Neighborhood Formation and Anomaly Detection in Bipartite Graphs

Jimeng Sun' Huiming Qu?
ICarnegie Mellon Univ.

Deepayan Chakrabarti®* Christos Faloutsos' '
{jimeng, christos} @cs.cmu.edu

2Univ. of Pittsburgh huiming@cs.pitt.edu
3Yahoo! Research deepay @yahoo-inc.com

Abstract

Many real applications can be modeled using bipartite
graphs, such as users vs. files in a P2P system, traders vs.
stocks in a financial trading system, conferences vs. au-
thors in a scientific publication network, and so on. We
introduce two operations on bipartite graphs: 1) identify-
ing similar nodes (Neighborhood formation), and 2) find-
ing abnormal nodes (Anomaly detection). And we propose
algorithms to compute the neighborhood for each node us-
ing random walk with restarts and graph partitioning; we
also propose algorithms to identify abnormal nodes, us-
ing neighborhood information. We evaluate the quality of
neighborhoods based on semantics of the datasets, and we
also measure the performance of the anomaly detection al-
gorithm with manually injected anomalies. Both effective-
ness and efficiency of the methods are confirmed by experi-
ments on several real datasets.

1 Introduction

A bipartite graph is a graph where nodes can be divided
into two groups V| and V, such that no edge connects the
vertices in the same group. More formally, a bipartite graph
G is defined as G = (V| UV, E), where V| = {q;|1 <i <k}
and Vo = {#;|1 <i<n}, E CV| XV, as shown in Figure 1.

Many applications can be modeled as bipartite graphs,
for example:

* work performed while at CMU

' This material is based upon work supported by the National Sci-
ence Foundation under Grants No. IIS-0083148, I11S-0209107, IIS-
0205224, INT-0318547, SENSOR-0329549, EF-0331657, 11S-0326322,
NASA Grant AIST-QRS-04-3031, CNS-0433540. This work is supported
in part by the Pennsylvania Infrastructure Technology Alliance (PITA),
a partnership of Carnegie Mellon, Lehigh University and the Common-
wealth of Pennsylvania’s Department of Community and Economic De-
velopment (DCED). Additional funding was provided by donations from
Intel, and by a gift from Northrop-Grumman Corporation. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation, or other funding parties.

>

@O0 ® O

¥

Figure 1. Bipartite Graph

®

CREEEEED

1. P2P systems: Vi is a set of files, and V; a set of peers.
An edge e connects a file a and a peer ¢, if the peer ¢
downloaded or uploaded the file a. In general, down-
load/upload of a single file usually involves more than
two peers. Ideally, files should be placed based on their
“similarity”, because peers are more likely to down-
load files of the same style (or in the same neighbor-
hood). Moreover, a peer that behaves much differently
from others is also of interest: it usually consumes too
much network resource or provides fictitious files for

others.
2. Stock markets: The traders and stocks form V; and V>

respectively, and the edges represent buying and sell-
ing actions between the two sets. It is useful to identify

similar stocks and abnormal traders.
3. Research publications: Researchers publish in differ-

ent conferences, and this conference-author relation-
ship can be modeled as a bipartite graph. Similar con-
ferences and interdisciplinary authors are again impor-
tant.

In general, based on the application domain, the edges
can be weighted. For instance, edge weights in the stock
market graph can represent the trading volume, while in
the research publication graph, they may represent the num-
ber of papers published by an author in a conference. For

presentation purposes, we will only focus on unweighted
graphs; our algorithms can be easily generalized to other
graph types.

Under this setting, our work addresses two primary prob-
lems:

1. Neighborhood formation(NF): Given a query node
a in Vi, NF computes the relevance scores of all the
nodes in V; to a. The ones with higher relevance are
the “neighbors” of a. For instance in the research
publication example, given the conference ICDM, the
neighborhood formation process computes the rele-
vance scores for all the conferences. Presumably, the
highest score is assigned to ICDM itself, with other
data mining conferences like KDD, PAKDD, PKDD
getting high scores as well.

