Session: Decisions, Recommendations,
and Machine Learning

CHI 2014, One of a CHInd, Toronto, ON, Canada

Finding Dependencies Between Actions Using the Crowd

Walter S. Lasecki'!, Leon Weingard!, George Ferguson', and Jeffrey P. Bigham?!

Computer Science, ROC HCI!
University of Rochester

{wlasecki,weingard,ferguson} @cs.rochester.edu

ABSTRACT

Activity recognition can provide computers with the con-
text underlying user inputs, enabling more relevant re-
sponses and more fluid interaction. However, training
these systems is difficult because it requires observing
every possible sequence of actions that comprise a given
activity. Prior work has enabled the crowd to provide la-
bels in real-time to train automated systems on-the-fly,
but numerous examples are still needed before the sys-
tem can recognize an activity on its own. To reduce the
need to collect this data by observing users, we introduce
ARchitect, a system that uses the crowd to capture the
dependency structure of the actions that make up ac-
tivities. Our tests show that over seven times as many
examples can be collected using our approach versus re-
lying on direct observation alone, demonstrating that by
leveraging the understanding of the crowd, it is possible
to more easily train automated systems.

Author Keywords
Crowdsourcing; activity recognition; constraint finding

ACM Classification Keywords
H.4.2 Info. Interfaces & Presentation: User Interfaces

INTRODUCTION

Activity recognition (AR) lets interactive systems work
better by allowing them to consider what users are do-
ing when deciding what assistance to provide. Training
AR is costly because activities can be done in a variety
of ways, and robustly training an automated system re-
quires it to have seen all of the different ways an activity
can be performed. Prior work has allowed the crowd to
label activities to train such systems on-the-fly when an
unknown sequence of actions is encountered [4], however
many examples are still needed before the system can
recognize an activity without assistance.

In this paper, we present ARchitect, a system that en-
ables the crowd to capture the structure of observed ac-
tivities in the format of a dependency graph. We focus on
activity recognition in the home to provide timely, task-
relevant information and support to those who need it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permis-
sions from permissions@acm.org. CHI 2014, April 26-May 1, 2014,
Toronto, ON, Canada. Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-2473-1/14/04..
$15.00. http://dx.doi.org/10.1145/2556288.2557176

3095

Human-Computer Interaction Institute?
Carnegie Mellon University
jbigham@cmu.edu

Mozilla Firefox

Can someone do "ThrowOutTeabag" (shown in video)
before doing "PrepareTeabag" when trying to "MakeTea"?

| NO_[NNN YES |

0 answers / 4 questions

Action: ThrowOutTeabag (no audio)

Figure 1. ARchitect’s interface for finding relationships
between actions. Workers are asked if the action shown
requires a previous action to be performed first, then re-
sponses are aggregated to generate a dependency graph.

For example, prompting systems can keep people with
cognitive disabilities on track [9], and smart homes can
detect when to summon help so that older adults can
safely live independently longer [8].

ARchitect elicits a dependency graph of actions form-
ing high-level activities from the crowd, and gleans more
information from a single video than automated observa-
tion alone. ARchitect’s interface (Figure 1) asks workers
to mark which actions must be performed before others
for the action to make sense (their dependencies). For
instance, it doesn’t make sense to heat a kettle before
putting water in it. From this input, ARchitect gener-
ates a dependency graph that defines all valid orderings
of the actions composing an activity. Our experiments
with 288 Mechanical Turk workers demonstrate that AR-
chitect can identify 22 valid ways to complete an activ-
ity from only 3 observations of the activity being per-
formed. This lays the groundwork for systems that use
the crowd’s understanding of problems and their context
to more efficiently and robustly train automated systems
by formalizing knowledge.

BACKGROUND

Prior work has explored augmenting automated systems
by creating hybrid systems that can decide when to route
a task to a human or machine [6], and by learning from
multiple contributors [7]. Legion:AR [4] uses the crowd to
support and train a deployed activity recognition system
in real-time by having workers generate labels for a video
stream. These labels are then used to train a Hidden
Markov Model (HMM) based activity recognition system
that uses active learning to decide when to query the
crowd. It can also suggest labels to the crowd as it learns
to better recognize activities. This enables systems to
scale from crowd-powered to fully automated.

