we bolded the best scoring algorithm.
Notice that FF, RW and RPN fit well the degree distribu-
tion. Distribution of weakly connected components is best
matched by edge selection techniques. The distribution of
the number of reachable pairs of nodes at particular dis-
tance (column denoted as hops) is best matched by FF and
RPN. Singular values and first left singular vector of graph
adjacency matrix are best approximated using RW and FF.
Exploration methods match the clustering coefficient.

Focusing on temporal graph patterns in table 1, we see
that RW performs best. This means that properties of sam-
ple graphs obtained by RW algorithm, have very stable and
flat temporal patterns, e.g. as we see on figure 2 the diam-
eter remains constant and the graph is highly connected.

We omit the results for difference in random walk node vis-
iting probability between the sample and the target graph.
We note the results were very similar to those on table 1.



Static graph patterns Temporal graph patterns

in-deg | out-deg | wcc scc hops | sng-val | sng-vec | clust diam cc-sz | sng-val || clust AVG
RN 0.084 0.145 0.814 | 0.193 | 0.231 0.079 0.112 0.327 || 0.074 | 0.570 | 0.263 0.371 0.272
RPN || 0.062 | 0.097 | 0.792 | 0.194 | 0.200 | 0.048 0.081 0.243 || 0.051 | 0.475 0.162 0.249 || 0.221
RDN || 0.110 0.128 0.818 | 0.193 | 0.238 | 0.041 0.048 0.256 || 0.052 | 0.440 | 0.097 || 0.242 || 0.222
RE 0.216 0.305 | 0.367 | 0.206 | 0.509 | 0.169 0.192 0.525 || 0.164 | 0.659 | 0.355 0.729 || 0.366
RNE || 0.277 0.404 0.390 | 0.224 | 0.702 0.255 0.273 0.709 || 0.370 | 0.771 0.215 0.733 || 0.444
HYB || 0.273 0.394 0.386 | 0.224 | 0.683 | 0.240 0.251 0.670 || 0.331 | 0.748 | 0.256 0.765 || 0.435
RNN || 0.179 0.014 0.581 | 0.206 | 0.252 0.060 0.255 0.398 || 0.058 | 0.463 | 0.200 0.433 || 0.258
RJ 0.132 0.151 0.771 | 0.215 | 0.264 | 0.076 0.143 | 0.235 || 0.122 | 0.492 0.161 0.214 || 0.248
RwW 0.082 0.131 0.685 | 0.194 | 0.243 | 0.049 0.033 | 0.243 || 0.036 | 0.423 | 0.086 0.224 || 0.202
FF 0.082 0.105 0.664 | 0.194 | 0.203 | 0.038 0.092 | 0.244 || 0.053 | 0.434 | 0.140 0.211 || 0.205

Table 1: Scale-down sampling criteria
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Figure 3: Scale-down sampling goal

We set the RW random walk returning probability to 0.8
— we were basically performing breath first search from the
starting node. For FF we set the py = 0.7 and p;, = 0.

All in all the results suggest that there is no single perfect
answer to graph sampling. Depending on particular applica-
tion and properties of interest one would choose appropriate
method, with exploration methods performing best overall.

4.3 Back-in-time sampling goal

A second approach to sampling is the Back-in-time sam-
pling goal. Here we do not to match the properties of the
final target graph G, but rather match G as it grew and
evolved. This means that we compare the patterns from a
sample graph S on n’ nodes with the target graph G, when
it was of the same size as S.

4.3.1 Matching the graph properties

Figure 2(a) plots the Densification Power Law. Again
notice 3 types of behavior. RW and RDN give too dense
graphs, edge selection techniques (RE, RNE and HYB) re-
sult in too sparse graphs that start to rapidly fill-in the
missing edges when the sample size gets large. FF, RN and
RPN match the temporal densification of the true graph.

Plot for the effective diameter on figure 2(b) shows that
edge selection techniques give samples with too high diame-
ter. On contrary, RW, RJ and RDN have constant diameter,
which is good for Scale-down sampling. And, FF, RN and
RPN match the shrinking diameter of the true graph over
time quite well. Similar observations can be done for the
size of connected component and average clustering coeffi-
cient over time (figures 2(c), (d)). RW, RJ and RDN give
connected graph with constant clustering coefficient. Edge
selection techniques produce disconnected graphs and thus
underestimate the clustering. FF, RN and RPN match the
size of connected component and clustering over time.