2. Anomaly detection(AD): Given a query node a in Vi,
AD computes the normality scores for nodes in V; that
link to a. A node with a low normality score is an
anomaly to a. In the research publication example, an
author is an anomaly if he/she publishes at the con-
ferences that have low relevance scores to each other.
More intuitively, they are the persons who published in
different fields.

Nodes that belong to the same group (V; or V;) have the
same type; it is the connections between the two types of ob-
jects that hold the key to mining the bipartite graph. Given
the natural inter-group connections (between V| and V,), our
objective is to discover the intra-group relationships, such
as the clusters and outlier within the group. For example, in
the research publication bipartite graph, we have two nat-
ural groups of entities: conferences and authors. The rela-
tionship between these two groups is reflected by the edges.
Based on these edges, we want to find the similar confer-
ences and unusual authors that publish in different commu-
nities. An effective mining algorithm should thus be able to
utilize these links across the two natural groups.

Our algorithm for NF is based on the idea of random
walks with restarts [8]. The method is simple, fast and scal-
able. In addition, we approximate the NF computation by
graph partitioning to further boost the performance.

The algorithm for AD uses the relevance scores from NF
to calculate the normality scores. Intuitively, a node (in V;)
is an anomaly if it links to two nodes (in V) that do not
belong to the same neighborhood/community. For example,
an author becomes an anomaly if he/she publishes papers in
conferences from two different fields. In the sequel, we will
use neighborhood and community interchangeably.

Note also that a natural symmetry exists in the roles of
neighborhoods and anomalies. In particular, we can swap
V1 and V; and apply the same algorithms in order to obtain
the relevance score in V; and the normality score in V.

In summary, the contributions of the paper are that:

Symbol Description
Vi the set of k row nodes
Vs the set of n column nodes
M the k-by-n bipartite matrix
M7 the transpose of M
My the (k 4 n)-by-(k + n) adjacent matrix
Py the (k + n)-by-(k + n) Markov transition matrix
rs(a) 1-by-k relevance score vector for a € V;
RS k-by-k similarity matrix where row i equals rs(i)
ns(r) the normality score of the column node ¢t € V;
S; the set of row nodes linking to ¢
RS, the similarity matrix for column node ¢
c the restarting probability

Table 1. Symbol Table

1. we identify two important problems (Neighborhood
Formation and Anomaly Detection) on bipartite
graphs;

2. we develop the exact algorithms based on random
walks with restarts;

3. we propose a faster approximate algorithm using graph
partitioning;

4. the results can be easily interpreted by the user; and

5. we evaluate the methods on real datasets to confirm
their applicability in practice.

Section 2 proposes the data model and the formal prob-
lem specification. Section 3 presents the algorithms. In sec-
tion 4, we evaluate the algorithms with real data. We discuss
the related work in section 5 and conclude in section 6.

2 Problem Definition

We will first define our data model and terminology, and
then describe the exact formulations of the NF and AD
problems.

Data model: The data is viewed as a bipartite graph G =
<V1 UV27E>, where V| = {a,'|1 <i< k} and V, = {t,'|1 <i<
n}, E C V) x V5. The graph G is conceptually stored in a
k-by-n matrix M ', where M(i, j) is the weight of the edge
<1, j >. The value can be 0/1 for an unweighted graph, or
any nonnegative value for a weighted graph. For example,
the unweighted graph in Figure 1 becomes the following
matrix:

1 0000 .. 0
0 1 00 0 0
111 11 1
Myw=] 0 0 0 0 0 0
1 1.0 1 0 1
0 0101 .. 1

'In practice, we adopt the sparse matrix representation where the stor-
age space is proportional to the number of non-zero elements in the matrix.

The nodes in V (V) are called row(column) nodes. Note
that a column node links to a row node if the corresponding
matrix element is not zero. Moreover, row node a connects
to another row node b if there is a column node c linking to
both a and b. We call that path a connection between a and b
through c. Nodes a and b can have multiple connections via
different column nodes. For example in the matrix above,
rows 3 and 5 links through column 1, 2, 4 and n.

