Scalable Inference in Latent Variable Models

Amr Ahmed, Mohamed Aly, Joseph Gonzalez,*Shravan Narayanamurthy, Alexander Smola
Yahoo! Research, Santa Clara, CA, USA .
{amahmed, aly, jegonzal, shravanm, smola}@yahoo-inc.com

ABSTRACT

Latent variable techniques are pivotal in tasks ranging from
predicting user click patterns and targeting ads to organiz-
ing the news and managing user generated content. La-
tent variable techniques like topic modeling, clustering, and
subspace estimation provide substantial insight into the la-
tent structure of complex data with little or no external
guidance making them ideal for reasoning about large-scale,
rapidly evolving datasets. Unfortunately, due to the data
dependencies and global state introduced by latent variables
and the iterative nature of latent variable inference, latent-
variable techniques are often prohibitively expensive to ap-
ply to large-scale, streaming datasets.

In this paper we present a scalable parallel framework
for efficient inference in latent variable models over stream-
ing web-scale data. Our framework addresses three key
challenges: 1) synchronizing the global state which includes
global latent variables (e.g., cluster centers and dictionaries);
2) efficiently storing and retrieving the large local state which
includes the data-points and their corresponding latent vari-
ables (e.g., cluster membership); and 3) sequentially incor-
porating streaming data (e.g., the news). We address these
challenges by introducing: 1) a novel delta-based aggrega-
tion system with a bandwidth-efficient communication pro-
tocol; 2) schedule-aware out-of-core storage; and 3) approxi-
mate forward sampling to rapidly incorporate new data. We
demonstrate state-of-the-art performance of our framework
by easily tackling datasets two orders of magnitude larger
than those addressed by the current state-of-the-art. Fur-
thermore, we provide an optimized and easily customizable
open-source implementation of the framework *.

Categories and Subject Descriptors
G.3 [Probability And Statistics|: Statistical Computing

>kViSiting on internship from CMU, Department of Machine
Learning, Pittsburgh PA; jegonzal@cs.cmu.edu
! Available at https://github.com/shravanmn/Yahoo_LDA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSDM’12, February 8-12, 2012, Seattle, Washington, USA.

Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

123

General Terms

Algorithms, Experimentation, Performance

Keywords

Inference, Graphical Models, Large-scale Systems, Latent
Models.

1. INTRODUCTION

In many cases, we are interested in reasoning about the
underlying latent causes that give rise to the data we ob-
serve. For instance, when dealing with users we may want to
elicit the underlying intents and interests that govern their
activity and friendship patterns. Alternatively, we might
want to discover the underlying topics of discussions on var-
ious pages across the web. More generally we may want
to assign meaning to linked and interacting objects such as
webpages, named entities, users, and their behavior.

Latent variable models have become an indispensable tool
for reasoning about the latent causes that give rise to data in
tasks ranging from text modeling [18, 3, 6] to bioinformatics
[8, 21]. The popularity of latent variable models stems from
their ability to easily encode rich structured priors and then
infer latent properties of the data without requiring access
to costly labels or editorial feedback.

Latent variable models are constructed by introducing un-
observed (latent) variables which help explain the observed
data and then coupling these latent variables (often by intro-
ducing additional latent variables) to capture the underlying
problem structure. For example, in the mixture of Gaussians
model there are two sets of latent variables. The first denotes
the cluster membership of each data point while the second
describes the shape and position of the Gaussian clusters
and introduces dependencies between the data-points.

Latent variable inference is the process of estimating the
most likely assignment (or posterior distribution) of all the
latent variables. In the context of the mixture of Gaussians
model, latent variable inference is the process of estimating
the latent membership of each data-point as well as the cen-
ter and shape of each cluster. Inference in latent variable
models is typically computationally expensive, often requir-
ing the solution to hard combinatorial search problems. As
a consequence approximate inference algorithms are typi-
cally employed. Unfortunately, even approximate inference
algorithms can be costly, requiring iterative transformations
of the latent variable assignments (i.e., transforming large
amounts of program state).

In most web-scale settings, data is not collected once and
then processed offline; instead, data arrives continuously and

must be processed online and in real-time. The online set-
ting presents unique challenges for latent variable models.
As new data arrives new latent variables are introduced ex-
tending the model and requiring both the ability to quickly
infer the values (or distributions) of the newly introduced
latent variables as well as their effect on the existing model.

As a result of the computational cost of inference, the
need to store and manage a massive amount of model state,
and the added complexity of online data-processing, latent
variable models are often abandoned in web-scale settings.
However, [18] demonstrated that by exploiting massive scale
parallelism through careful system engineering and the ap-
propriate statistical approximations it is possible to apply
latent variable techniques to web-scale problems.

In this paper we generalize the work of [18] by identify-
ing the three principal challenges (Section 2) that must be
addressed when applying any latent variable technique to
web-scale problems. We then provide a general framework
(Section 3) for addressing these challenges in a wide range of
latent-variable models. Our general framework substantially
extends [18] by introducing:

e A schedule aware disk-based cache for local (per-data)
latent variables.

e A significantly improved general communications struc-
ture for asynchronously updating global variables.

e An efficient online algorithm for latent variable infer-
ence in streaming data.

e A new mechanism for fault-tolerance and fast recovery
for large distributed global state.

We apply our framework (Section 4) to web-scale latent vari-
able problems that are several order of magnitude larger
than the largest problems previously tackled by [18]. To the
best of our knowledge these are the largest to date reported
estimation results for latent variable models.

Additionally, we provide an open-source implementation
of our framework at https://github.com/shravanmn/Yahoo_
LDA. Our code base is easily customizable, allowing re-
searchers and engineers to easily encode new graphicals model
and apply them on web-scale data sets.