. On average RW and FF perform best.

4.3.2 Evaluation using the D-statistic

We use the same evaluation strategy as in previous sec-
tion. We refer to extended version of the paper for results
table. Overall FF performed best (average D-statistic 0.13),
closely followed RPN(0.14). Second group was then formed
by RN RW with D-stat of 0.16. Again, edge selection per-
formed worst. We got best results when setting FF py = 0.2.
So, FF burned 0.25 nodes on average. In Scale-down we got
best results when it burned 2.3 nodes (py = 0.7).

4.3.3 Sensitivity analysis of parameter values

For RW and RJ the probability of random jump was set to
0.15. For Forest Fire (FF) and Back-in-time goal, we obtain
good results for 0 < py < 0.4, where D-statistic is below
0.16, obtaining the best D-statistic of 0.13 at py = 0.20. For
Scale-down goal best performance was obtained with high
values of py (ps > 0.6) where every fire eventually floods the
connected component.

4.4 How small sample to take?

Last, we explore how the quality of the sample degrades
with the sample size. Figure 3 shows performance of sam-
pling algorithms for both Scale-down and Back-in-time sam-
pling goals. We plot the D-statistic as a function of sam-
ple size. Notice that edge selection techniques perform bad
on both Scale-down and Back-in-time sampling goals. For
Scale-down sampling, up to 50% sample size exploration and
node selection techniques perform about the same. As the
sample size gets smaller, RW, RJ and RDN start to out-
perform FF, RN and RPN. For Back-in-time sampling goal
the situation is reversed. Performance of RW, RJ and RDN
sampling algorithms slowly degrades as the sample size de-
creases. On the contrary, FF, RN and RPN perform much
better. Also notice that quality of the sample decreases
much slower. For Back-in-time sampling goal we are able to
obtain good samples of size only around 10 percent.

4.5 Scaling rules

Assuming we use Random Walk (RW) sampling for Scale-
down and Forest Fire (FF) sampling for Back-in-time goal,
with moderate sampling sizes (~ 25%), we find the scaling
rules shown in table 2. Most of them are very simple, since
the sampling does a good job of matching the patterns.

5. CONCLUSION

Generating smaller, “realistic” samples of larger graphs is
an important tool for large graph analysis, and what-if sce-
narios. Besides the task of coming up with a good sampling
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Static patterns

Scale-down

Back-in-time

S1, S2: Degree distr.

S5, S6: Hop-plot

S7: Singular vector

S8: Singular values

scale with
sample size
same for top
components
scale with

matches target G
obeys

evolution

obeys evolution

scale with

sample size
matches target

sample size

S9: Clustering coef. obeys evolution

Temporal patterns

T1: DPL obeys evolution

T2: Diameter constant obeys evolution
T3: Fraction of CC constant obeys evolution
T5: Avg. clustering | constant obeys evolution

Table 2: Empirical rules for scaling graph patterns

algorithm our work addresses a subtle questions: what do

we mean by “realistic’? how do we measure the deviation

from realism? There seems to be no perfect single answer to

graph sampling. Depending on particular application and

properties one cares about a suitable algorithm is chosen.
The contributions of this work are the following;:

e We propose the Back-in-time goal for sampling which
is better defined than the Scale-down sampling goal.

e We study a large variety of graph sampling algorithms.
Methods that do a combination of random node selection,
as well as a little of vicinity exploration give best samples.
“Forest Fire” is best performing sampling algorithm. For
Scale-down goal best results are obtained with higher burn-
ing probability (/0.7) and lower burning probability (x0.2)
for Back-in-time.

e We show that a 15% sample is usually enough, to
match the properties (S1-S9 and T1-T5) of the real graph.

e We recognize that no list of properties will ever be per-
fect. We give a long list of “realism criteria”, inspired from
our experience with social networks, citation networks and
communication networks. Our list is a significantly larger
superset of the lists of earlier work on graph sampling.

e We provide rules to scale-up the measurements from
the sample, to reach the measurements of the original graph.

Future work could focus on sampling from graphs with
weighted edges, as opposed to the current, zero-one weights,
as well as sampling on graphs with labeled edges. A different
direction would be focus on sampling algorithms to estimate
a single property of the graph (diameter, number of triads)
and define precise scaling relations.
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