We can construct the adjacency matrix My of G using M

easily:
0 M
My = (w0) (1)

In particular, My (a,t) denotes the element at a-th row and
t-th column in My.

Suppose we want to traverse the graph starting from
the row node a. The probability of taking a particular
edge < a, t > is proportional to the edge weight over
all the outgoing edges from a. More formally, P (a,t) =
Ma(a,t)/ 354 Ma(a,i). Therefore, the Markov transition
matrix Py of G is constructed as: Py = col-norm(My),
where col_norm(M,) normalizes My such that every col-
umn sum up to 1.

The main reasons to have M instead of working directly
on My and P4 are the computational and storage savings.
Next, we define the two problems addressed in the paper:

Neighborhood Formation (NF): Given a node a € Vi,
which nodes in V| are most related to a? There are two ways
to represent the neighborhoods: 1) select a set of nodes as
the neighbors and the other nodes are not the neighbors
(Hard Neighborhood); 2) assign a relevance score to ev-
ery node where “closer” nodes have high scores, and no
hard boundary exists (Soft Neighborhood). In this paper,
we adopt the soft neighborhood, because the score can help
identify neighborhood but also differentiate the neighbors.
In particular, we want to compute a relevance score to a for
every node b € V|. The higher the score is, the more re-
lated that node is to a. More specifically, the node with the
highest score to a is a itself; the nodes that are closer to a
probably have higher scores than the other nodes that are
further away from a.

Anomaly Detection (AD): What are the anomalies in V5
to a query node a in V;? Again we adopt the notion of soft
anomalies by computing the normality scores for nodes in
V, that link to a. Hence, the nodes with lowest normality
score are the anomalies to a.

3 Proposed Method

In this section we discuss the algorithms that solve the
two problems presented above. We first define relevance
score and describe how to compute the relevance scores
for the row nodes (neighborhood formation) in section 3.1.

Then, based on the relevance scores, we define normality
score and illustrate how to obtain the normality scores for
the column nodes (anomaly detection) in section 3.2.

3.1 Algorithms for Neighborhood Formation

Given arow node a € V;, we want to compute a relevance
score for each row node b € V;. The final result is a 1-by-k
vector consisting of all the relevance scores to a.

Intuition: Intuitively, we do multiple random walks start-
ing from a, and count the number of times that we visit each
b € V. These counts reflect the relevance of those nodes to
a. The probability of visiting b € V| from a is the relevance
score we want to obtain. In the following, we list some sce-
narios on which the row nodes have high relevance scores.
b usually has a high relevance score to a if (1) b has many
connections to a as shown in Figure 2; or (2) the connec-
tions only involve a and b as shown in Figure 3. Scenario
(1) is obvious because the row nodes b and a have many
connections through the columns nodes, which indicates the
strong relevance between b and a. Scenario (2) is less ob-
vious. The intuition is that the connection that only links a
and b brings more relevance between a and b than the con-
nections linking a, b and other nodes. The relevance score is
not only related to the number of connections but also to the
number of nodes involved in the connections. One observa-
tion is that the node b with the highest relevance score is not
necessarily the one with most connections to a. The reason
is that those connections link to nodes other than a and b
as well. Thus, the relevance is spread out among many dif-
ferent nodes. Nevertheless, all the scenarios above are well
captured by our algorithm in spite of its simplicity.

Figure 2. Many connections between

aand b
A
9".
@".

Figure 3. A few exclusive connection between a
and b

Algorithms: We propose three methods for computing
relevance scores: (1) Exact NF implements the basic idea
but can have slow convergence rates, (2) Parallel NF im-
plements the same algorithm in parallel, and (3) Approxi-
mate NF performs graph partitioning first which calculate
results approximately but much more efficiently.

