
Supporting Lemmas and Theorems

We will first prove a lemma that selecting a maximally distinct set of elements according to a distance
metric is NP-Hard as is finding a polynomial approximation that guarantees a solution that is better than
one-half optimal.

Lemma 0.1 For a set of elements V , a set R ⊂ V , and a distance metric d let b(R) = minv1,v2∈Rd(v1, v2).
Set b′ = maxR⊂V,|R|=mb(R). Then finding a set R such that |R| = m and b(R) = b′ is NP-Hard. Further-
more finding a set R such that |R| = m and b(R) > b′

2 is also NP-Hard.

Proof : We first note that given an undirected graph (V,E) the problem of finding an independent set of
size m, that is a subset of m vertices such that there is no edge between any two vertices in the subset, is
NP-Hard [1]. We will define the distance d to be:

d(u, v) =


0 if(u = v)
1 if(u 6= v) ∧ ((u, v) ∈ E)
2 if(u 6= v) ∧ ((u, v) /∈ E)

Note that all requirements of a metric are trivially satisfied except the triangle inequality, d(x, z) ≤
d(x, y) + d(y, z). To verify the triangle inequality also holds, note that for any two elements, x and z, the
possible values of d(x, z) are 0, 1, and 2. If d(x, z) = 0 then the triangle inequality is trivially satisfied since
d is non-negative. If d(x, z) = 1 and the triange inequality was not satisfied, we would have d(x, y) = 0
and d(y, z) = 0, which would imply x = z and d(x, z) = 0 contradicting d(x, z) = 1. If d(x, z) = 2 and
the triangle inequality was not satisfied, then we have d(x, y) + d(y, z) ≤ 1, which means either d(x, y) = 0
or d(y, z) = 0. WLOG assume d(x, y) = 0, then we have x = y and d(y, z) = d(x, z) = 2, which gives a
contradiction. Thus the triangle inequality is satisfied in all cases.

We observe that if R is a subset of V of size m such that b(R) = b′ and b(R) > 1, then the subset
of vertices of V which are also elements of R must form an independent set of size m. Furthermore
we observe that if b(R) ≤ 1, then there is no independent set in V of size m. We have thus reduced
independent set to being an instance of our problem hence finding an optimal solution to our problem is
NP-Hard. Furthermore if we could find a subset R of V of size m for which it is guaranteed that b(R) > b′

2
in polynomial time, then by the same reduction we could solve independent set in polynomial time, and
thus the problem of finding an approximation which guarantees b(R) > b′

2 in polynomial time is NP-Hard.

In Section 2 we defined gm(a, b) = 1 − ρ(a, b) where ρ is the correlation coefficient, and noted that it
does not satisfy the triangle inequality, but does satisfy a generalization of it. We will now prove Lemma
2.1.
Lemma 2.1 gm(x, z) ≤ 2(gm(x, y) + gm(y, z))
Proof : Given a vector a = (a1, ..., an) we denote the mean normalized vector

a′ =

(
a1 −

1
n

n∑
i=1

ai, ..., an −
1
n

n∑
i=1

ai

)
(1)

Let us denote the mean normalized angle between two vectors a and b in radians by θa′b′ where 0 ≤ θa′b′ ≤ π.
Note that we are defining the angle between two vectors to be the minimum angle between the vectors,
thus the angle will never be greater than π. We note that in general gm(a, b) = 1− ρ(a, b) = 1− cos(θa′b′)
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since

ρ(a, b) =

∑n
i=1

((
ai − 1

n

∑n
i=1 ai

) (
bi − 1

n

∑n
i=1 bi

))
(∑n

i=1

(
ai − 1

n

∑n
i=1 ai

)2
) 1

2
(∑n

i=1

(
bi − 1

n

∑n
i=1 bi

)2
) 1

2

(2)

=
a′ · b′

||a′|| × ||b′||
(3)

= cos(θa′,b′) (4)

We first consider the case that gm(x, y) + gm(y, z) = 0.

gm(x, y) + gm(y, z) = 0 (5)
⇒ gm(x, y) = 0 ∧ gm(y, z) = 0 (6)
⇒ cos(θx′y′) = 1 ∧ cos(θy′z′) = 1 (7)
⇒ θx′y′ = 0 ∧ θy′z′ = 0 (8)
⇒ θx′z′ = 0 (9)
⇒ gm(x′, z′) = 0 (10)

and thus the lemma is satisfied for this case.

