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Fig. 1: Comparing request-flow graphs: This side-by-side visualization, one of three interfaces we evaluate, illustrates the output of a diagnosis
technique that compares graphs. It shows these two graphs juxtaposed horizontally, with dashed lines between matching nodes in both. The rightmost
series of nodes in the screenshot do not exist in the graph on the left, causing the yellow nodes to shift downward in the graph on the right.

Abstract— Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When
performance degrades, the problem might be in any of the system’s many components or could be a result of poor interactions among them. Recent
research efforts have created tools that automatically localize the problem to a small number of potential culprits, but research is needed to understand
what visualization techniques work best for helping distributed systems developers understand and explore their results. This paper compares the
relative merits of three well-known visualization approaches (side-by-side, diff, and animation) in the context of presenting the results of one proven
automated localization technique called request-flow comparison. Via a 26-person user study, which included real distributed systems developers, we
identify the unique benefits that each approach provides for different problem types and usage modes.
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1 INTRODUCTION

A distributed system is a set of software components running on mul-
tiple networked computers that collectively provide some service or
result. Examples now pervade all walks of life, as society uses dis-
tributed services to communicate (e.g., Google’s Gmail), shop (e.g.,
Amazon), provide entertainment (e.g., YouTube), and so forth. Though
such distributed systems often have simple interfaces and usually re-
spond quickly, great complexity is involved in developing them and
maintaining their performance levels over time. Unexpected perfor-
mance degradations arise frequently, and substantial human effort is
involved in addressing them.

When a performance degradation arises, the crucial first step in ad-
dressing it is figuring out what is causing it. The root cause might
be any of the system’s software components, unexpected interactions
between them, or slowdowns in the network connecting them. Ex-
ploring the possibilities and identifying the most likely root causes has
traditionally been an ad-hoc manual process, informed primarily by raw
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performance data collected from individual components. As distributed
systems have grown in scale and complexity, such ad-hoc processes
have grown less and less tenable.

To help, recent research has proposed many techniques for automat-
ically localizing the many possible sources of a new problem to just
a few potential culprits [21, 27, 32]. These techniques do not identify
the root cause directly, but rather help developers build intuition about
the problem and focus their diagnosis efforts. Though complete au-
tomation would be ideal, the complexity of modern systems and the
problems that arise in them ensure this human-in-the-loop model will
be dominant for the foreseeable future. As such, many researchers
recognize the need for diagnosis tools to present their results as clearly
as possible [24, 28]. But, apart from a few select instances [22, 24], far
too little research has been conducted on what types of presentations
are most useful for distributed systems developers.

As a step toward addressing this need, this paper presents a 26-person
user study that compares three promising approaches for visualizing
the results of an implementation of one powerful, proven automated
localization technique called request-flow comparison [32]. The ap-
proaches we consider are well-known in the visualization community,
and we make no claims as to their novelty. Rather, our contribution
lies in identifying which of these approaches work best for diagnosing
different types of distributed systems problems and for different devel-
oper usage modes. Our user study uses real problems observed in Ursa
Minor [1], a real distributed storage system. It includes 13 professionals



(i.e., developers of Ursa Minor and software engineers from Google)
and 13 graduate students taking distributed systems classes.

Request-flow comparison contrasts how a distributed system services
requests (e.g., “read this e-mail message” or “find books by this author”)
during two periods of operation: one where performance was fine
(“before”) and the new one in which performance has degraded (“after”).
Each serviced request has a corresponding workflow within the system,
representing the order and timing of components involved; for example,
a request to read e-mail might start at a frontend web server that parses
the request, then be forwarded to the e-mail directory server for the
specific user, then be forwarded to the storage server that holds the
desired message, and then return to the web server so it can respond to
the requester. Figure 2 shows a similar example for a generic distributed
storage system. Each such request flow can be represented as a directed
acyclic graph, and comparing before and after graphs can provide
significant insight into performance degradations. Many organizations
are interested in algorithms and visualizations for comparing request
flows, including Google [35], Microsoft, and Twitter [37].

The initial version of our request-flow-comparison implementation,
Spectroscope [32], used an inadequate Graphviz-based interface that
required graphs to be manually and painstakingly compared with each
other. The approaches we compare in this paper were chosen based
on the recommendations of developers who used this initial version to
diagnose real problems in Ursa Minor and certain Google services [32].
They occupy three corners in the space of approaches to visualizing
differences, as identified by a taxonomy of comparison approaches [17].
The side-by-side approach is nearly a “juxtaposition,” which presents
independent layouts. Diff is an “explicit encoding,” which highlights
the differences between the two graphs. Animation is closest to a
“superposition” design that guides attention to changes that “blink.”

Despite the large body of work on comparing graphs [4, 5, 13], we
found no existing implementations of side-by-side, diff, and anima-
tion that are suitable for request-flow comparison’s domain-specific
needs. For example, differences must be found in directed acyclic graph
structure and edge weights. Also, matching nodes in before-and-after
graphs are not known a priori and must be identified algorithmically.
Therefore, we built our own interfaces.

Our user study results show that side-by-side is the best approach
for helping developers obtain an overall understanding of a problem.
Diff is best for helping diagnose problems caused by non-structural
differences. Animation is best for helping diagnose problems that are
caused by structural differences alone.