Exact NF: First, we transform the input row node a into
a (k+n) x 1 query vector ¢, with 1 in the a-th row and
0 otherwise. Second, we need to compute the (k+n) x 1
steady-state probability vector u, over all the nodes in G.
Last we extract the probabilities of the row nodes as the
score vectors. Note that iz, can be computed by an iterated
method from the following lemma.

Lemma 3.1. Let ¢ be the probability of restarting random-
walk from the row node a. Then the steady-state probability
vector i, satisfies

iy = (1 *C)PAJa+CJa2 (2)
where Py is already the column normalized.

Proof. See [16] O

Algorithm NFE(Exact NF)
Input: node a, bipartite matrix M, restarting probability c,
tolerant threshold &
0. initialize ¢, = 0 except the a-th element is 1 (g,(a) = 1)
1. construct M, (see Equation 1) and Py = col_norm(My)
2. while (|Ai,|* >)

iy = (1 —¢)Patty + ¢qa
3. return i, (1 : k)

The algorithm simply applies Equation 2 repeatedly until
it converges. The actual computation of the algorithm can
utilize the bipartite structure to have more saving. More
specifically, we do not materialize M4 and P, and modify
Equation 2 as follows:

. colmorm(M)it,(k+1:k+n) -
ty = (1=c) < colnorm(MT)i, (1 : k) > +4a
3)
where i, (1 : k) and i1, (k+ 1 : k+n) are the vectors of first k
and last n elements of i, respectively. The relevance score
rs(a) is uy(1 : k). If we compute the relevance scores for all
the nodes, we have a similarity matrix S.

The saving is significant when the number of rows k and
the number of columns » differ a lot. Therefore, Equa-
tion 3 is always recommended in practice, while Equation 2
is only for demonstrating the concept.

2¢ is set to 0.15 for all experiments.

3We uses Li norm in the experiment.

Parallel NF: Very often we have the input of more than
one row node. The task is to compute the relevance score
for every input row node. Instead of applying algorithm
NFg for every input, we implement it in a more efficient
way by running the algorithm in parallel for several inputs
after vectorizing the code.

Approximate NF: One problem with the previous ap-
proaches is the large memory requirement. In particular,
the algorithm is efficient when the entire matrix can fit in
memory. However, one observation from our experiments
suggest that that the relevance scores for the nodes are very
skewed, with most nodes have almost zero relevance scores,
and only a few nodes having high scores. This suggests
that we can possibly filter out many “irrelevant” nodes be-
fore applying the NF computation. Based on this intuition,
we apply graph partition first and perform NF only on the
partition containing the query node. In particular, we use
METIS [11] to partition the graph into K non-overlapping
subgraphs of about the same size. Note that the graph par-
tition is a one-time cost to preprocess the data. The pseudo
code is the following:

Algorithm NFA(Approximate NF)
Input: the bipartite graph G, the number of partitions x,
input node a

0. divide G into x partitions G ... Gy (one-time cost)

1. find the partition G; containing a

2. construct the approximate bipartite matrix M’ of G; (ig-
nore the edges cross two partitions)

3. apply NFg on a and M’

4. set O relevance scores for the nodes that are not in G;

3.2 Algorithm for Anomaly Detection

Based on the relevance scores for V; computed as shown
above, we can compute the normality scores for the nodes
in V5. A node with a low normality score is an anomaly.

Given a column node ¢ € V5, we first find the set S; of
row nodes to which ¢ links: S; = {a |< a,t >€ E}. Let k
be the size of S;. If ¢ is “normal”, then the relevance scores
between any pair of elements in S; should be high. More
formally, we compute the k;-by-k; similarity matrix RS; over
S,*. For example in Figure 1, fort = 1,5, = {1,3,5} and RS,
is a 3-by-3 matrix where each element is a relevance score
from a € S; to b € S;. Note that (1) RS; is asymmetric, i.e.,
the relevance score from a to b may differ from the one from
bto a, and (2) RS; has a strong diagonal, i.e., every node has
a high relevance score to itself. We ignore the diagonal for
the normality score computation. In general, the normality
score of ¢ can be any function over RS;. We define ns(z)
as the mean over all the non-diagonal elements in RS;. The
lower the normality score ns(t) is, the more abnormal ¢ is.