We will now consider the case that gm(x′, y′) + gm(y′, z′) 6= 0 and show the function

gm(x, z)
gm(x, y) + gm(y, z)

=
1− cos(θx′z′)

2− cos(θx′y′)− cos(θy′z′)
(11)

is bounded by 2. We note that cosine is a monotone decreasing function on the interval [0, π] and thus for
any fixed values of θx′y′ and θy′z′ Equation (11) will be greatest when the angle between x′ and z′ is the
largest possible. For any fixed values of θx′,y′ and θy′,z′ , θx′,z′ can be no greater than:

min(θx′y′ + θy′z′ , 2π − (θx′y′ + θy′z′)) (12)

If we fix the angle between x′ and z′ we observe that since the numerator is always non-negative and
the denominator is always positive, that Equation (11) will reach its maximum when the denominator is
minimized or equivalently when cos(θx′y′) + cos(θy′z′) is maximized.
Thus to bound Equation (11) we need to consider the two cases:
Case 1: The angle between x′ and z′ is (θx′y′ + θy′z′)
We thus have the upper bound on Equation (11) of:

1− cos(θx′y′ + θy′z′)
2− cos(θx′y′)− cos(θy′z′)

(13)

For any fixed value of C = θx′y′ + θy′z′ the ratio will thus be maximized when cos(θx′y′) + cos(C − θx′y′) is
maximized. We consider

∂

∂θx′y′
(cos(θx′y′) + cos(C − θx′y′)) = − sin(θx′y′) + sin(C − θx′y′) (14)

and observe that it is equal to 0 if and only if sin(θx′y′) = sin(C− θx′y′) which is true only if either of these
equations hold:

θx′y′ = π − (C − θx′y′) + 2π × k (15)
θx′y′ = C − θx′y′ + 2π × k (16)
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where k is an integer. The first equation implies C = π(1 + 2k) which is true for C ∈ [0, π] only if k = 0
and C = π, in which case Equation (13) is:

1− cos(π)
2− cos(θx′y′)− cos(π − θx′y′)

=
2
2

= 1 (17)

Assuming C 6= π a root otherwise occurs only if θx′y′ = C
2 + πk and θy′z′ = C

2 − πk.
For θx′y′ and θy′z′ to both be in [0, π] it must be the case that k = 0 and thus θx′y′ = θy′z′ = C

2 . We note
that we have a maximum when θx′y′ = θy′z′ = C

2 since

∂2

∂θ2
x′y′

(cos(θx′y′) + cos(C − θx′y′)) (18)

=
∂

∂θx′y′
(− sin(θx′y′) + sin(C − θx′y′)) (19)

= − cos(
C

2
)− cos(C − C

2
) (20)

= −2 cos(
C

2
) < 0 (21)

The last inequality follows from the fact that C
2 must be between [0, π

2 ) and thus cos(C
2 ) > 0.

If θx′y′ = θy′z′ the maximum value of Equation (13) is thus the same as the maximum value of

1− cos(2θx′y′)
2− 2 cos(θx′y′)

(22)

At θx′y′ = π the value of Equation (22) is 0. At the other end of the [0, π] interval we have a maximum of
2 by applying l’Hopital’s rule twice:

lim
θx′y′→0

1− cos(2θx′y′)
2− 2 cos(θx′y′)

= lim
θx′y′→0

sin(2θx′y′)
sin(θx′y′)

= lim
θx′y′→0

2 cos(2θx′y′)
cos(θx′y′)

= 2 (23)

Equation (22) does not reach a local maximum on (0, π) since

∂

∂θx′y′

1− cos(2θx′y′)
2− 2 cos(θx′y′)

(24)

=
2 sin(2θx′y′)(2− 2 cos(θx′y′))− 2(1− cos(2θx′y′)) sin(θx′y′)

(2− 2 cos(θx′y′))2
(25)

=
2 sin(θx′y′) cos(θx′y′)(2− 2 cos(θx′y′))− (1− cos(2θx′y′)) sin(θx′y′)

2(1− cos(θx′y′))2
(26)

which equals 0, if and only if the numerator equals 0. The numerator is equivalent to

= sin(θx′y′)[2 cos(θx′y′)(2− 2 cos(θx′y′))− (1− cos(2θx′y′))] (27)
= sin(θx′y′)[4 cos(θx′y′)− 4 cos(θx′y′)2 − 1 + cos(2θx′y′)] (28)
= sin(θx′y′)[4 cos(θx′y′)− 4 cos(θx′y′)2 − 1 + cos(θx′y′)2 − sin(θx′y′)2] (29)
= −2 sin(θx′y′)[cos(θx′y′)2 − 2 cos(θx′y′) + 1] (30)
= −2 sin(θx′y′)(cos(θx′y′)− 1)2 (31)
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and thus does not have any roots on (0, π)
We finally note that if C = 0 Equation (11) is 0.