2 REQUEST-FLOW COMPARISON

Request-flow comparison [32] is a technique for automatically localiz-
ing the root causes of performance degradations in distributed systems,
such as Ursa Minor and Bigtable [9]. Such degradations often manifest
as changes in the workflow of individual requests as they are serviced
by the system. Exposing such changes and showing how they differ
from previous behavior localizes the problem’s source and significantly
guides developer effort.

Request-flow comparison aims to identify changes between request-
flow graphs observed during two periods: one obtained before the
degradation and one obtained after the degradation. Nodes of request-
flow graphs (which are directed acyclic graphs) show important events
or activities observed within different components during request pro-
cessing, and edges show latencies between these events (see Figure 3).
Request-flow comparison identifies two important types of changes.
Edge latency changes are differences in the time required to execute
successive events and represent unforeseen slowdowns in request pro-
cessing. Structural changes are differences in the number and causal
ordering of system events. They represent slowdowns due to extra (or
less) concurrent activity or additional (or different) activity within a
single sequential thread (i.e., intra-thread event changes).

Spectroscope [32], our current prototype, implements request-flow
comparison by grouping identically-structured graphs observed during
both periods (often numbered in the hundreds or thousands) into the
same category. By analyzing per-period statistical properties, Spectro-
scope identifies categories containing performance-affecting changes.
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Fig. 2: A distributed storage system. To read a file, clients send a request to
the frontend file server. To return the requested data, the file server may need to
access other components like the data location server and storage servers. This
figure shows two of many possible flows through the system.

As output, Spectroscope presents before-and-after pairs of these cat-
egories showing how request processing changed between the two
periods. Since categories contain identically structured requests, each
is represented by a single constituent request-flow graph. Edge latency
changes are automatically identified via hypothesis testing, but such
tests may not identify all edges worth investigating, so developers must
still examine before-after graph pairs manually to find additional such
divergences. Similar tests are used in several automated diagnosis
tools [21, 27, 32]. Spectroscope will identify categories containing
structural changes, but developers must contrast before-after graphs
manually to identify where the divergences occur. Further details about
request-flow comparison and Spectroscope can be found in Sambasivan
et al. [32].

3 RELATED WORK

Recent research has explored a number of approaches, including some
akin to side-by-side, diff, and animation, to help users identify dif-
ferences in graphs, but no single one has emerged as the clear win-
ner [4, 5, 31]. The choice depends on the domain, the types of graphs
being compared, and the differences of interest, thus motivating the
need for the study presented in this paper. This section discusses user
studies comparing different approaches for comparing graphs, as well
as tools designed to identify graph differences.

For understanding the evolution of undirected, unweighted graphs
(e.g., many social network graphs) over time, Archambault et al. [4] find
that small multiples (akin to our side-by-side approach) yielded faster
task completion times, but that accuracy was greater with animation
for tasks that involved identifying node or edge additions/deletions.
In contrast, Farrugia et al. [13] find that small multiples outperform
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Fig. 3: Example request-flow graph. This graph shows the flow of a read
request through the distributed storage system shown in Figure 2. Node names
represent important events observed on the various components while complet-
ing the required work. Edges show latencies between these events. Fan-outs
represent the start of parallel activity, and synchronization points (i.e., joins) are
indicated by fan-ins. Due to space constraints, only the events observed on the
frontend file server are shown.



animation with regard to both completion time and accuracy. In a later
study, Archambault et al. [5] evaluate a hybrid approach that uses side-
by-side or animation to present diffs of consecutive graph evolutions.
Participants preferred the hybrid approach over comparing independent
graphs of each evolutionary stage, but, it did not yield lower completion
times or increased accuracy for most tasks. Melville et al. [25] develop
a set of general graph-comparison questions and find that for small
graphs represented as adjacency matrices, a superimposed (diff) view
is superior to a juxtaposed (side-by-side) view.

For weighted graphs that are much denser than our request-flow
graphs, Alper et al. [2] find that matrix-based superimposed representa-
tions outperform node-link-based ones. Robertson et al. [31] compare
animation’s effectiveness to that of small multiples and one other static
approach for identifying trends in the evolution of Gapminder Tren-
dalyzer [15] plots (3-dimensional data plotted on 2-D axes). They
find that animation is more effective for presenting trends, while static
approaches are more effective for helping users identify them.

Many tools designed to identify graph differences use domain-
specific algorithms or target specific graph structures. For example,
TreeJuxtaposer [26] uses domain knowledge to match similar nodes
in trees that show evolutionary relationships among different species.
TreeVersity [18] uses a diff-based technique to identify differences
in node attributes and structure for trees with unweighted edges and
known matchings. G-PARE [34] presents overlays to compare predic-
tions made by machine-learning algorithms on graph-based data. Visual
Pivot [30] helps identify relationships between two trees by using a lay-
out that co-locates a selected common node. Beck and Diehl [6] use a
matrix representation to compare software architectures based on code
dependencies. Donatien [19] enables comparison of unweighted graphs
by placing individual graphs in independently-configurable overlays,
which can be optionally superimposed or viewed side-by-side. Their
human-in-the loop model for graph matching could be applied to our
interfaces to improve matching accuracy.

Our work in this paper complements both of the above related-work
categories. Specifically, we attempt to identify good graph compari-
son techniques for the output of a tool used in one important domain:
performance diagnosis of distributed systems using request-flow com-
parison. Our domain is characterized by sparse, directed, acyclic,
weighted graphs, for which matchings are not known. We also be-
lieve our intended audience—those familiar with distributed systems
development—will exhibit unique preferences distinct from the general
population.