“4Note that RS, can be obtained by taking a subset of columns and rows
from the k-by-k similarity matrix RS.

Essentially, given an input 7 € V,, we first compute the
relevance score vectors for every adjacent row node S; to
t (using any of the NF methods described in section 3.1).
Then we obtain the similarity matrix RS; and apply the score
function on RS;. A computational trade-off is whether or
not to pre-compute the relevance score vectors of all the
row nodes. It usually depends on the number of row nodes
involved. For example, if the dataset has a large number of
rows and the input queries are skewed, pre-computation is
not recommended, because it incurs huge cost and most of
them is wasted due to the skewed distribution of the queries.
Algorithm AD(Anomaly Detection)
Input: input node #, bipartite transition matrix P
0. find the set S; = {ay,as, ...} such thatVa; € S;, < a;,t >€
E.

1. compute all the relevance score vectors Rofacs,

2. construct the similarity matrix RS; from R over S;

3. apply the score function over RS; to obtain the final nor-
mality score ns(t)

4. return ns(1)

Examples of anomalies: Figure 4 shows the typical ex-
ample of an anomaly #, which links to two row nodes a and
b that communicate to different sets of nodes. Without 7,
a and b belong to different neighborhoods. Note that one
requirement of constructing the neighborhoods is that a and
b need to have enough connections to establish their identi-
ties. For example, a and b in Figure 4 still have a number of
connections without ¢, while in Figure 5, b has no other con-
nections apart from ¢. This implies in Figure 5 the neighbor-
hood of b is unknown (or we do not have enough confidence
to say whether b belongs to the same neighborhood as a or
not). Therefore, ¢ in Figure 5 will not be identified as an
anomaly, while 7 in Figure 4 will.

On the other hand, the example in Figure 5 is easy to
be found by simply counting the degree of the row nodes
and picking the ones with only one connection. Potentially,
the number of such nodes can be huge. The point is that
our method aims at a non-trivial case of the anomaly, which
tries to identify the connections across multiple neighbor-
hoods. For example, author A and B write many papers
with different groups of authors. If there is a paper between
A and B, it will be an anomaly, because we know A and B
belong to different neighborhoods. However, if B only has
one paper and A is the co-author, we cannot decide whether
the paper is an anomaly, because we do not know the neigh-
borhood of B other than the sole paper with A.

4 Experiments

In this section we evaluate the exact and approximate
methods on neighborhood formation and anomaly detec-
tion. We focus on answering the following questions:

Figure 4. Without 7, « and b belong to
different neighborhoods

Figure 5. Without 7, the identify of b is

unknown
Dataset | Rows | Columns | Nonzeros | Weighted
CA 288590 2687 661535 yes
AP 315688 | 471514 1073168 no
IMDB | 553388 | 204000 2269811 no

Table 2. Dataset summary

Q1: How accurate is the exact NF algorithm?
Q2: How accurate is the approximate NF algorithm?
Q3: Can the AD algorithm detect the injected anomalies?
Q4: What about the computational cost of different meth-
ods?
After describing the experimental settings in section ??, we
answer Q1 in section 4.2, using concrete examples from
different datasets (i.e., compare exact NF algorithm vs.
“ground truth”). Section 4.3 uses quantitative metric to
compare approximate NF methods vs. exact NF method
(Q2). Section 4.4 answers Q3 by injecting artificial anoma-
lies and evaluating the performance on that. Finally, section
4.5 answers Q4 by providing the quantitative evidence of
the dramatic computational saving on space and execution
time.

4.1 Experiment Setting

Datasets: We construct the graphs using three real datasets,
whose size are specified in Table 2.