2. LATENT VARIABLE MODELS

Graphical models provide a convenient language for de-
scribing latent variable models and so we will introduce
some basic graphical model terminology. Graphical models
encode probability distributions over large sets of random
variables as a graph in which vertices correspond to random
variables, both observed and unobserved, and edges encode
dependencies. For simplicity we focus on directed graphical
models (i.e., Bayesian networks), however the techniques we
present can be easily applied to undirected models.

We can represent the mixture of Gaussians latent variable
model as the directed graphical model:

Global Local
(D E)
j € [k] i € [m]

for m data points x;. For each data point we introduce
an unobserved latent variable z;. In addition we introduce
latent variables p; corresponding to the k cluster centers.

We denote observed variables with shaded circles and unob-
served (latent) variables with clear circles.

The boxes, referred to as plates, describe repeated (sets of)
variables. For example, while there is only one circle p; the
plate indicates that there are in fact k variables {1, ..., ux}
all of which are connected to each of the {z1,...,zm}. Note
that each z; is connected only to the corresponding x;.

We have labeled the plates Global and Local to denote
two general classes of latent variables. The global latent
variables are those latent variables that are not directly asso-
ciated with the data. The number of global latent variables
is fixed or slowly increasing with the size of the dataset. Al-
ternatively, the local latent variables are directly associated
with each new record and grow directly with the dataset.
There are often billions of local latent variables in web-scale
problems.

The joint probability distribution for the mixture of Gaus-
sian latent variable model is then given by:

P({z:i}2, {=}l,, {/’l‘j}‘l;:l) =
k m
(H P(Mj)) HP(Zz‘)P(% |26, i }5—)

where P(u;) is the prior for each cluster center, P(z;) is
the latent cluster membership prior for each data-point, and
P(x; | zi, {15 }§:1) is the probability of each data point given
its cluster membership and the cluster centers.

Inference in the mixture of Gaussian model estimates the
posterior conditional P({Zi};’;l,{uj}?:l | {z:}~,) (or in
many cases just the maximizing assignments). One of the
most widely used interference technique is Gibbs sampling
introduced by[9]. The Gibbs sampler iterates over the sets
of latent variables, drawing one variable, or a small tractable
subset of variables, at a time while keeping the remainder
fixed. In the case of a Gaussian mixture model we would
alternate between sampling:

{Nj}?:1 ~ P({Nj}?:1 | {zitils {z:}i2y) (1)
{z)7 ~ Pz | oy {2)) ()

This process is iterated a significant number of times (de-
pending on the complexity of the statistical model) until a
sample that is approximately independent of the initial con-
ditions can be drawn. Due to its popularity, performance,
and general applicability we will focus on Gibbs sampling
in this paper. However, many other approximate inference
algorithm share similar computational patterns and would
likely also benefit from the techniques discussed here.

In many cases the convergence of the Gibbs sampler can
be greatly accelerated by analytically eliminating (collaps-
ing) a subset of the latent variables. For example, if the
normal inverse Wishart prior is placed on the Gaussian clus-
ters, then we can analytically eliminate {; }le to construct
the conditional P(z; | z—¢, {x:};~,) which couples each latent
variable z; with all the remaining latent variables z_;. It is
important to note that in most cases each variable z; only
depends on the remaining variable through sufficient statis-
tics (e.g., the mean and variances). In this paper we will
focus on the so called collapsed Gibbs sampler.

We now describe the three key challenges: 1) synchroniz-
ing the global state (e.g., {u; }?:1 or the sufficient statistics
in the collapsed model); 2) efficiently storing and retrieving

m

the large local state (e.g., {z:};~,), and 3) sequentially in-
corporating streaming data (e.g., increasing (Tm+1, Zm+1))-

2.1 Managing A Massive Local State

As discussed earlier the local state consists of the actual
data and any latent variables directly associated with each
data record (e.g., the data-points x; and cluster member-
ships z;). In web-scale applications the local state can be
very large. For example, if we apply the popular LDA la-
tent variable model to a web-scale text corpus with billions
of documents we can end up facing in the orders of 10! to
10" local variables z; (one for each unique word on each
web-page) and corresponding textual data z;. It is clearly
infeasible to retain this amount of data in memory even on
a very large cluster.

To make matters worse we will need to repeatedly read and
modify the local latent variables z; as we run our collapsed
Gibbs sampler. At the same time our system must be robust
to node failure which could lead to a partial loss of the local
state z;.

2.2 Synchronizing Global State

While the local state can be naturally partitioned over
a large collection of distributed machines, the global state
(e.g., the latent cluster center {u; }5:1 or the sufficient statis-
tics in the collapsed modle) both depends on the assignments
to the local variables. For example, in the mixture of Gaus-
sians model, in order to estimate the value of each p; we
need to know the location of all the datapoints x; for which
z; = j (i.e., the points assigned to cluster 7). More generally,
we will need to be able to estimate sufficient statistics over
the entire cluster even as the values of the latent variables
are changing and potentially new data is being introduced.

Even worse, as the Gibbs sampler redraws each local la-
tent variable it will need access to the latest global variables
(or the latests global sufficient statistics in the case of the
collapsed Gibbs sampler). After each local variable is up-
dated the global sufficient statistics and all other nodes on
the cluster will need to be notified of the resulting change
in the global statistics.

An effective solution to address these problem is to make
local copies of the global variable and to keep these copies
synchronized. Such a strategy is pursued e.g. by [18, 13, 17]
using both synchronous and asynchronous communication
patterns for reconciling local copies.

Matters are rather more complex whenever the global
state is large. In this case aggressive synchronization may
not be easily possible. In some cases, the global state may
even be too large to be locally cached on a single machine.
We will discuss both issues in the next section and show
how a ’star of stars’ communication architecture, paired with
consistent hashing [12], and effective message ordering can
be used to ensure good synchronization.