Case 2 The angle between x′ and z′ is (2π − θx′y′ − θy′z′)
We thus have the upper bound on Equation (11) of:

1− cos(2π − θx′y′ − θy′z′)
2− cos(θx′y′)− cos(θy′z′)

(32)

Fix C = (2π − θx′y′ − θy′z′) and note that θy′z′ = 2π − C − θx′y′ .
The ratio will thus be maximized when cos(θx′y′) + cos(2π − C − θx′y′) is maximized. We consider

∂

∂θx′y′
(cos(θx′y′) + cos(2π − C − θx′y′)) (33)

=
∂

∂θx′y′
(cos(θx′y′) + cos(C + θx′y′)) (34)

= − sin(θx′y′)− sin(C + θx′y′) (35)

and observe that it is equal to 0 if and only if sin(θx′y′) = sin(−C − θx′y′) which is true only if either of
these equations hold

θx′y′ = π − (−C − θx′y′) + 2π × k (36)
θx′y′ = −C − θx′y′ + 2π × k (37)

where k is an integer. The first of the two equations is satisfied only if C = (−2k − 1)π which occurs for
C ∈ [0, π] only if C = π. If C = π, our upper bound on Equation 11 is

1− cos(π)
2− cos(θx′y′)− cos(π − θx′y′)

=
2
2

= 1 (38)

Suppose C 6= π, we also have a root if θx′y′ = π × k − C
2 , to have θx′y′ ∈ [0, π] it must be the case that

θx′y′ = π − C
2 and then θy′z′ = 2π − θx′y′ − C = 2π − (π − C

2 ) − C = π − C
2 . We note that this root is a

local minimum since

∂2

∂θ2
x′y′

(cos(θx′y′) + cos(2π − C − θx′y′)) (39)

=
∂

∂θx′y′
(− sin(θx′y′)− sin(C + θx′y′)) (40)

= − cos(π − C

2
)− cos(C + (π − C

2
)) (41)

= − cos(π − C

2
)− cos(π +

C

2
) (42)

= 2 cos(
C

2
) > 0 (43)

The last inequality follows from C being between [0, π) and thus cos(C
2 ) > 0.

We also observe in this case also that if C = 0 Equation (11) is 0.
Thus in this case Equation (11) is bounded by 1, and overall Equation (11) is bounded by 2.
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We further remark that the proof actually gave us a stronger bound on gm(x, z), given the values of
gm(x, y) and gm(y, z), we have that

g(x, z) ≤ 1− cos(arccos(1− gm(x, y)) + arccos(1− gm(y, z))) ≤ 2× (g(x, y) + g(y, z)) (44)

Also in Section 2 we remarked that since gm does not satisfy the triangle inequality Theorem 2.1 is not
applicable, however we could still guarantee that the solution of the approximation algorithm presented in
Figure 2 was no worse than 1

4 optimal. We will prove next the result that if a distance function d satisfies
all the properties of a metric, except only satisfies a generalized form of the triangle inequality, in which
d(a, c) ≤ Y × (d(a, b) + d(b, c)) for a fixed Y ≥ 1 that the approximation algorithm gives a solution that is
no worse than 1

2Y of optimal. The proof is a simple generalization of Theorem 2.1.

Theorem 0.1 Let our distance function d satisfy a generalized triangle inequality d(a, c) ≤ Y × (d(a, b) +
d(b, c)) for a fixed Y ≥ 1 and otherwise all properties of a distance metric. Let R′ ⊂ P be the set of profiles
that maximizes

maxR⊂P,|R|=mminp1,p2∈Rd(p1, p2) (45)

Let R ⊂ P be the set of profiles returned by the approximation algorithm in Figure 2, then b(R) ≥ b(R′)
2Y .

Proof : Set b′ = b(R′) (b′ is the optimal distance) and b = b(R) (b is the distance returned by our
algorithm). Let {r′1, r′2, ..., r′m−1, r

′
m} be the profiles in R′ and {r1, r2, ..., rm−1, rm} be the profiles in R.