Conference-Author(CA) dataset: Every row repre-
sents a conference; every column represents an author. The
elements in the bipartite matrix M are nonnegative integers.
On average, every conference has 510 authors, every author
publishes in 5 conferences.

Author-Paper(AP) dataset: Every row represents an
author; every column represents a paper. The elements
in the bipartite matrix M are either O or 1. In particular,
M(i, j) = 1 indicates that the i-th author is an author for the
Jj-th paper. On average, every author has 3 papers, every pa-
per has 2 authors. The distribution is very skewed as most
of authors have only one paper.

IMDB dataset: Every row is an actor/actress; every col-
umn is a movie. The elements in the bipartite matrix M are
either 0 or 1. In particular, M(i,j) = 1 indicates that the
i-th actor/actress is in the j-th movie. On average, every
actor/actress plays in 4 movies, and every movies has 11
actors/actresses.

4.2 (Q1) Evaluation of Exact NF

Exact NF: We want to check whether the nodes with high
relevance scores are closely related to the query node. The
goal is to ensure the result makes sense in the context of
the applications. More specifically, we select some rows
from the three datasets as the query nodes and verify the
NF scores through user study. Due to the page limit, we
just show one example from each dataset.

CA dataset: Figure 6(a) shows the top 10 neigh-
bors of ICDM conference. As expected, the most re-
lated conferences are the other data mining conferences:
KDD, PAKDD, PKDD. After that, the database conference
(ICDE, SIGMOD, VLDB) and the machine learning con-
ference (ICML) also have high relevance scores 3,

AP dataset: Figure 6(b) plots the top 10 neighbors of
Prof. Jiawei Han. They are indeed the close collabora-
tors to Prof. Han, who either have many joint papers with
Prof. Han or have several exclusive joint papers.

IMDB dataset: For IMDB dataset, we perform the
same set of experiment as above. Unlike the previous two
datasets, the people in this dataset are not well-clustered,
meaning that if @ and b play in the same movie, it does not
increase the likelihood that they will play together again in
the future. Of course, they are exceptions in the sequels of
successful movies.

We choose Robert De Niro as an example here. The
persons with the highest relevance scores, as shown in Fig-
ure 6(c), are Billy Crystal and Lisa Kudrow because they all
perform in the same 2 movies (“Analyze this” and the se-
quel “Analyze that”). Furthermore, they are the only main
actors/actress in the movies. This is again due to the result
of the combination of 2 scenarios in section 3.1.

4.3 (Q2) Evaluation of Approximate NF

We partition each dataset into k partitions with equal size
using METIS [11]. The NF computation for a row node a

SSimilar to our example, Klink et al. [12] developed DBLP browser
which uses an author-based similarity metric to model the closeness of
two conferences. i.e., two conferences that have many common authors
are highly similar.

only involves the nodes in the same partition as a (we as-
sign 0 relevance scores to the row nodes in other partitions).
The goal is to show that the neighborhood does not change
much using the approximate method(partition method). The
metric we use is precision, that is, the number of common
neighbors over the neighborhood size. We set the neigh-
borhood size to 10 and vary the number of partition x as
shown in Figure 7 as a function of precision. We observe
the precision does not drop much, which suggests that the
approximate method works well. We also vary the neigh-

4
©

Precision
o
[}

o
IS

o
N

——CA
——AP
—=—IMDB

10 20
number of partitions

Figure 7. Precision(y-axis) vs. number of

partition(x-axis)

borhood size as a function of precision in Figure 8, while
setting the number of partition k¥ = 10. We observe that the
neighborhood can be fairly accurately captured over differ-
ent ranges. Note that it does not make sense to have large
neighborhood size for this evaluation, because the relevance
scores will become very low (practically zero) for most of
the nodes in the neighborhood. In particular, the effective
neighborhood size for dataset AP is rather small, because
the most of people only co-author with a small number of
people. As a result, the precision drops faster as the neigh-
borhood size increases.

o
©

o
o

Precision

o
~

=]
N
(<]
>

0 10 20 30 40 50
neighborhood size

Figure 8. Precision(y-axis) vs. neighborhood
size(x-axis)