Session: Decisions, Recommendations,
and Machine Learning

M‘H‘WWWWWW

CHI 2014, One of a CHInd, Toronto, ON, Canada

Graph Building

Path Count

[Video 1 H Video 2 H Video 3 H Video 4]

Crowd

Labeling Label 1

Label 2 Label 3

Label 4

Knowledge

Structural Relationship Extraction

—>

Base

Figure 2. ARchitect system diagram. First, video is decomposed by the crowd into a set of videos, each containing a
single mid-level action, then an action label is found. Next, ARchitect recruits crowd workers for each labeled video
segment (action). These workers are asked a series of randomly ordered questions pertaining to the required ordering
of pairs of tasks. Finally, the set of pairwise restrictions are used to create a dependency graph. This information can
be used to help the system recognize familiar actions performed in orders it has never seen before.

This paper extends the idea of learning basic activity la-
bels from the crowd to learning relational aspects of ac-
tivities including dependencies between actions. Cascade
[2] is a system that uses the crowd to extract structured
taxonomies from unstructured datasets, but, unlike AR-
chitect, is not able to infer temporal structure.

SYSTEM

ARchitect has three main components: labeling, depen-
dency finding, and alternate order generation (Figure 2).
To find the segment times and labels, ARchitect can use
the crowd via Legion:AR [4], or any other existing label-
ing method. Our experiments use a ‘Tea Making’ domain
containing the following 6 action labels:

FillKettle Tea kettle is filled with water from faucet.
GetIngredients Teabag and cup gotten from cabinet.
PrepareTeabag Wrapper is opened; teabag removed.
ReturnIngredients Teabag box returned to cabinet.
PourHotWater Water boiled in kettle; poured into cup.
SteepTea Teabag is allowed to soak in boiling water.
ThrowOutTeabag Teabag moved from cup to trash.

Finding Preceding Actions

To determine the dependencies between actions, we ask
workers to answer a set of questions for a series of video
segments (shown in Figure 1). These questions are gen-
erated from the labeled actions the system has observed
up to that point. The segments are gleaned from a larger
video of the complete task and limited in scope to keep
the task for each segment manageable for workers.

Asking the Right Questions

ARchitect asks workers a series of ‘Yes or No’ ques-
tions. We initially tried asking questions of the form
‘Is it important to do [action_in_question] before
[action_in_video] to complete [high_level _activity]?’.
However, asking the question in this way led users to an-
swer too liberally, saying that everything was important
to do in the expected order. After a number of iterations,
we found that reversing the question and asking work-
ers ‘Is it possible to do [action_in_video] before [ac-
tion_in_question] when doing [high_level activity]?’,
resulted in a balance between the scope of the question
and the willingness of workers to introduce constraints.

3096

Providing Context

The question posed to workers includes the name of the
activity that the action belongs to, to avoid cases where
the individual actions do not provide enough context
to determine if a constraint exists. We also present the
workers with a video of the activity because we want re-
sults that are specific to the instance of an action being
observed, not just speculation about the generalized ac-
tivity. For instance, the FillKettle action can involve
getting water from the tap or from the items collected in
GatherIngredients. Without seeing the video, workers
would not have known which case applied and may have
been split on which option to choose.

Generating the Dependency Graph

From the crowd’s input, we can create a dependency
graph — a directed acyclic graph (DAG) — to represent
the relational structure of the actions. For each ‘Yes’ an-
swer given, we add 1 to the weight of the directed edge
going from the prerequisite action to the given action
(or add a new edge if needed). The resulting dependency
graph explicitly captures all of the pairwise constraints
between actions. We can then simplify this graph by re-
moving all edges that form a second path from a requisite
action to another action, keeping only the longest path
between any two nodes u and v in the graph.

To filter out bad input, we require agreement between
more than half of the workers participating in an aver-
age task (for that trial) to include an edge. The filter-
ing threshold can be set to match the specifics of the
crowd being used (size and expected worker reliability).
We apply this filtering step before simplifying the graph
to avoid losing edges between connected nodes in the fi-
nal version. We could normalize the edge weights and
interpret them as probabilities, but we do not here be-
cause our goal is to recreate the training data that would
be generated by an expert.

To calculate how many valid possible execution paths
exist, we generate a list of all possible (complete) ac-
tion orderings that do not contain a dependent action
as a parent of their prerequisite. Path counting provides
a measure of the potential learning difference between
direct observation and ARchitect.

Session: Decisions, Recommendations,
and Machine Learning

EXPERIMENTS

To validate ARchitect, we are interested in testing two
aspects: (i) the crowd’s ability to accurately identify de-
pendencies in observed action orderings, and (i¢) the va-
lidity of the resulting activity execution paths found us-
ing this approach. The latter allows us to better under-
stand the tradeoff in accuracy versus the cost savings of
requiring fewer observations of a given activity to reli-
ably identify it later. We used expert-generated labels
and directly measured the dependency graphs output by
the system to avoid confounding our results with varia-
tion in the crowd labeling process, or the selection and
implementation details of an HMM-based AR system.