A final problem arises from the fact that modern micro-
processors have many cores but the memory footprint of
the models makes it impossible to store copies for each core
separately. This requires that several cores access a shared
state simultaneously. While read access is not a problem, si-
multaneous write access can lead to race conditions and cor-
respondingly to unpredictable (and possibly wrong) state of
the estimator. One means of dealing with this situation is to
allow for diverging states and to decouple sampling from the

125

application of the changes, both locally within a computer
and between computers.

2.3 Online Data with Temporal Structure

A third problem arises when there is a significant sequen-
tial order inherent in the data which couples a lengthy chain
of random variables. This problem is exacerbated whenever
we wish to operate the system in a realtime setting where
data is received continuously and needs to be annotated.

Example 1 (Latent Markov Chain) Assume that a la-
tent state (e.g. the distribution of words over topics, the in-
terests of a user) exists that allows us to annotate a user’s
actions efficiently. Moreover assume that this latent change
1s allowed to change (smoothly) over time. Such a model can

be represented as follows:

i€ [my]
t e [T]

Here we observe b whereas a is latent and can only be inferred
indirectly by inverting the ’emissions’ model.

Techniques for dealing with such problems can be found
in the use Sequential Monte Carlo estimation and in the
approximation of using only a single particle whenever the
state space is too large to perform proper particle filtering.

3. GENERAL FRAMEWORK

In the following we discuss a set of general techniques
for obtaining efficient parallel algorithms for inference in
web-scale latent variable models. These techniques address
the core challenges presented in the previous section. Most
of the discussion will be devoted to the synchronization of
global variables and the associated systems aspects.

3.1 Global variables on a single machine

We begin by discussing the role of approximation in ex-
posing parallelsim in collapsed Gibbs sampling. Recall that
the uncollapsed Gibbs sampler typically alternates between
sampling global (Eq. (1)) and local (Eq. (2)) latent variables.
Because all the local variables are typically conditionally in-
dependent given the global variables (and vice versa), we can
construct the following parallelization:

1: Fix all {z:}"

=1
: for all j € [k] parallel do

2

8 Sample iy ~ Py | {=}7, i},
4: end for .

5: Fix {p;};_,-
6: for all i € [m] parallel do

7: Sample z; ~ P(zi | {5 Yo, {m}i)).

8: end for

While this approach is both statistically sound and exposes
considerable parallelism, especially when m and k are large,
it does not leverage the greatly accelerated mixing [11] of
the collapsed Gibbs sampler. The problem is that in this
case the random variables {z}]-, are no longer indepen-
dent and we obtain the following sequential sampling algo-
rithm:

1: for all i € [m] do

2 Sample z; ~ P(zi | z—i, {zi}2 ;)

3: end forv
The above algorithm unfortunately is not amenable to multi-
core parallelization since only one variable may be changed
at a time. However, if we are willing to admit a slight ap-
proximation we may parallelize this step in analogy to [15,
18, 5], simply by executing it for different z; on several cores
simultaneously:

1: Allocate a task pool T' of m tasks

2: while T not empty do

3: if core available then

4: Remove i from T and draw:
zi ~ P2 | 24, {zi}l,)
5: Update sufficient statistics for {z;},~,.
6: end if
7: end while

Clearly the above is an approximation since z; is drawn us-
ing partially stale sufficient statistics. However, whenever
we have millions of z;, the error in using a slightly stale
distribution is negligible: the number of cores is small rel-
ative to the number of random variables. The only locking
that occurs in this context is that writes to the sufficient
statistics (as executed by an update thread) must not oc-
cur simultaneously as reads (as executed by the sampling
threads). This, however, is much more benign since all but
one thread only require read locks.

3.2 Global variables between machines

In principle, the same design decisions that guided the sin-
gle core parallelism are also applicable to systems of many
machines. However, what is a cheap in-memory operation
for a multicore system becomes an excessively expensive op-
eration when carried out across the network. Instead, we
borrow an idea from dual decomposition methods [4] — we
make local copies of the global variables and constrain the
local copies to be consistent. The graph below explains the
basic idea:

Star Model Star Model Split Over 3 Machines

AN

A4

O

Machine 1 Machine 2 Machine 3

On the left we have a dependency structure with a shared
global variable. On the right we inserted local copies (the
clear vertices inside each box) per machine (the box) which
are then synchronized with the original global variable. Note
that this approach applies hierarchically whenever we face
additional communications boundaries, e.g. when keeping
sets of machines on different switches (or racks) synchro-
nized.

We can actually express this transformed model in the
context of a modified version of the original graphical model:

126

Processor Local State

Global Replica
j € [k] j € [k] i € [m]
L € [p]

Here pj;; denotes the local copy of the global variable ;.
Note that our approach is quite different from [17] despite
the similar structure. The key difference is that [17] assume
that there exists a hierarchical generative process which led
to divergent copies of the same random variable between dif-
ferent machines. In other words, they assume that the par-
titioning between machines is meaningful. Quite contrary
to that, we simply assume that the variables may go out of
sync due to insufficiently frequent communication between
the machines. In other words, after complete synchroniza-
tion we expect equality rather than just similarity between
the global variable and its per-machine copies. This is made
explicit by the double arrow connecting p; and f5;. To make
the above concept practical we need to specify a) detailed
update equations, b) a effective means of distributing global
variables across many machines and c) a schedule to avoid
communications overhead.