In the systems community, there has been relatively little research
conducted on visual methods for diagnosis. Indeed, a recent survey of
important directions for log analysis concludes that because humans
will remain in the diagnosis loop for the foreseeable feature, visualiza-
tion research is an important next step [28]. One project in this vein is
NetClinic, which considers diagnosis of network faults [22]. The au-
thors find that visualization in conjunction with automated analysis [21]
is helpful for diagnosis. As in this study, their tool uses automated
processes to direct users’ attention, and the authors observe that automa-
tion failures inhibit users’ understanding. In another system targeting
network diagnosis, Mansmann et al. observe that automated tools are
limited in utility without effective presentation of results [24].

4 INTERFACE DESIGN

Figure 4 shows our implementations of side-by-side, diff, and anima-
tion. All of them were guided by an initial pilot study, which is not
described in this paper. These interfaces are implemented in JavaScript,
and use modified libraries from the JavaScript InfoVis Toolkit [7]. This
section further describes them.

Side-by-side: Our side-by-side
interface (illustrated with a simpli-
fied diagram at right and in Fig-
ure 4a,d) computes independent lay-
ered layouts for the before and after
graphs and displays them beside each
other. Nodes in the before graph are
linked to matching nodes in the after

graph by dashed correspondence lines. Using this interface, latency
changes can be identified by examining the relative slope of adjacent
dashed lines: parallel lines indicate no change in latency, while increas-
ing skew is indicative of longer response time. Structural changes can
be identified by the presence of nodes in the before or after graph with
no matching node in the other graph.

Diff: Our diff interface (at right and in Fig-
ure 4b,e) shows a single static image of an ex-
plicit encoding of the differences between the
before and after graphs, which are associated
with the colors orange and blue respectively.
The layout contains all nodes from both the be-
fore and after graphs. Nodes that exist only
in the before graph are outlined in orange and
annotated with a minus sign; those that exist
only in the after graph are outlined in blue and annotated with a plus
sign. This structural approach is akin to the output of a contextual diff
tool [23] emphasizing insertions and deletions.

We use the same orange and blue scheme to show latency changes,
with edges that exist in only one graph shown in the appropriate color.
Edges existing in both graphs produce a per-edge latency diff: orange
and blue lines are inset together with different lengths. The ratio of the
lengths is computed from the ratio of the edge latencies in before and
after graphs, and the next node is attached at the end of the longer line.

Animation: Our animation interface (at
right and in Figure 4c,f) switches automat-
ically between the before and after graphs.
Independent layouts are calculated for each
graph, but non-matching nodes are not al-
lowed to occupy the same position. To pro-
vide a smooth transition, it interpolates the
positions of matching nodes. Nodes that
exist in only one graph appear only on the
appropriate terminal of the animation. They all become more transpar-
ent at the same rate, and vanish completely by the other terminal. Both
types of transition are linear and happen concurrently.

Users can start and stop the animation, as well as manually switch
between terminal or intermediate points, via the provided slider. Unless
it is controlled this way, the animation repeats with a transition period
of two seconds and a pause for three seconds at either terminal.

4.1 Graph matching

Drawing correspondence lines in the side-by-side interface and merging
corresponding nodes in the diff and animation interfaces requires iden-
tifying matching nodes in the before and after graphs. This problem
is hard (in the formal sense), and there exists a wide body of work
investigating algorithms and heuristics for such matching [8, 11, 14].
Like many of these approaches, we use heuristics to obtain approximate
matches.

Our approximation technique, which runs in O(N2) time in the
number of nodes, makes use of the fact that if a node in the before
graph matches a node in the after graph, their node names will be
the same. (Note the converse is not necessarily true.) First, we use
a lexically-ordered depth-first traversal to transform both graphs into
strings. Next, we keep track of the insertions, deletions, and mutations
made by a string-edit distance transformation of one string into another.
Finally, we map these edits back onto the appropriate interface. Items
that were not inserted, deleted, or modified are ones that correspond in
both graphs. A given node in the before graph is matched to at most
one node in the after graph. Despite the limitations of this approach,
we have found it to work well in practice.

4.2 Common features

All three of our interfaces incorporate some common features, tailored
specifically for request-flow graphs. As seen above, all graphs are
represented with node-link diagrams since request-flow graphs are
sparse, directed graphs that have fan-ins and fan-outs. They are drawn
with a layered layout based on the technique by Sugiyama et al. [36];
layouts based on this technique enjoy widespread use [12].
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To navigate the interface, users can pan the graph view by clicking
and dragging or by using a vertical scroll bar. In large graphs, this
allows for movement in the neighborhood of the current view or rapid
traversal across the entire graph. By using the wheel on a mouse, users
can zoom in and out, up to a limit. We employ rubber-banding for both
the traversal and zoom features to prevent the interface from moving
off the screen or becoming smaller than the viewing window.

For all of the interfaces, edge lengths are drawn using a sigmoid-
based scaling function that allows both large and small edge latencies
to be visible on the same graph. Statistically significant edge latency
changes are highlighted with a bold red outline. When graphs contain
join points, or locations where multiple parallel paths converge at the
same node, one path may have to wait for another to complete. Our
interfaces illustrate the distinction between actual latency and waiting
time by using thinner lines for the latter (see the “write in cache” to
“MDSCLIENT lookup call” edge in Figures 4a-c for an example).

