
Recalling The Single-FFT Direct Poisson Solve

James McCann∗

Carnegie Mellon University

1 Introduction

Large Poisson’s equation problems arise in gradient-domain image
compositing. Agarwala [2007] and Kazhdan and Hoppe [2008] re-
cently presented iterative solution methods using a smooth correc-
tion term and multigrid with higher-order elements, respectively.
In both papers, however, direct solution methods are somewhat
glossed over. This work aims to remedy these omissions by pre-
senting timing numbers for a classic single-FFT – so-called because
it performs a fast Fourier transform only on one dimension of the
image – solution method.

2 Method

The single-FFT method summarized here has been known for many
years; I have found mentions as early as 1965 [Hockney 1965]. The
idea is to decouple the column solutions by performing an FFT on
each row, then solve the columns using simple row-reduction.

Poisson’s equation is

∇
2
u = f (1)

That is, we wish to solve for image u with given Laplacian f . Often,
∇

2 is approximated by a five-point stencil (−4 in the center, with
1’s adjacent). Note that if one takes pixels outside the image to have
the same color as the nearest pixels inside the image, this leaves u
undefined up to an additive constant.

The first step of the single-FFT algorithm involves changing the
basis of the rows by running a DCT-II (‘discrete cosine transform’
– a variant of the fast Fourier transform) on f . This separates our
equation into a set of 1-d problems:

[

1
−4 + cos(π i

w
)

1

]

∗ c
′

i = f
′

i (2)

where we now solve for column vectors c′i, 0 ≤ i < w (the fre-
quency bands of the image) based on f ′

i (frequency bands of the
DCT’d f ).

These new problems have a tridiagonal matrix structure amenable
to solution with row-reduction. Performing this row-reduction in
lockstep for all the columns at once gives us the code in Figure 1.
Notice that this code is trivial to perform out-of-core, requiring only
that one store the new right-hand-side and value on the diagonal
between the first (forward) and second (backward) row-reduction
passes. In practice, the regular structure of the matrix allows sim-
ple run-length encoding to compress away most of the value-on-
diagonal overhead – requiring only a few megabytes more storage
even on the 87 megapixel redrock image.

3 Comparison

I ran the single-FFT algorithm on the same datasets as used in the
more recent papers, and report the results in Table 1. Timing in-
formation for the previous approaches comes from Kazhdan and
Hoppe’s table [2008]. The single-FFT algorithm is slower, but de-
cidedly not glacially so, and the error accumulation due to numeri-
cal imprecision is far lower than the error in the iterative methods.

∗e-mail: jmccann@cs.cmu.edu

Single-FFT-Solve:
for each row:

perform DCT-II to decouple columns
subtract previous row to eliminate below-diagonal

for each row (reverse order):
subtract next row to eliminate above-diagonal
perform DCT-III to get final answer

Figure 1: Pseudocode for the single-FFT solution. Notice that
only two rows need to be stored in memory at once, and only two
passes made over the image. The DCT-III is also known as the
‘inverse discrete cosine transform’.

Time (s) Max Error
Image MP SM QT SFFT SM QT SFFT

beynac 12 17 8 34 3e-4 5e-3 1e-13
rainier 23 33 14 76 3e-4 4e-3 1e-12
edinburgh 50 79 122 190 3e-4 · 5e-12
redrock 87 118 188 333 4e-4 · 3e-12

Table 1: Comparison of the single-FFT method to more recent ap-
proaches. MP is the panorama size in megapixels. SM is the method
of Kazhdan and Hoppe, QT is the method of Agarwala. Panorama
data courtesy Aseem Agarwala. The single-FFT method is math-
ematically exact; reported errors are calculated numerical error
on stress-test noise images of the same dimensions as the provided
data.

Additionally, the memory usage of the single-FFT method is much
lower than either of the previous methods (e.g. 80MB for redrock,
as compared to SM’s 133MB and QT’s 112MB).

4 Conclusion

In this paper I presented timing information for a classic direct so-
lution method for Poisson’s equation, demonstrating it to produce
orders-of-magnitude more accurate solutions with runtimes roughly
twice that of modern iterative approaches. One downside of the ap-
proach is that these low numerical error rates were only achievable
with double-precision intermediate values, quadrupling the storage
requirements over streaming multigrid’s half-float intermediate val-
ues. One could mitigate this problem by storing only every nth
line of the intermediate data and recomputing parts of the forward
sweep on the fly. Another interesting direction would be to use in-
teger FFT’s and rational number arithmetic to eliminate numerical
error entirely. I hope that this work has provided some incentive
for the community to continue to investigate and remember older,
direct, methods for solution of Poisson’s equation.

References

AGARWALA, A. 2007. Efficient gradient-domain compositing us-
ing quadtrees. ACM Transactions on Graphics 26, 3.

HOCKNEY, R. W. 1965. A fast direct solution of poisson’s equation
using fourier analysis. J. ACM 12, 1, 95–113.

KAZHDAN, M., AND HOPPE, H. 2008. Streaming multigrid for
gradient-domain operations on large images. ACM Transactions
on Graphics 27, 3.