3.3 Asynchronous Delta Aggregation

The message passing system described by [18] suffers from
high latency as a result of one sided communication through
memcached (a distributed key-value store). In particular
rather than using server-side transactional consistency, each
node follows a remote lock-request-update-send-unlock pro-
tocol for each transaction. This introduces considerable la-
tency since each of the lock, request, send, and unlock opera-
tions requires round-trip communication between the updat-
ing node and the hosting node. Furthermore, since many dis-
tributed key-value stores lack server-side processing, these
problems cannot be addressed within the framework of [18]
making it especially unsuitable for efficient synchronization
of global state.

In addition the protocol described by [18] updates the
global value on the client machine and then pushes the new
global value back to the hosting machine. This leads to the
need to potentially push more data than was changed in the
update. Ideally, we would like to push only revisions to the
global value (i.e., changes in components of the mean vec-
tor rather than the entire mean vector). With appropriate
server-side processing we would like to be able to aggregate
client side revisions before modifying the server-state.

We now present a substantially improved protocol which
is over an order of magnitude faster in our experiments. Our
new protocol applies whenever the global data p; is an ele-
ment of an algebraic ring. Specifically we require that pu; is
closed under ‘addition’ and that an ‘inverse’ element exists.
These conditions are satisfied for common operations like ad-
dition/subtraction in R (4, R) or for multiplication/division
in R (-,R™) allowing us to easily express the standard mul-
tiplicative or additive updates to s global sufficient statistic
or latent variable estimates.

The algorithm below summarizes how the algebraic ring
can be used to collect a change (¢) from a client, incorporate
the change into the master version on the server node, and
then update the clients to the change in the master value.
We denote by p; the master value of the global variable.
Moreover, pj;; denotes the local copy of p; on machine [.

For the moment simply assume that there exists some eas-
ily identifiable server containing pj;. Then the (+,R) ring
yields:

: Initialization

: for all j € [k],! € [p] do

R

sji1 < FALSE (sent bit)

: end for

: ClientSend(!)
: for all j do
Acquire lock for sj;
if Sj1 = FALSE then
Acquire lock for pj;
Compute local change § «— pj; —
Release lock for pj;
Server(j,1,9)
sji + TRUE (we sent a message)
,u?}d — ,u?}d + 0 (locally commit changes)
end if
Release lock for s;;
end for

old

1
2
3
4
5
6
7
8
9:
10:
11 2211
12

13

14

15:
16:
17:
18:

19: ClientReceive(j, 1, u
20: Acquire lock for s;;
21: sj; + FALSE (we received data)

22: Set write lock for bj;

23: pji 4+ pgr 4+ p" — pg© (get global changes)
24: u?}d «— u™*Y (we are up to date)

25: Release write lock for pj; and sj;

26: Server(j,1,d) (buffered input)

27 pj < p; +6

28: ClientReceive(s, 1, ;)

Initially, the local copies and global state are set to the same
values. Each client [cycles through its set of local copies and
determines how much has changed locally since the previous
communication round. It then transmits this information to
a server and stores a backup of the local estimate. A sent
bit s; ensures that no more than one message is ‘in flight’
from client to server. Note that the call to the server is non
blocking, that is, we need not wait for the server to process
the message. This fact is vital in designing synchronization
algorithms which are bandwidth limited rather than latency
limited (for comparison, [18] requires 4 TCP/IP roundtrips
per variable).

The server incorporates the changes into its global state.
This can be done efficiently since it only receives ¢ containing
the change in state. Finally, it triggers a return message
to the client. To see why the updates make sense assume
for a moment that nothing changed after the client sent its
changes: in this case we have u;’}d = pj;. Moreover, p;
will contain all changes that locally occurred on pj; and all
changes from other copies. Hence the update ,u?%d — pev
is valid. The update of y;; ensures that any local changes
that might have occurred in the meantime are recorded and
will be transmitted at the next step.

This approach dramatically reduces latency since the post
to the server is non-blocking and the client is able to proceed
processing using the freshly updated local copy. When the
server completes the transaction it captures any additional
changes made by other machines and then asynchronously
notifies the other nodes in the cluster again with a non-
blocking call. Because transactions are additive, they can

new)

old

127

be merged at bottleneckes in the network (e.g., switches)
to reduce the necessary bandwidth between racks. Finally,
for very large p; for which only small parts are changing,
we need only send ‘diffs’ further reducing the bandwidth
requirements.

3.4 Distribution and Scheduling

Now that we established how local copies of a global vari-
able are kept synchronized we need to establish how to dis-
tribute the global copies over several servers: given p clients
and k global variables the above algorithms creates O(kp)
traffic. If we select p servers (conveniently the same ma-
chines as the clients) we arrive at O(k) traffic per server,
provided that we are able to distribute the global variables
uniformly over all servers. The latter is achieved by consis-
tent hashing [12], i.e. by selecting server

s(j) = argmin hash(s,j). (3)
se{l,....p}

The advantage of (3) is that it does not require any addi-
tional storage to record the mapping of variables to servers.
In expectation each server stores £ global variables. Since
the assignment is randomized we can apply Chernoff bounds
to show that with probability at least 1 — « no machine re-
ceives more than k/p++/k (logp — logy). This follows from
bounding the number of variables per server and by taking
the union bound over p servers.

This strategy works well for up to p = 100 machines. At
this point a secondary inefficiency becomes significant: Since
each client is communicating with each server, it means that
the amount of data exchanged between any pair of machines
is O(k/p). This means that the data rate between two ma-
chines decreases with O(p~!') and that moreover the num-
ber of open network connections per machine increases with
O(p). Neither is good if we want to keep the communi-
cations overhead at a minimum (e.g. minimum packet size,
collision avoidance, and sockets all contribute to a decreased
efficiency as the rate decreases). In fact, for 1000 machines
this overhead is quite substantial, hence the naive consistent
hashing protocol requires an extension.