Each interface also has an annotation mechanism that allows users
to add marks and comments to a graph comparison. These annotations
are saved as an additional layer on the interface and can be restored for
later examination.

4.3 Interface Example

To better illustrate how these interfaces show differences, the example
of diff shown in Figure 4b is annotated with the three key differences it
is meant to reveal. First, the after graph contains an extra thread of con-
current activity (outlined in blue and marked with a plus sign). Second,
there is a statistically significant change in metadata lookup latency
(highlighted in red). Third, there is a large latency change between the
lookup of metadata and the request’s reply. These observations localize
the problem to those system components involved in the changes and
thus provide starting points for developers’ diagnosis efforts.

5 USER STUDY OVERVIEW & METHODOLOGY

We compared the three approaches via a between-subjects user study,
in which we asked participants to complete five assignments using our
interfaces. Each assignment asked participants to find key performance-
affecting differences for a before/after request-flow graph pair obtained
from Ursa Minor [1]. Four of the five assignments used graphs output
by Spectroscope for real problems that were either observed in the
system or injected into it. These problems are described further in
Sambasivan et al. [32].

5.1 Participants

Our interfaces’ target users are the developers of the distributed sys-
tem being diagnosed. As our example tasks come from Ursa Minor,
we recruited the seven Ursa Minor developers to whom we had ac-
cess as expert participants. In addition, we recruited six professional
distributed-system developers from Google. We refer to the Ursa Minor
and Google developers collectively as professionals.

Many of our professional participants are intimately familiar with
more traditional diagnosis techniques, potentially biasing their re-
sponses to our user-study questions. For a wider perspective, we
recruited additional participants by advertising in undergraduate and
graduate classes on distributed systems and posting fliers on and around
our campus. Potential participants were required to demonstrate (via
a pre-screening questionnaire) knowledge of key undergraduate-level
distributed systems concepts. Of the 33 volunteers who completed
the questionnaire, 29 were deemed eligible; the first 13 to respond
were selected. Because all of the selected participants were graduate
students in computer science, electrical and computer engineering, or
information networking, we refer to them as student participants.

During the user study, each participant was assigned, round-robin,
to evaluate one of the three approaches. Table 1 lists the participants,
their demographic information, and the interface they were assigned.
We paid each participant $20 for the approximately 1.5-hour study.

5.2 Creating before/after graphs

Each assignment required participants to identify salient differences in
a before/after graph pair. To limit the length of the study, we modified
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(b) Students

Table 1: Participant demographics. Our 26 participants included 13 profes-
sional distributed systems developers and 13 graduate students familiar with
distributed systems. The ID encodes the participant group (P=professional,
S=student) and the assigned interface (S=side-by-side, D=diff, A=animation).
Average ages were 35 (professionals) and 25 (students).

the real-problem graph pairs slightly to remove a few differences that
were repeated many times. The only synthetic before/after pair was
modified from a real request-flow graph observed in the system. Table 2
describes the various assignments and their properties.

To make the before/after graphs easier for participants to understand,
we changed node labels, which describe events observed during re-
quest processing, to more human-readable versions. For example, we
changed the label “e10__t3__NFS_CACHE_READ_HIT” to “Read
that hit in the NFS server’s cache.” The original labels were written
by Ursa Minor developers and only have meaning to them. Finally,
we omitted numbers indicating edge lengths from the graphs to ensure
participants used visual properties of our interfaces to find differences.

5.3 User study procedure

The 1.5 hour study consisted of a 10-15 minute training period, fol-
lowed by three evaluation phases: guided questions, emulation of real
diagnoses, and interface comparison. Participants were encouraged to
think aloud throughout the study.

5.3.1 Training

In the training phase, participants were shown an Ursa Minor diagram
(similar to the one in Figure 2). They were only required to understand
that the system consists of four components that can communicate
over the network. We also provided a sample request-flow graph and

Phase Assignment Differences Before/after
and type graph sizes (nodes)

G 1/Real 4 statistically sig. 122/122
5 other edge latency

2/Real 1 structural 3/16

3/Synth. 4 statistically sig. 94/128
2 other edge latency
3 structural

E 4/Real 4 structural 52/77

5/Real 2 structural 82/226

Table 2: Before/after graph-pair assignments. Assignments 1–3 were used in
the guided questions phase (G); 4 and 5 were used to emulate real diagnoses
(E). Four of the five assignments used graphs from the output of Spectroscope
for real problems seen in Ursa Minor.



described the meaning of nodes and edges. Finally, we trained each par-
ticipant on her assigned interface by showing her a sample before/after
graph (identical to those shown in Figures 4(a-c)) and guiding her
through tasks she would have to complete in latter parts of the study.
Participants were given ample time to ask questions and told we would
be unable to answer further questions after the training portion.

5.3.2 Finding differences via guided questions

In this phase of the study, we guided participants through the process
of identifying differences, asking them to complete five focused tasks
for each of three assignments. Rows 1–3 of Table 2 describe the graphs
used for this part of the study.

TASK 1: Find any edges with statistically significant latency changes.
This task required participants to find all of the graph edges highlighted
in red (i.e., those automatically identified by Spectroscope as having
statistically significant changes in latency distribution).