4.4 (Q3) Evaluation of Anomaly Detection
Due to lack of information about the real anomalies, we

manually inject random connections between nodes. In par-
ticular, we inject 100 column nodes in each dataset connect-

0012 \com 0012

0.01
0.008
0.008
0.006
0.006 0004

0.004 0.002

Robert@DeNiro

0002 > & & O IS & O & & @
& & & o P of & F ot o T P
¥ O & @ E F o & &0 & E &P e
0 IS LIRS & A N L & & & F
9 F & P P &S o X < 3 & o F
I S S R OO & 3 & @
R & N <«
(a) ICDM (b) Jiawei Han (c) Robert DeNiro

Figure 6. Examples for neighborhood formation from three datasets

ing to k row nodes, where k equals the average degree of
column nodes. The row nodes are randomly selected among
the column nodes with large degree (greater than 10 times
the average)®. Note that the difference between using exact
and approximate NF is marginal. And we use approximate
NF in the AD algorithm to reduce computational cost.

Figure 9 plots the average normality scores of genuine
and injected nodes over three different datasets. We ob-
serve a big gap of the normality scores between genuine
and injected ones. Hence, we can easily identify the anoma-
lies by looking at the ones with the lower scores within the
same dataset. Note that only the relative score matters in
detecting anomaly not the absolute score. And it is hard to
compare the scores across datasets because of the different
graph structure.

0.035

Il genuine
0.03 Il injected

0.025
0.02
0.015
0.01

0.005

CA AP IMDB

Figure 9. Normality scores between genuine
and injected nodes across 3 datasets

4.5 (Q4) Evaluation of the computational cost

All the computation of different methods boils down to
the NF computation. The only difference is how large the
matrix is. Intuitively, the computational cost is large if we
work with the entire dataset. It is usually beneficial to parti-
tion the dataset. The partition incurs a one time cost which
can be amortized over the future queries (involving NF and
AD computation). Figure 10 shows the computation cost
on neighborhood formation vs. the number of partitions.

©The reason for not using all the row nodes is that most of row nodes
have degree one and the injection to those nodes will not lead to an
anomaly because statistically we do not have enough information to tell
whether the injection is an anomaly.

Note that a dramatic cost reduction can be found when us-
ing the approximate NF computation method (the partition
method).

N
=}

time(sec)
@

0 5 10 15 20
number of partitions

Figure 10. Computation time(sec): y-axis vs.
number of partitions: x-axis

5 Related Work

There is a significant body on research related to our
problem, which we categorize into four groups: graph
partitioning,outlier detection on graphs, random walks on
graphs, collaborative filtering.

Graph Partitioning: Popular methods for partition-
ing graphs include the METIS algorithm [11], spec-
tral partitioning techniques [10], flow-based methods [6]
information-theoretic methods [5], and methods based on
the “betweenness” of edges [7], among others. These typi-
cally require some parameters as input; Chakrabarti [4] uses
MDL criterion to automatically determine both the number
of clusters and their memberships. Note that our work is
orthogonal to this, and we can use any graph-clustering al-
gorithm. In addition, as a by-product of our algorithms, the
neighborhoods over nodes can represent personalized clus-
ters depending on different perspectives.

Outlier Detection on Graphs: Autopart [3] finds outlier
edges in a general graph; however, we need to detect out-
lier nodes. Noble and Cook [13] study anomaly detection
on general graph with labeled nodes; yet, their goal is to
identify abnormal substructure in the graph, not the abnor-
mal nodes. Aggarwal and Yu [1] propose algorithms to find
outliers in high-dimensional spaces, but its applicability to
graphs is unclear: the nodes in a graph lie in a vector space

formed by the graph nodes themselves, so the vector space
and the points in it are related.