The key insight for improvement is that the synchroniza-
tion occurs repeatedly and that we know for each machine
which messages require sending beforehand. We therefore
arrange the transmission of the messages in the synchroniza-
tion algorithm of Section 3.3 such that we only communicate
with one machine at a time. Consequently each client needs
to keep only one connection to a server open at a time and
we can transmit all data to be sent to this particular server
jointly.

Unfortunately, this approach also has a subtle flaw: while
we reduced the number of connections from p? to p, we ob-
tain a rather nonuniform distribution in terms of the num-
ber of connections that each server has. For instance, if each
client opens connections in a (different) random order, it fol-
lows that the open connections at any time are given by p
draws with replacement from a set of p alternatives. Hence
the probability of not receiving any data at all is given by
(1—p~')? ~ e~ ! per server. This is clearly inefficient — the
problem is that we opened connections to too few servers.
The solution is to communicate with r < p servers simulta-
neously while selecting them in a random order.

1: RandomOrder(l, p)
2: for i =1 to p do

3. fli] = crypt(i,range = p, key = 1)
4: end for
5: return f

The above algorithm achieves precisely that by means of
cryptography [14], e.g. via Feistel ciphers. The communi-
cation schedule for synchronization then works as follows:

1: ClientSend(l,p)

2: Generate s(j) for all j (compute machine keys)

3: Sort j into sets Sy, with s(j) =m if j € Sp,.

4: f = RandomOrder(l,p)

5: for i =1 to p step r do

6: Variable pool S = ULt Sy,

7. for allw € S do

8 Perform communication with server as before.
9 end for

10: end for

The main modification to the plain communication algo-
rithm is that we now synchronize the global variables in a
specific prescribed order which ensures that at any given
time we only open r random connections per machine. This
ensures that we have fewer idle servers.

Lemma 1 The efficiency (as measured by the expected pro-
portion of bandwidth used) of communicating with r ma-
chines at a time is bounded in the limit of large p by:

r il .
1—e ;{1 T] i! <Eff<l-c¢

ProoOF. The data flow is represented by a bipartite graph
between p clients and p servers, where each client has r ran-
dom connections to the set of servers. Randomness is as-
sured by the random permutation over the order in which
a given client connects to the servers, hence at any fixed
instant in time the connectivity structure of each vertex is
drawn iid from a uniform distribution over all servers. For
any given server v the pgobability of not receiving any in-
coming edge is (1 - %)p — e~ ". If each of the connected
vertices receives data at full rate, this amounts to an effi-
ciency of 1 — e™". The maximally efficient communication
order can be obtained by solving the optimal flow problem.

Now consider the model where the efficiency of the server
is bounded by min(1,4/r). That is, the flow is linear in
the number of incoming connections but never larger than
the maximum flow. Using a Poisson approximation for the
probability of receiving ¢ incoming connections we see that
P(i) = e~ "r'/i! with expected number of incoming connec-
tions r. We can then compute the expected efficiency:

> i = AN
Eff > inll,-)P>G) = in|1,- T
_me(’7") (1) me(,T)e A
=0 7=0
_r " gt . =7
=e Z;ﬁ“ > i
i=0 i=rt1
_r " gt _r U
=e "y ol Y
i=0 i=0
u i\ r
—1-¢" -4 4
=3 (17) % g

128

Plugging some numbers into the bounds obtained above
shows that a small number of connections suffices to yield
satisfactory efficiency:

r | 1 2 3 4 5

lower bound | 0.63 0.73 0.78 0.80 0.82
upper bound | 0.63 0.86 0.95 0.98 0.99

3.5 Fault tolerance

An important issue in large distributed systems is fault
tolerance. For instance, a job executed on 1000 machines
lasting one day assumes that the mean time between failures
should significantly exceed 3 years to make such experiments
feasible without fault tolerance.

[18] were only able to provide a rather weak guarantee due
to the fact that in case of a machine failure the entire global
state needed to be regenerated from scratch. This is very
costly. Instead, we take advantage of the fact that, unlike
when using memcached, we are able to perform operations
directly on the data store of the server. One fact that com-
plicates matters is that whenever the global synchronization
is executed it requires one full pass through the entire set
of variables before all local copies are in sync. This can be
costly since synchronization may take several minutes, thus
making writing a checkpoint an exceedingly slow matter.

Instead we use the following strategy: at any given time
when we want to compute a checkpoint we halt all commu-
nication and sampling and wait until the incoming message
queues have been processed (this is easily satisfied by reach-
ing a barrier). At this point each client and server simply
write their state to the cloud file system (HadoopFS in our
case). This means that we are able to checkpoint the dis-
tributed synchronized state. Recovery is simply possible by
loading the state from file system.

3.6 Local variables and out of core storage

Quite often, evidence is associated with local latent vari-
ables. For instance, in topic models we may want to obtain
a topic estimate for each word. This leads to a state space
which typically exceeds the amount of RAM available. An
option to deal with this issue is to store part of the latent
state out of core and to stream evidence and latent vari-
ables from disk whenever they are required. This approach
is effective since the typical schedule for the Gibbs sampler
iterates over the variables in a fixed order. Consider the
following variant of the model of Section 2.1.

O-OrO-®

out of core storage

Here it suffices to traverse the local data sequentially.

1: for all i do

2: buffered read c¢;, d; from storage

3: sample ¢;|d;, b

4: buffered write ¢;

5: end for
Note that we only write the variable part of the state back to
disc (the constant part is only read to avoid having to store
the entire set of evidence nodes in memory). This strategy
is very effective for document collections but less so, e.g. for
highly interdependent entities such as social networks.