TASK 2: Find any other edges with latency changes worth investigat-
ing. Spectroscope will not identify all edges worth investigating. For
example, edges with large changes in average latency that also exhibit
high variance will not be identified. This task required participants to
find edges with notable latency changes not highlighted in red.

TASK 3: Find any groups of structural changes. Participants were
asked to identify added or deleted nodes. To reduce effort, we asked
them to identify these changes in contiguous groups, rather than noting
each changed node individually.

TASK 4: Describe in a sentence or two what the changes you iden-
tified in the previous tasks represent. This task examines whether the
interface enables participants to quickly develop an intuition about the
problem in question. For example, many of the edge latency changes
presented in assignment 1 indicate a slowdown in network communi-
cation between machines. Identifying these themes is a crucial step
toward understanding the root cause of the problem.

TASK 5: Of the changes you identified in the previous tasks, identify
which one most impacts request response time. The difference that
most affects response time is likely the one that should be investigated
first when attempting to find the root cause. This task evaluates whether
the interface allows participants to quickly identify this key change.

5.3.3 Emulating real diagnoses

In the next phase, participants completed two additional assignments.
These assignments were intended to emulate how the interfaces might
be used in the wild, when diagnosing a new problem for the first time.
For each assignment, the participant was asked to complete tasks 4
and 5 only (as described above). We selected these two tasks because
they most closely align with the questions a developer would ask when
diagnosing an unknown problem.

After this part of the study, participants were asked to agree or
disagree with two statements using a five-point Likert scale: “I am
confident my answers are correct” and “This interface was useful for
solving these problems.” We also asked them to comment on features
of the interface they liked or disliked and to suggest improvements.

5.3.4 Interface comparison

Finally, to get a more direct sense of what aspects of each approach
were useful, we showed participants an alternate interface. To avoid
fatiguing participants and training effects, we did not ask them to
complete the assignments and tasks again; instead we asked them to
briefly consider (using assignments 1 and 3 as examples) whether the
tasks would be easier or harder to complete with the second interface,
and to explain which features of both approaches they liked or disliked.
Because our pilot study suggested animation was most difficult to use,
we focused this part of the study on comparing side-by-side and diff.

5.4 Scoring criteria

We evaluated participants’ responses by comparing them to an “answer
key” created by an Ursa Minor developer who had previously used
Spectroscope to diagnose the real problems used in this study. Tasks 1–
3, which asked for multiple answers, were scored using precision/recall.
Precision measures the fraction of a participant’s answers that were

also in the key. Recall measures the fraction of all answers in the
key identified by the participant. Note that it is possible to have high
precision and low recall—for example, by identifying only one change
out of ten possible ones. For task 3, participants who marked any part
of a correct group were given credit.

Tasks 4 and 5 were graded as correct or incorrect. For both, we
accepted multiple possible answers. For example, for task 4 (“identify
what changes represent”), we accepted an answer as correct if it was
close to one of several possibilities, corresponding to different levels of
background knowledge. In one assignment, several students identified
the changes as representing extra cache misses in the after graph, which
we accepted. Some participants with more experience explicitly iden-
tified that the after graph showed a read-modify write, a well-known
bane of distributed storage system performance.

We also captured completion times for the five quantitative tasks. For
completion times as well as precision/recall, we used the Kruskal-Wallis
test to establish differences among all three interfaces, then pairwise
Wilcoxon Rank Sum tests (chosen a priori) to separately compare the
animation interface to each of side-by-side and diff. We recorded and
analyzed participants’ comments from each phase as a means to better
understand the strengths and weaknesses of each approach.

5.5 Limitations

Our methodology has several limitations. Most importantly, it is diffi-
cult to fully evaluate visualization approaches for helping developers
diagnose problems without going through the entire process of de-
bugging a real, complex problem. However, such problems are often
unwieldy and can take days to diagnose. As a compromise, we designed
tasks to test whether our interfaces enable participants to understand
the gist of the problem and identify starting points for diagnosis.

Deficiencies in our interface implementations may skew participants’
notions of which approaches work best for various scenarios. We
explicitly identify such cases in our evaluation and suggest ways for
improving our interfaces so as to avoid them in the future.

We stopped recruiting participants when their qualitative comments
converged, leading us to believe we had enough information to identify
the useful aspects of each interface. However, our small sample size
may limit the generalizability of our quantitative results.

Many of our participants were not familiar with statistical signifi-
cance and, as such, were confused by the wording of some of our tasks
(especially tasks 1 and 2). We discuss this in more detail in Section 7.

Our participants skewed young and male. To some extent this reflects
the population of distributed-systems developers and students, but it
may limit the generalizability of our results somewhat.

6 USER STUDY RESULTS

No single approach was best for all users and types of graph differences.
For example, side-by-side was preferred by novices, and diff was
preferred by advanced users and experts. Similarly, where side-by-
side and diff proved most useful for most types of graph differences,
animation proved better than side-by-side and diff for two very common
types. When one of our participants (PD06) was asked to pick his
preferred interface, he said, “If I had to choose between one and the
other without being able to flip, I would be sad.” When asked to contrast
side-by-side with diff, SS01 said, “This is more clear, but also more
confusing.” Section 6.1 compares the approaches based on participants’
quantitative performance on the user study tasks. Sections 6.2 to 6.4
describe our observations and participants’ comments about the various
interfaces and, based on this data, distill the approaches best suited for
specific graph difference types and usage modes.