Note that for any profile p ∈ P there exists a profile rj ∈ R s.t. d(p, rj) ≤ b. If p is one of the profiles in R
then this is trivially satisfied. If p /∈ R then there must be a profile in R with a distance at most b from p
otherwise the greedy algorithm would have selected p from R instead of rm (we know that the minimum
distance b was achieved by the last profile rm). For each profile in R′ we can find its closest profile in R.
Next, we consider two possible cases, which are also the only possible cases:
Case 1 - Two different profiles, r′i, r

′
j ∈ R′, are closest to the same profile rh ∈ R:

We note that d(r′i, rh) ≤ b and d(r′j , rh) ≤ b as mentioned above. Using the triangle inequality we get

2b ≥ d(r′i, rh) + d(r′j , rh) ≥ d(r′
i,r

′
t)

Y ≥ b′

Y and thus b(R) ≥ b(R′)
2Y .

Case 2 - No two elements in R′ are closest to the same element in R:
WLOG let r′m be the element which is closest to rm (the last profile added by our algorithm). We next
observe that there must exists i 6= m such that d(r′m, ri) ≤ b. This is so because if such a profile ri did not
exist then the greedy algorithm would have selected r′m instead of rm. Let r′i be the profile from R′ closest
to ri, then d(r′i, ri) ≤ b since all profiles are within b of a profile selected by the greedy algorithm. We thus
have 2b ≥ d(r′m, ri) + d(r′i, ri) ≥

d(r′
i,r

′
m)

Y ≥ b′

Y and thus b(R) ≥ b(R′)
2Y .

We further note that assuming NP 6= P no polynomial approximation algorithm can guarantee a result
better than b′

2Y in all cases. The proof is a simple modification of the proof of Lemma 0.1:

Lemma 0.2 For a set of elements V , a set R ⊂ V , and a distance function d that satisfies a generalized
triangle inequality, d(a, c) ≤ Y × (d(a, b) + d(b, c)) for a fixed Y ≥ 1 and ∀a, b, c ∈ V , and otherwise
all other properties of a distance metric (∀a, b ∈ V d(a, b) ≥ 0, d(a, a) = 0, and d(a, b) = d(b, a)) let
b(R) = minv1,v2∈Rd(v1, v2). Set b′ = maxR⊂V,|R|=mb(R). Then finding a set R such that |R| = m and
b(R) = b′ is NP-Hard. Furthermore finding a set R such that |R| = m and b(R) > b′

2Y is also NP-Hard.
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Proof : We first note that given an undirected graph (V,E) the problem of finding an independent set of
size m, that is a subset of m vertices such that there is no edge between any two vertices in the subset, is
NP-Hard [1]. We will define the distance d to be:

d(u, v) =


0 if(u = v)
1 if(u 6= v) ∧ ((u, v) ∈ E)
2Y if(u 6= v) ∧ ((u, v) /∈ E)

Note that all requirements of the distance function stated in the lemma are trivially satisfied except
the generalized triangle inequality. To verify the generalized triangle inequality also holds note that for
any two elements a, c the possible values of d(a, c) are 0, 1, and 2Y . If d(a, c) = 0 then we must have
d(a, b) = d(b, c) = 0. If d(a, c) = 1 or d(a, c) = 2Y then we must have d(a, b) ≥ 1 and d(b, c) ≥ 1. In all
cases d(a, c) ≤ Y (d(a, b)+ d(b, c)) and thus the generalized triangle inequality is satisfied. We observe that
if R is a subset of V of size m such that b(R) = b′ and b(R) > 1, then the set of vertices V which are also
in R must form an independent set of size m. Furthermore we observe that if b(R) ≤ 1, then there is no
independent set in V of size m. We have thus reduced independent set to being an instance of our problem
hence finding an optimal solution to our problem is NP-Hard. Furthermore if we could find a subset R of
V of size m for which it is guaranteed that b(R) > b′

2Y in polynomial time, then by the same reduction we
could solve independent set in polynomial time, and thus the problem of finding an approximation which
guarantees b(R) > b′

2Y in polynomial time is NP-Hard.
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Note: This file was updated August 2007. Lemma 0.1 and Lemma 0.2 previously were
written stating V was a set of vectors, in this corrected version the Lemma assumes a
more general setting. Proof of Lemma 0.1 further clarified August 2008.
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