Random-walk on Graphs: Page-Rank [2] learns the
ranks of web pages using the iterated power method on web
graph M (adjacency matrix of the entire graph). The ranks
of all webpages are cast as an N-dimensional vector, and
then the fixed point is found for the following equation:
7= (1 —o)M x ¥+ op, where the a is the damping fac-
tor and p = [%]N x 1. Thus, there is an uniform prior on
all the web pages. In order to deal with personalized query,
Topic-Sensitive PageRank [8] increases the importance of
certain web pages by putting non-uniform weights for p.
Similar random-walk approaches have been used into other
domains; for example, Mixed Media Graph(MMG) [14] ap-
plies random walk with restart on image captioning applica-
tion. We plan to further explore the random walk algorithm
on bipartite graph and use it to identify anomaly nodes.
Similar idea also appear in SimRank [9] which is a similar-
ity measure between nodes in a graph with the intuition that
two nodes are similar if they are related by similar nodes.

Collaborative Filtering Collaborative filtering is a well-
studied method of making automatic filtering about the user
interests based on the historical information from many
users (collaborating) [15]. The goal is to develop a rec-
ommendation system not to find anomalies.

6 Conclusion

A variety of datasets can be modeled as bipartite graphs,
such as P2P networks, stock trades, author-paper relation-
ships, and so on. This paper addresses two problems
on such bipartite graphs: 1) neighborhood formation; 2)
anomaly detection. The main properties of the methods are:

e Fast convergence

e Scalability to large graphs

e Simplicity of implementation

e Results that are easily interpreted

The main idea is to use random-walk with restarts and
graph partitioning. We evaluate the methods on several real
datasets. Our experiments confirm the efficiency as well as
the effectiveness of the proposed methods.

References

[1] C. Aggarwal and P. Yu. Outlier detection for high-
dimensional data. In SIGMOD, pages 37-46, 2001.

[2] Sergey Brin and Lawrence Page. The anatomy of
a large-scale hypertextual Web search engine. Com-
puter Networks and ISDN Systems, 30(1-7):107-117,
1998.

[3] Deepayan Chakrabarti. Autopart: Parameter-free
graph partitioning and outlier detection. In PKDD,
pages 112—-124, 2004.

[4] Deepayan Chakrabarti, Spiros Papadimitriou, Dhar-
mendra S. Modha, and Christos Faloutsos. Fully auto-
matic cross-associations. In KDD, pages 79-88. ACM
Press, 2004.

[5] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In KDD, 2003.

[6] Gary William Flake, Steve Lawrence, and C. Lee
Giles. Efficient identification of Web communities.
In KDD, 2000.

[7] M. Girvan and M. E. J. Newman. Community struc-
ture in social and biological networks. In Proc. Natl.
Acad. Sci. USA, volume 99, 2002.

[8] T. Haveliwala. Topic-sensitive pagerank. In Proceed-
ings of the Eleventh International World Wide Web
Conference, 2002.

[9] Glen Jeh and Jennifer Widom. Simrank: a measure of
structural-context similarity. In KDD, 2002.

[10] R. Kannan, S. Vempala, and A. Vetta. On clusterings
— good, bad and spectral. In FOCS, 2000.

[11] George Karypis and Vipin Kumar. Multilevel k-way
partitioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48(1):96—129,
1998.

[12] Stefan Klink, Michael Ley, Emma Rabbidge, Patrick
Reuther, Bernd Walter, and Alexander Weber. Brows-
ing and visualizing digital bibliographic data. In Vis-
Sym, pages 237-242, 2004.

[13] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In KDD, pages 631-636, 2003.

[14] Jia-Yu Pan, Hyung-Jeong Yang, Pinar Duygulu, and
Christos Faloutsos. Automatic multimedia cross-
modal correlation discovery. In KDD, 2004.

[15] Upendra Shardanand and Pattie Maes. Social infor-
mation filtering: Algorithms for automating “word of

mouth”. In Human Factors in Computing Systems,
1995.

[16] Gilbert Strang. Introduction to Linear Algebra.
Wellesley-Cambridge Press, 3 edition, 1998.