6.1 Quantitative results

Figure 5 shows completion times for each of the three interfaces. Re-
sults for individual tasks, aggregated over all assignments, are shown
(note that assignments, as shown in Table 2, may contain one or multi-
ple types of differences). Participants who used animation took longer
to complete all tasks compared to those who used side-by-side or diff,
corroborating the results of several previous studies [4, 13, 31]. Median
completion times for side-by-side and diff are similar for most tasks.



The observed differences between animation and the other interfaces
are statistically significant for task 1 (“identify statistically significant
changes”) and task 4 (“what changes represent”).1 The observed trends
are similar when students and professionals are considered separately,
except that the differences between animation and the other interfaces
are less pronounced for the latter.

Figure 6a shows the precision, recall, and accuracy results for each
of the three interfaces. Our results are not statistically significant, but
do contain artifacts worth describing. Overall, both side-by-side and
diff fared well, and their median scores for most tasks are similar for
precision, recall, and accuracy. Notable exceptions include recall for
task 2 (“find other latency changes”) and recall for task 3 (“identify
structural changes”), for which diff performed better. Overall, both diff
and animation exhibit much higher variation in scores than side-by-side.
Though animation’s median scores are better than or comparable to the
other interfaces for tasks 3, 4, and 5, its scores are worse for precision
for task 1 and recall for task 2.

Figures 6b and 6c show the results broken down by participant
type. No single interface yielded consistently higher median scores
for either group. Though professionals performed equally well with
diff and side-by-side for many tasks, their scores with diff are higher
for tasks 2 and 3 and higher with side-by-side for task 4. Students’
median scores were higher with side-by-side for task 2 and task 5 and
higher for recall with diff for task 1 and task 3. Also, students’ diff
scores exhibit significantly more variation than side-by-side, perhaps
because not all of them were familiar with text-based diff tools, which
are often used by professionals for source code-revision control. For
professionals, animation’s median scores are almost never higher than
side-by-side. Students had an easier time with animation. For them,
animation’s median scores are higher than diff and side-by-side for task
2 (precision), task 4, and task 5. Animation’s median score is higher
than side-by-side for task 3 (recall).

Figure 7 shows Likert-scale responses to the questions “I am confi-
dent my answers are correct” and “This interface was useful for answer-
ing these questions.” Diff and side-by-side were tied in the number of
participants that strongly agreed or agreed that they were confident in
their answers (5 of 9, or 56%). However, where one side-by-side user
strongly agreed, no diff users did so. Only one animation user (of eight;
12.5%) was confident in his answers, so it is curious that animation
was selected as the most useful interface. We postulate this is because
participants found animation more engaging and interactive than the
other interfaces, an effect also noted by other studies [13, 31].

1Task 1: χ2=6.7, df=2, p=0.04 (omnibus), W=14, p=0.04 (side-anim), W=12,
p=0.02 (diff-anim). Task 4: χ2=6.05, df=2, p<0.05 (omnibus), W=14, p=0.04
(side-anim), W=14, p=0.04 (diff-anim).

Fig. 5: Completion times for all participants. The boxplots show completion
times for individual tasks, aggregated across all assignments. Boxes extend from
the first quartile to the third quartile, and whiskers to the range of the data.

(a) Precision, recall, and accuracy scores for all participants

(b) Precision, recall, and accuracy scores for professionals

(c) Precision, recall, and accuracy scores for students

Fig. 6: Precision/recall scores. The boxplots show precision, recall, and ac-
curacy scores for individual tasks, aggregated across all assignments. Boxes
extend from the first quartile to the third quartile, and whiskers to the range of
the data. Colored triangles represent single outliers.

6.2 Side-by-side

Participants liked the side-by-side interface because it was the most
straightforward one. It showed the true response times (i.e., overall
latencies) of both graphs, enabling participants to quickly get a sense
of how much performance had changed. Correspondence lines clearly
showed matching nodes in each graph. Also, this interface allowed in-
dependent analyses of both graphs, which our professional participants
said was important. Comparing diff to side-by-side, PD08 said “it’s
[side-by-side] a lot easier to tell what the overall latency is for each
operation. . . . [the nodes are] all put together without any gaps in the
middle.” SD09 said, “With [side-by-side], I can more easily see this is
happening here before and after. Without the dashed lines, you can’t see
which event in the previous trace corresponds to the after trace.” These
sentiments were echoed by many others (e.g., SD06, SD07, PD07).

Our side-by-side interface suffers from two key drawbacks. First,
it is difficult to identify differences when before/after graphs differ
significantly because corresponding nodes become farther apart. PS01
complained that “the points that should be lining up are getting farther
and farther away, so it’s getting more difficult to compare the two.”
PD06 complained that it was more difficult to match up large changes
since the matching counterpart could be off the screen. Similar com-
plaints were voiced by other participants (e.g., PS02, SS02, PS04).
Adding the ability to pin one graph relative to another to our side-by-
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Fig. 7: Likert responses, by condition. Each participant was asked to respond
to the statements “I am confident my answers are correct” and “The interface
was useful for answering these questions.”

side implementation would limit vertical distance between differences.
However, horizontal distance, which increases with the number of
concurrent threads in each request, would remain.