3.7 Sequential estimation

Often data comes with an additional sequential order as
described in Section 2.3. Inference in this setting is possible,
e.g. by the use of Sequential Monte Carlo estimation [7].
Given a model of the form

P(a,b) = P(ao) HP(at |ai—1)P(be | ar) (5)

it is our goal to draw from P(a | b) « P(a,b). In the following
denote by a' := (ao,...,a:) and b := (by,...,b;) the sets
of variables up to time ¢ respectively. Assume that we draw
from some proposal distribution

at Nm(at|at71,bt). (6)
In this case we need to re-weight the draw by

P(a ‘ b) o P(ao) H P(bt |at)P(at |6Lt_1)

[T, me(ar[at=2,b%) — 7o(ao) m(a¢|at=t,b7)

One may show [7] that the minimum variance draw is achieved

Bi=

t

by using as proposal distribution 7; the posterior P(ay | at™1, bh).

Moreover, we set mo(ao) = P(ag). By Bayes rule we have

t—1 ¢y _ P(be]ar)P(at]ai—1)
Plag|a™ b)) = Pb [a—151) (7)

Plugging this expansion back into g yields
B=1IPla""). (8)
t

In other words, we re-weight particles according to how well
they explain future data while adjusting the parameter esti-
mate at each step once we observe the evidence. [1] use this
model to estimate topics and clusters on streaming news.
This procedure is carried out for a number of ‘particles’
which provide a discrete approximation of the posterior dis-
tribution over the latent variables. The computational cost
scales linearly in the number of particles. However, we face
two challenges: firstly every time some particles get too
heavy we are forced to re-sample. This requires an update of
the data structures. The latter is highly nontrivial since the
state is distributed over many computers. Second, comput-
ing P(b; | a'™*,b" ") is costly. Third, due to concentration of
mass effects the behavior of the particles is quite similar ([1]
show that even a small number of particles performs well).
Consequently we resort to a more drastic approximation:

we only choose a single particle which avoids the need to
track and recompute B. Such an approximation is justified
for a number of reasons: firstly, we are primarily interested
in the present estimate of a nonstationary distribution. For
a contractive mapping the contribution of past errors de-
creases, hence the error arising from using a single particle
diminishes. Finally, the single-particle approach is used in
situations where the state of a particle is significant (e.g.
all user actions of a given day). In this case concentration
of measure effects allow us to show, e.g. via martingales,
that all particles would perform extremely similarly, simply
since the aggregate state is sufficiently large. Consequently,
the single particle approach renders the problem amenable
to practical implementation. This yields the following algo-
rithm.

1: fort=1to T do

2: Sample a; ~ P(ay | a7t bh)

3: end for

It proceeds in stages, using past latent and observed vari-
ables to sample the current set of parameters. We should
stress here that the primitive Sample a; ~ P(as|a’™",b")
means perform a few Gibbs iterations over the Markov chain
constructed over (a;) where a; is usually a set of hidden vari-
ables as we will show in Section 4.Running a Gibbs sweep
over a; using the state of the sampled values form earlier
time steps (a'~!) has been reported to work well in the lit-
erature [19, 20, 2, 1] especially if a; depends on (a'™') via
aggregates — which is true in many web applications. In
other words, we design our sequential estimation primitives
to perform well under the characteristics of our target ap-
plications.

4. APPLICATIONS

We now show based on a number of use-cases that the
approximations above are effective at obtaining scalable es-
timates. More specifically, we give details on the improved
variable replication strategy described in the previous sec-
tion. Subsequently we show how the three primitives for
dealing with local state, global state, and sequential order
can be used in the context of dynamic user profiling.

4.1 Message Passing

To demonstrate the efficacy of the message passing scheme
of Section 3.2 we briefly compare the algorithm described in
[18] to the algorithm of Section 3.2. That is, we compare
the performance of Yahoo’s LDA implementation using both
synchronization schemes.

We used 20 million news articles from Yahoo’s news ar-
ticle collection, 100 computers, and 1000 topics. We per-
formed 1000 iterations of collapsed Gibbs sampling for the
documents and synchronization was carried by one of the
following schedules:

Memcached: We use the schedule of [18]. That is, suffi-
cient statistics are stored in memcached, a distributed
(key,value) storage. Since memcached does not pro-
vide locking or versioning we emulate this as follows:

Set lock on memcached (fails if lock exists)
Get data from memcached

Update local values (no TCP/IP needed here)
Send data to memcached

: Release lock record

T

As is evident this requires 4 TCP/IP roundtrips to up-
date a single record. This means that the algorithm
is considerably latency bound. We mitigate this ef-
fect by performing parallel synchronization with sev-
eral threads simultaneously.

Ice: We implemented our own distributed (key,value) stor-
age as part of the LDA codebase. To ensure that client
and server remain synchronized we limit the number
of tokens in flight at any given time, i.e. we limit the
number of outstanding sent requests s;; = TRUE that
a client can have, e.g. Zj s;1 < 100. This is desir-
able since we want to ensure that messages are recent
rather than being queued up for a long time. For com-
munication we use the ice inter process communication
library of zeroc.com.

Below we show how the time to complete a single synchro-
nization pass change as we increases the number of machines
while fixing the dataset characteristic. As we can see, the

new architecture presented in this paper is actually able to
leverage the increased number of machines more efficiently.

Protocol | old[18] new

(this paper)

100 200 400 | 100 200
155.61 131.47 149.14 | 33.2 28.22
The improved synchronization rate has additional desirable
benefits — it significantly accelerates convergence of the
sampler, as can be seen in Figure 1. More to the point,
the sampler converges up to 5 times faster, due to an im-
proved synchronization strategy: the negative log-likelihood
using ice at 100 iterations is higher than what memcached
reaches after 500 iterations. In other words, not only is
the new scheme faster per iteration, it also converges faster,
hence we may terminate the sampler earlier. Moreover, as
evident from the Figure, as we increase the number of ma-
chines, the difference in performance gap between the old
and new architecture increases significantly which suggests
that the new architecture is more suitable for large-scale web
application using large number of machines.