To create our tea-making dataset, we recorded a video
of 3 participants stepping through the process of making
tea. The kitchen was configured the same at the begin-
ning of the experiment for each participant, but partici-
pants were not asked to take a particular course of action,
so long as they successfully demonstrated how to make
a cup of tea. We chose to use 3 examples from the same
domain to better explore how crowd responses may be
merged (discussed later).

We then collected between 1 and 5 dependency labels
from each of 288 unique Mechanical Turk workers. Their
results were compared to our gold standard generated by
3 researchers. The inter-rater reliability was very high as
indicated by a Fleiss’ Kappa score of k = .92. In order to
help workers understand the task they were being asked
to perform, we first asked each worker to mark depen-
dencies in two examples, and then provided feedback as
to why the provided labels were right or wrong.

Identifying Action Dependencies

We first test how accurately ARchitect can extract indi-
vidual relationships from a video of a given activity (Fig-
ure 3). In order to use only action dependencies with high
confidence, we filter the data so that a link between two
nodes is only included if multiple workers agreed on it.
To more easily visualize the constraints, we then remove
redundant paths, keeping only the longest path between
any two actions. Note that while this filter operation is
performed on an un-reduced graph containing the origi-
nal set of edges, the reduced version (shown in Figures 3
and 4) is equivalent in terms of the constraints expressed,
so there is no effect on the resulting path count.

Figure 5 shows the change in precision and recall as the
filter threshold is increased, making the filtering rule
stricter. These curves meet exactly at 100% in Videos
#2 and #3, meaning that no valid edges were removed
as the filter strength was increased until all invalid edges
were removed. In Video #1 we can see a case where this
is not true, but the small size of this gap indicates a
minor error.

Merging Results from Multiple Users’ Sessions

To generalize the results we collect with ARchitect, we
combine results from multiple different user sessions into
a single graph for the underlying activity. To do this, we

3097

CHI 2014, One of a CHInd, Toronto, ON, Canada

; Getlngredients PrepareTeabag

8 PourHotWater ThrowOutTeabag
S FillKettle

>

o .

E™ GetIngredients PrepareTeabag

8 SteepTea ThrowOutTeabag
=]

s FillKettle PourHotWater

m

* PrepareTeabag
(=]

% FillKettle PourHotWater Getlngredients

S Returningredients

Figure 3. The dependency graphs output by our 3 tri-
als. An average of 22.3 workers were asked each question.
Thresholds of 50%, 50%, and 40% were used, respectively.

take each of the filtered graph results and normalize the
edge weights. We then merge the two graphs by aligning
the matching actions in each, and connecting or adding
the remaining actions, as needed. If an edge agrees with
another, the weights are summed in the new graph. This
gives us a weighted set of all pairwise constraints identi-
fied by the crowd.

Next, we run another filtering step in which we remove
the edges with less than 0.5 weight (those that don’t
have majority agreement). This prevents the combined
dependency graph from being over-constrained. The fi-
nal output of our tea making example is shown in Figure
4. In the end, 22 unique valid task executions were iden-
tified from observing just 3 actual instances. This means
we have collected over 7 times as much training data
from our videos by using the crowd.

Finding Execution Paths

Next, we compute the number of orderings of all of the
observed actions that do not violate the constraints in
the graph. Increasing the agreement required in the fil-
tering step results in fewer included edges. The con-
straints on the activity are thus reduced, potentially in-
creasing the number of valid paths. Conversely, decreas-
ing required agreement will allow more constraints to
be added, reducing the number of valid paths (in the
limit, only the observed ordering is valid). The maximum
number of possible valid paths increases exponentially as
fewer constraints are included. For Video #1 there were
at most 120 distinct paths, for Video #2 there were 720,
and for Video #3 there were again 120. We found that an
average of 10.7 possible action orderings could be iden-
tified for each of our videos, compared to only one with
conventional approaches.

GetlIngredients PrepareTeabag Returningredients

Il N I

Figure 4. Final dependency graph generated by merging
the results of observing 3 users.