Second, when nodes are very close to another, correspondence lines
became too cluttered and difficult to use. This led to complaints from
several participants (e.g., PS03, SS01, SS03, PA13). To cope, SS03 and
PS05 gave up trying to identify matching nodes between the graphs and
instead identified structural differences by determining if the number
of correspondence lines on the screen matched the number of nodes
visible in both the before and after graph. Modifying our side-by-side
interface to draw correspondence lines only at the start of a contiguous
run of matching nodes would help reduce clutter, but would complicate
edge latency comparisons.

Based on participants’ comments above and our observations, Ta-
ble 3 shows the use cases for which we believe side-by-side is the best
of the three approaches. As shown in Table 3, side-by-side’s simple
approach works best for aiding comprehension. However, due to po-
tential for horizontal skew and clutter, it is not the best approach for
identifying any type of difference.

6.3 Diff

Participants’ comments about our diff interface were polarized. Pro-
fessionals and more advanced students preferred diff’s compactness,
whereas others were less decisive. For example, PS03 claimed diff’s
compact representation made it easier for him to draw deductions. In-
deed, unlike side-by-side, diff always shows differences right next to
each other, making it easier to find differences when before and af-
ter graphs have diverged significantly. Also, by placing differences
right next to each other, diff allows for easier identification of smaller
structural and edge latency changes. In contrast, SS04 said, “[Side-by-

side] may be more helpful than [diff], because this is not so obvious,
especially for structural changes.”

Though participants rarely made explicit comments about finding
diff challenging to use, we found that diff encouraged incorrect mental
models in student participants. For example, SD08 and SD09 confused
structural differences within a single thread of activity with a change
in the amount of concurrency. It is easy to see why participants might
confuse the two, as both are represented by fan-outs in the graph.

We postulate that participants’ comments about diff vary greatly
because its compact representation requires more knowledge about
software development and distributed systems than that required by the
more straightforward side-by-side interface. Additionally, many of our
professionals are familiar with diff tools for text, which would help
them understand our graph-based diff technique more easily.

Since it places differences close together, Table 3 lists diff as the
best approach for showing edge latency changes. However, because it
encourages poor mental models for structural differences, it is not the
best approach for showing concurrency changes and intra-thread event
changes.

6.4 Animation

Our participants often struggled when using our animation interface.
With this interface, all differences between the two graphs appear
and disappear at the same time. This combined movement causes
two problems. First, it creates a large amount of visual flux when
both structural and edge latency differences are present within the
same thread of activity. This confused users and prevented them from
accurately identifying differences. PA11 complained, “Portions of
graphs where calls are not being made in the after trace are fading away
while other nodes move on top of it and then above it . . . it is confusing.”
These sentiments were echoed by many other participants (e.g., SA11,
PA12, SA10, PA13).

Second, the large amount of combined movement that results when
multiple difference types are present in the same thread prevented
participants from establishing static reference points for gauging the
impact of a given difference. SA10 told us: “I want to. . . pick one
node and switch it between before and after. [But the same node]
in before/after is in a different location completely.” SA12 said he
did not like our animation interface because of the lack of consistent
reference points. “If I want to measure the size of an edge, if it was in
the same position as before. . . then it’d be easy to see change in position
or length.”

Staged animation techniques [20], in which differences are animated
in one at a time, could reduce combined movement, lower visual flux,
and allow users to establish reference points. However, significant
research is needed to understand how to effectively stage animations
for graphs that exhibit both structural and edge latency changes. Many
graph animation visualizations do not use staging and only recent work
has begun to explore where such basic approaches fail [16].

Another negative aspect of animation (staged or not) is that it sug-
gests false intermediate states. As a result, SA13 interpreted our inter-
face’s animation sequence as a timeline of changes and listed this as a
feature he really liked. PA13 told us we should present a toggle instead
of a slider so as to clarify that there are only two states.

Comprehension Difference identification

Shows overall latency change Supports independent analyses Concurrency change Intra-thread event change Edge latency change Intra-thread mixed

Side 3 3
Diff 5 3
Anim 3 3 3 5

Table 3: Most useful approaches for aiding overall comprehension and helping identify the various types of graph differences contained in the user
study assignments. These results are based on our qualitative observations and participants’ comments. A 3 indicates the best approach for a particular category,
whereas a 5 indicates an approach poorly suited to a particular category. Side-by-side is best for aiding overall comprehension because of its straightforward
presentation. Diff is best for showing edge latency changes because it places such changes right next to one another. Animation is best for showing structural
differences (i.e., intra-thread event changes and concurrency changes) due to the blinking effect it creates for them. Due to their various drawbacks, no single
approach is best for showing multiples types of differences within a single thread of activity.



Despite the above drawbacks, animation excels at showing graphs
with only structural differences, such as changes to events within
threads (i.e., intra-thread event changes) and concurrency changes.
Participants can easily find reference points for such difference by look-
ing for the beginning and end of the structural change (or a contiguous
group of them). Additionally, structural differences by themselves,
especially concurrency-related ones, do not create a large amount of
visual flux because they tend to affect distinct, segmented portions of
the graphs. As such, instead of a cacophony of movement, the effect
when structural differences are animated is a pleasing blinking effect
in which distinct portions of the graph appear and disappear, allowing
users to identify such differences easily. For one such assignment, both
PA11 and PA12 told us the structural difference was very clear with
animation. Other studies have also noted that animation’s effectiveness
increases with increasing separation of changed items or decreasing
visual flux [4, 16].