Machines
Sync time (sec)

4.2 Message Scheduling

Next we tested the efficiency of the communication schedul-
ing algorithm described in Section 3.4. For this purpose we
used 150 machines and a dataset of 20 million documents
with a vocabulary size of 3.5 million words. In particular,
we compared the average time required for a synchroniza-
tion pass when using no schedule and when using aggregate
schedules for various aggregation factors p.

Schedule |none
Sync time | 231s

p=2 p=5 p=10
227s 209s 233s

As can be seen, using 5 machines at a time yields a 10%
speedup in synchronization. This is desirable in its own
right, however it also ensures somewhat faster convergence
due to faster mixing. The reason that p = 2 and p = 10 show
essentially no effect can be explained by a lack of enough
connections (for p = 2) and overhead due to thread man-
agement and TCP/IP packet inefficiencies. We believe that
the throughput can be improved further by adjusting the
operating parameters of ice to force serialization of several
messages into a single wire packet.

4.3 Temporal user profiling

The second application described in this paper is that of
temporal user profiling. Here the goal is to obtain an es-
timate of the interest distribution of a user where the lat-
ter keeps on changing over time. The associated graphical
model is given in Figure 2. Essentially each user ¢ has an in-
terest distribution 8;; which is a function of time ¢ and which
changes slowly. At any given moment the user draws a par-
ticular interest z;;; from this interest distribution and then
he draws an action w;¢; from the associated activity distri-
bution ¢¢x. Likewise the interest prior €2; depends on prior
activity through the count variables m;. The model is con-
siderably more complicated than a conventional topic model
due to the fact that now user interest, activity distribution
and general topic distribution all become time-dependent
random variables. Figure 2 provides a simplified version.
For details of the full model see [2].

400
24.12

130

, =@ ; 0i1t+1
o Pre,t—1 Okt > Dk, t4+1

SHO
O

Figure 2: Left: Latent Dirichlet Allocation. Right:
a simplified variant of Temporal LDA [2]. The key
difference between both models is that in Temporal
LDA, the prior over topics, the actual topic distribu-
tion and the activity distribution per topic depend
on the past assignments which are summarized as
me,ny and Si.

Scalability

The key motivation for discussing the model is that it demon-
strates the interaction between all previously described ap-
proximations. In particular, we use the distributed LDA
sampler described above as the main building block to per-
form inference on a daily basis. The state of the sampler
comprises the topic-word counts matrix, and the document-
topic counts matrix. The former is shared across users and
is maintained in a distributed hash table as described in Sec-
tion 3.2. The latter is document-specific and can be main-
tained locally in each client. We distribute the users at time
t across N computers. Each client executes a foreground
thread to resample a user for a given day and a background
thread synchronizing its local copy of the topic-word counts
matrix with the global copy.

Figure 3 confirms one of the most basic requirements of
scalable inference — the amount of time required to process
data scales linearly with the amount of data when keep-
ing the computational resources fixed. Furthermore it also
shows that while our algorithm does not scale perfectly, we
lose only a small amount of performance when increasing

x10'"° 100 Machines

x 10" 200 Machines

x10'"° 400 Machines

L L L
0 100 400 500 [100

Iteration

Iteration

L L L
400 500 0 100 400 500

Iteration

Figure 1: Log-likelihood of topic assignments during the sampling iterations. We compare the old architecture
[18] and the new architecture described in this paper using LDA on 20 million news articles and1000 topics.
We report results over 100, 200 and 400 machines. Note that the improved sampler converges approximately
5 times faster than the old memcached based variant. Moreover note that this gap increases as the number
of machines increases, which suggests that the new architecture is more scalable than the old one

Scalability Analysis

30+
o501 Fixed #machines=100
3
=]
£
= 20+ B
£
c
k)
[L 4
3 15
9]
o
“E’ 10+ 1
= Linearly scaling #machines: 100,300,...
5 \ ,

600 800 1000 1200 1400 1600 1800 2000
Number of Users (Documents) in Millions

800

400

Figure 3: Time per iteration vs. millions of user
days. When fixing the number of machines we ob-
serve a linear dependence between iteration time
and the amount of data. The blue line de-
picts the time per iteration when keeping the
data to machine ratio constant. That is, we use
{100, 300, 500, 700, 1000} machines such that each ma-
chine receives 2 million user days.

the data tenfold. We believe that some of the associated
inefficiencies are due to the fact that the experiments were
carried out on a production cluster where it would have been
more difficult to allocate 1000 machines in close proximity on
Hadoop. Hence the communications overhead arising from
inter-rack communication would have had a significant im-
pact on the runtime. Overall, the results show that we are
able to process the equivalent of 2 billion documents (i.e.
user days) on 1000 machines in a satisfactory time.

Resampling global parameters

As shown in Section 3.7, after each day (for each value of
t), the random variables Q: should be sampled. However,
; requires a reduction step across clients since it depends
on the joint counts from all users across all clients. This

131

is a classical Reduce operation. Using the distributed (key,
value) storage it is implemented as follows: First each client
writes its contribution for m; based on its assinged users
to the master, then the clients reach a barrier where they
wait for each other to proceed to the next stage of the cycle.
We implemented a sense-reversing barrier algorithm which
arranges the nodes in a tree and thus has a latency that
scales logarithmically with N [16]. After this barrier, all
counts are in global storage and as such one client sums
these counts to obtain my, use it to sample 2;, and finally
writes it back. All other clients wait, then they read the new
value of €; and this finalizes a single cycle.

Performance

While desirable in terms of speed, we also need to resolve
whether the aforementioned modifications affect the quality
of the estimates. For this purpose we compared the results
from [2] (old) to the current sampler (new) when applied
to the problem of temporal user profiling. In other words,
we did not change the model significantly but rather only
changed the sampler to allow for faster synchronization.