Session: Decisions, Recommendations, CHI 2014, One of a CHInd, Toronto, ON, Canada

and Machine Learning

100% 100% 100% ————

———-—

80% 80% 80%

60% \ 60% 60%

=== Precision

40% 40% 40%

== == Recall

\
\
\
]
|
1
20%)
\

20% 1} 20% \

\ “

- _ 0% -~
30% 50% 70% 90% 10% 30% 50% 70% 90%
Filter Threshold Filter Threshold

e e c— e— —
30% 50% 70% 90%
Filter Threshold

Figure 5. Precision and recall of edges plotted over increasing thresholds for our videos. Precision increases with required
agreement at first as invalid constraint edges are removed. Recall eventually decreases as even valid edges are removed.

0%
10%

0%
10%

DISCUSSION

Our results show that ARchitect is able to accurately ex-
tract structural data using the crowd. Despite individual
workers introducing errors, the aggregate result is a set
of constraints ranked reliably by confidence.

Removing Ambiguity

One determining factor in the level of consistency is
the ambiguity in the question and action labels. We
present workers with a video of the current action to
show exactly how the user performed it, but we describe
prior actions using only text to avoid overloading work-
ers with multiple videos. One way to correct for this is
to show workers what lower-level actions make up the
mid-level actions they are shown. For example, in the
GatherIngredients step, it is unclear if water is consid-
ered an ingredient (in our experiments it was not — the
kettle is filled directly form the faucet in the FillKettle
step). But if we include low-level actions such as ‘turn
on faucet’, then it is evident that the sub-task has been
completed during the action.

It is also possible to re-recruit some workers who have
answered questions about previous actions in the same
activity, to leverage their knowledge of past actions. De-
spite often performing dozens or hundreds of tasks per
hour, workers do retain task-specific knowledge from the
past [3]. By encouraging workers to join future tasks
(e.g., by offering a bonus), we reduce the ambiguity in
labeling prior tasks, while not requiring workers to view
multiple videos in a single step, keeping latency low.

Limitations

Our study focused on a single well-known domain in ac-
tivity recognition, meaning we don’t explore the whole
range of activity and action types that would be encoun-
tered in more open-ended domains. We also extract a
straightforward dependency structure instead using of a
more expressive representation, such as a temporal logic
[1]. However, our work aims to show that this type of in-
formation can be useful to automated systems if properly
elicited from the crowd.

CONCLUSIONS AND FUTURE WORK

ARchitect presents the first example of what is possible
by using on-demand human intelligence in the knowl-
edge acquisition processes. A similar approach might be

3098

used to extract more activity relationship information.
For example, we could use the crowd to identify the la-
tent states that make prior actions necessary. This could
allow us to define planning operators, and thus construct
more robust representations of action dependence, such
as a planning graph. We might also begin to integrate
contributions from the AR system itself by adding its
predictions of valid action orders to the graph generated
by the crowd. Using ARchitect, we have shown that we
can extract structured knowledge quickly, suggesting a
future in which automated systems can be trained on-
the-fly from one-off examples.

ACKNOWLEDGMENTS

This work was supported by National Science Founda-
tion awards #I1S-1149709 and #I11S-1218209, and a Mi-
crosoft Research Ph.D. Fellowship.

REFERENCES

1. Allen, J. F. Towards a general theory of action and
time. Artificial intelligence 23 (2). 123-154. 1984.

2. Chilton, L. B., Little, G., Edge, D., Weld, D. S.,
and Landay, J. A. Cascade: Crowdsourcing
taxonomy creation. CHI 2013.

3. Lasecki, W.S., White, S., Murray, K.I., and
Bigham, J. P. Crowd memory: Learning the
collective. CI 2012.

. Lasecki, W. S.,; Song, Y. C., Kautz, H., and
Bigham, J. P. Training activity recognition systems
online using real-time crowdsourcing. CSCW 2012.

5. Little, G., Chilton, L. B., Goldman, M., and Miller,
R. C. Turkit: human computation algorithms on
mechanical turk. UIST 2010.

6. Quinn, E. J., Bederson, B. B.; Yeh, T., and Lin, J.
Crowdflow: Integrating machine learning with
mechanical turk for speed-cost-quality flexibility.
Tech. Rep., University of Maryland, 2010.

7. Richardson, M., and Domingos, P. Learning with
knowledge from multiple experts ICML 20085.

8. Tapia, E., Intille, S., and Larson, K. Activity
recognition the home using simple and ubiquitous
sensors. Pervasive 2004.

9. Zhao, L., Sukthankar, G., and Sukthankar, R.
Robust active learning using crowdsourced
annotations for activity recognition. HC' 2011.