Due to the blinking effect it creates, Table 3 lists animation as the best
approach for showing structural differences. However, the problems
caused by combined movement make it the worst interface for showing
both edge latency and structural differences within a single thread of
activity (i.e., intra-thread mixed changes).

7 DESIGN LESSONS & RESEARCH CHALLENGES

In addition to yielding insights about which visualization approaches
are best suited to different scenarios, our user study experiences have
helped us identify several important design guidelines for future diag-
nosis visualizations. This section describes the most important ones,
and highlights associated research challenges.

Provide anchor points to help reduce skew and combined move-
ment: Many users struggled with the increasing skew in the side-by-
side layout, as well as the inability to quickly trace a correspondence
from one graph to another (e.g., PS02, SA10, and PS05). Users also
struggled with the animation interface when both edge latency and
structural differences were present within the same thread because it
animated all of them together. A future interface might anchor the
comparison in multiple or user-selectable locations to mitigate this
problem. However, there are subtleties involved in choosing and using
anchor points.

One option, as requested by most of our participants (e.g., PA12
and PD08), is to anchor the comparison at a user-selectable location.
Another is to re-center the graph as users scroll through it. However,
both techniques distort the notion that time flows downward, and neither
would reduce horizontal distance or clutter. Approaches that restructure
the comparison to minimize the horizontal distance between matched
nodes are an interesting research opportunity.

For the animation technique, anchoring in multiple locations could
be achieved by staging changes. Questions of ordering immediately
arise: structural changes might be presented before, after, or between
latency changes. The choice is non-obvious. For example, it is not
clear whether to animate structural and latency changes together when
the structural change causes the latency change or even how to algo-
rithmically determine such cases (see Figure 1 for an example).

Selectively reduce diagnosis output complexity: Even when they
were navigable, graphs with hundreds of nodes posed an obstacle to
understanding the output at a high level. While the straightforward
approach to zooming we implemented for this study allows the entire
graph to be seen, it does not provide intuition into the graph’s meaning
when zoomed out. Therefore, users needed to scroll through graphs
while zoomed in, a complaint for multiple users (e.g., SD05, SA10).

Further work is needed to investigate options for a higher-level view
of the graph that could be shown instead. Some options for semantic
zooming based on such a view include coalescing portions of the
comparison that are the same in both graphs, or grouping sequences of
similar operations (mentioned by several participants, including SD09,
PS02, and PD09). Determining which portions to coalesce and defining
“similar” operations are non-trivial problems, and solutions may require
user guidance or automated techniques to learn meaningful groupings.

Include strong annotation mechanisms: Annotation was used in
this study to record answers, but has the potential to be a valuable tool

for collaborative debugging. Developing and debugging a large system
involves multiple components built and maintained by different parties,
many without knowledge of the internal workings of components that
might contain a problem. Users could make annotations for other de-
velopers or for documentation. In fact, several professional participants
from Google listed our annotation mechanism as a strength of the inter-
faces (e.g., PA13, PS04, and PD08). PS04 said “[I] really like the way
you added the annotation. . . .So other people who are later looking at it
can get the benefit of your analysis.” Supporting cooperative diagnosis
work with an annotation interface, such as that used in Rietveld [29]
for code reviews, is an interesting avenue of future work.

Match automation to users’ expectations: Like several other di-
agnosis tools, Spectroscope uses statistical significance as the bar for
automatically identifying differences, because it bounds wasted devel-
oper effort by limiting the expected number of false positives. However,
many of our participants did not have a strong background in statistics
and so mistook “statistically significant” to mean “large changes in
latency.” They did not know that variance affects whether an edge
latency change is deemed statistically significant. This generated con-
fusion and accounted for lower than expected scores for some tasks.
For example, some participants (usually students) failed to differentiate
between task 1 and task 2, and a few refused to mark a change as having
the most impact unless it was highlighted in red (as statistically signifi-
cant). Trying to account for why one particularly large latency change
was not highlighted, SA10 said, “I don’t know what you mean by sta-
tistically significant. Maybe it’s significant to me.” These concerns
were echoed by almost all of our participants, and demonstrate that
automation must match users’ mental models. Statistics and machine
learning techniques can provide powerful automation tools, but to take
full advantage of this power—which becomes increasingly important
as distributed systems become more complex—developers must have
the right expectations about how they work. Both better techniques and
more advanced training may be needed to achieve this goal.

8 SUMMARY & NEXT STEPS

For tools that automate aspects of problem diagnosis to be useful,
they must present their results in a manner developers find clear and
intuitive. This paper compares the relative merits of three commonly
used visualization approaches in the context of presenting the results
of one promising automated problem localization technique. Via a
26-participant user study, we found that each approach has unique
strengths for different distributed systems problem types, developer
usage modes, and users.

Since each of the approaches provided unique benefits, we believe
the next step of our research will involve developing an integrated
interface that allows users to dynamically switch between side-by-side,
diff, and animation. We suspect that empowering users to view the same
output from multiple perspectives will enable insights not possible with
any single approach. As part of developing this interface, we believe
it is important to explore how to stage animation to reduce combined
movement and also to investigate mechanisms for semantic zooming
of large, complex graphs.

Finally, we are also interested exploring whether our insights about
the various approaches could help guide visualizations in other domains
that use directed acyclic graphs (or similar types of graphs). Examples
include comparing software versions [10], business-process graphs [3]
and general workflows [33].
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