For evaluation purposes we compute the ROC score when
using simple bag of words features (BOW) as baseline, fea-
tures from temporal LDA (TLDA), and a combination of
both features (BOW+TLDA).

Feature set | BOW TLDA TLDA+BOW
Variant old 2] mnew old [2] new
ROC score | 57.03 5870 60.2 60.38 63.8

The data we used for this experiment were 435GB of be-
havioral data spanning 44 days with 33.5 million users. It
clearly shows that improving speed also improves perfor-
mance in our case, thus giving us the best of both worlds.

Fault Tolerance

Finally, we need to address the issue of fault tolerance and
recovery from failure. We described an improved mechanism
of writing backup copies per server locally. As can be seen,
this leads to a dramatic improvement in terms of recovery
time by at least one order of magnitude. Since the time is
primarily dominated by the vocabulary size and the number
of topics we compared the times for a number of parameter
combinations.

words topics machines | old [2] new
1.56M 100 100 | 25.1 min 3 min
3M 100 100 | 64.2 min 3.5 min
5M 200 300 | 80.2 min 6.5 min

This improvement in terms of fault recovery (and corre-
spondingly reduced time for taking snapshots of the current
state) allows us to perform backups much more eagerly, thus
allowing for a more stable production system.

5. DISCUSSION

In this paper we presented a number of powerful strate-
gies for performing approximate inference on web-scale data
collections. While quite effective in isolation, their joint use
opens the door to the use of very sophisticated latent vari-
able models in actual production settings in industry. To
the best of our knowledge, the results presented here are
on significantly much larger problems than the previously
largest experiments of [18, 2].

To ensure widespread dissemination of these ideas we re-
leased an open-source implementation of our framework at
https://github.com/shravanmn/Yahoo_LDA, together with
the full documentation of the framework architecture, its
different components, the steps to run it, and the mecha-
nism of exapnding it with new graphical models. We believe
this framework has the great potential of allowing, both re-
searchers and practitioners, of easily tackling web-scale in-
ference problems with little coding effort.

Note that the approximations are quite orthogonal to the
approach of [10, 13] which focus heavily on graph partition-
ing for general graphs which are small enough to be retained
in main memory and on efficient message passing schedules.
Future work will be to combine these techniques with our
approximations. We have reason to believe that this will
yield an enterprise ready graphical model inference toolkit
which is capable of analyzing data from hundreds of millions
of users in social networks and billions of webpages.

Acknowledgments

We thank Yucheng Low and Tamas Sarlos for fruitful dis-
cussions. This work was supported by the ARC.

6. REFERENCES

[1] A. Ahmed, Q. Ho, C. H. Teo, J. Eisenstein, A. J.
Smola and E. P. Xing. Online Inference for The
Infinite Topic-cluster model: Storylines from
Streaming Text. In Artificial Intelligence and
Statistics AISTATS, 2011.

A. Ahmed, Y. Low, M. Aly, V. Josifovski, and

A. Smola. Scalable inference of dynamic user interests
for behavioural targeting. In Knowledge Discovery and
Data Mining, 2011. submitted.

A. Asuncion, P. Smyth, and M. Welling.
Asynchronous distributed learning of topic models. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, NIPS, pages 81-88. MIT Press, 2008.

S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, Cambridge, 2004.

J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin.
Parallel coordinate descent for 11-regularized loss
minimization. In International Conference on Machine
Learning ICML, Bellevue, WA, 2011.

132

(6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

W. Chen, D. Zhang, and E. Chang. Combinational
collaborative filtering for personalized community
recommendation. In Y. Li, B. Liu, and S. Sarawagi,
editors, Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 115-123. ACM, 2008.

A. Doucet, N. de Freitas, and N. Gordon. Sequential
Monte Carlo Methods in Practice. Springer-Verlag,
2001.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic models of
proteins and nucleic acids. Cambridge University
Press, 1998.

S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6:721-741, 1984.

J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin.
Parallel Gibbs Sampling: From Colored Fields to Thin
Junction Trees. In Artificial Intelligence and Statistics
AISTATS, 2011.

T. Griffiths and M. Steyvers. Finding scientific topics.
Proceedings of the National Academy of Sciences,
101:5228-5235, 2004.

D. Karger, E. Lehman, T. Leighton, M. Levine,

D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In
Symposium on the Theory of Computing STOC, pages
654-663, New York, May 1997. Association for
Computing Machinery.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,

C. Guestrin, and J. M. Hellerstein. GraphLab: A new
parallel framework for machine learning. In Conference
on Uncertainty in Artificial Intelligence, 2010.

M. Luby and C. Rackoff. How to construct
pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing,
17(2):373-386, 1988.

W. Macready, A. Siapas, and S. Kauffman. Criticality
and parallelization in combinatorial optimization.
Science, 271:56-59, 1996.

J. Mellor-Crummey and M. Scott. Algorithms for
scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer
Systems, 9(1):21-65, Feb. 1991.

D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. Journal of
Machine Learning Research, 10:1801-1828, 2009.

A. Smola and S. Narayanamurthy. An architecture for
parallel topic models. In Very Large Databases
(VLDB), 2010.

T. Iwata, T. Yamada, Y. Sakurai, and N. UedaOnline
multiscale dynamic topic models. In KDD, 2010.

N. Bartlett, D. Pfau, and F. Wood . Forgetting counts
: Constant Memory inference for a dependent
hierarchical Pitman-Yor Process In ICML, 2010.

E. Xing, M. Jordan, and R. Sharan. Bayesian
haplotype inference via the dirichlet process. Journal
of Computational Biology, 14(3):267-284, 2007.

