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Vascular adaptation—or structural changes of microvessels in response to physical and metabolic
stresses—can influence physiological processes like angiogenesis and hypertension. To better under-
stand the influence of these stresses on adaptation,Prieset al. (1998,2001a,b,2005) have developed
a computational model for microvascular adaptation. Here, we reformulate this model in a way that is
conducive to a dynamical systems analysis. Using these analytic methods, we determine the equilibrium
geometries of a single vessel under different conditions and classify its type of stability. We demonstrate
that our closed-form solution for vessel geometry exhibits the same regions of stability as the numerical
predictions ofPrieset al. (2005, Remodeling of blood vessels: responses of diameter and wall thickness
to hemodynamic and metabolic stimuli.Hypertension,46, 725–731). Our analytic approach allows us
to predict the existence of limit-cycle oscillations and to extend the model to consider a fixed pressure
across the vessel in addition to a fixed flow. Under these fixed pressure conditions, we show that the
vessel stability is affected and that the multiple equilibria can exist.

Keywords: microvascular; adaptation; stability.

1. Introduction

The primary function of the cardiovascular system is to transport oxygen and nutrients to and provide
waste removal from tissues. While this exchange occurs in the capillaries, regulation of the cardio-
vascular system occurs systemically. Homeostasis is maintained through a complex feedback system,
which includes modulation of the pumping capability of the heart and the resistance of the microvas-
culature. In particular, structural remodelling of the body’s small blood vessels occurs continuously in
response to changing hemodynamic conditions—namely flow rate and pressure—so as to maintain ap-
propriate blood flow to the organs and tissues. Vascular remodelling is an important part of the response
to changing conditions that occur in physiological events such as development, endurance training and
pregnancy (Buuset al.,2001). However, vascular remodelling, normal or impaired, may also play a role
in the pathologies associated with conditions such as hypertension, diabetes and collateral formation
after ischemic injury (Dumontet al.,2007).
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During remodelling, vessels may change in size and may also be added, as seen in angiogenesis,
or die off, as seen in capillary network pruning (Dor et al., 2001), without compromising the stability
of adjacent vessels (Araujo & McElwain,2004). An understanding of this structural remodelling of the
microvasculature has great relevance to numerous physiological and pathological events. However, the
small size of microvessels, on the order of 103 μm long and 25–45μm in diameter (Pozrikidis,2003)
and the challenges of reproducing their behaviour over timein vivo or in vitro, makes experimental
work quite difficult (Chrobaket al., 2006). In order to obtain a more complete and broadly applicable
understanding of how microvessels change over time, mathematical models can be useful in predicting
how vessels will react to changes in their environment without subjecting actual vessels to those stresses
(Perktold & Rappitsch,1995).

Though we focus on analysis of a specific model, it should be noted that vascular remodelling and
angiogenesis are rather active topics in mathematical biology. They are discussed in a recent review of
the key approaches to modelling microvascular adaptation with regards to angiogenesis (Chaplainet al.,
2006). These models have explored vascular adaptation in healthy tissue (Owenet al., 2009) and in
the capillary networks surrounding tumours, which have been of demonstrated importance in tumour
development (Stephanouet al.,2006). Some of these models suggest that the adaptation of microvessels
surrounding tumours are critical factors in the angiogenesis that feeds tumour growth (Mcdougallet al.,
2002;Bartha & Rieger, 2006).

Here, we consider a model for microvascular structural adaptation developed over the past decade
by Prieset al. (1998,2001a,b,2005). Their computational model describes the diameter and width of
a vessel with two coupled differential equations. By conducting a set of careful numerical experiments,
the authors found a set of model parameters that lead to stable vessels with geometries that are well
matched toin vivo findings. These vessels adapt towards an equilibrium diameter and width instead of
collapsing, oscillating or expanding to unreasonable dimensions. We use the tools of dynamical systems
to analyse the model in detail and find that our results from reformulating the model match the numerical
conclusions ofPrieset al. (1998,2001a,b,2005).

Our first exploration considers a single vessel with a fixed blood flow. We formulate the equations
of the model ofPrieset al. (1998,2001a,b,2005) in a coherent system and describe the physical and
metabolic stimuli that cause vascular remodelling. These stimuli are combined into a pair of differential
equations that describe remodelling. Using analytic techniques, we obtain a closed-form solution for
the single equilibrium solution under the fixed flow condition. We analyse the type of stability at this
equilibrium and find that the region of stability predicted by our dynamical systems approach matches
the region found in the numerical simulation ofPrieset al.(1998,2001a,b,2005). We also find evidence
of limit-cycle oscillations in which the vessel diameter and width continuously go through a process of
expansion and contraction. Expanding the analysis, we consider the model when the pressure drop across
the vessel is fixed instead of the flow. We find that two equilibria are present in this case, although only
one is stable. In this way, we explore the proposed model for a single vessel using tools from dynamical
systems.

2. Adaptation model

The model of structural adaptation we consider is a mathematical model proposed byPrieset al.(2005).
Here, we focus our attention on a single vessel and synthesize the model from several of the group’s
published works to develop a straightforward set of differential equations and a closed-form represen-
tation of vessel diameter (Prieset al., 1998,2001a,b,2005). The vessel we consider has the geometry
shown in Fig.1 and is modelled as a tube of fixed length and uniform wall thickness with Poiseuille
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FIG. 1. Schematic of single vessel. The pressure drop across the vessel of lengthL is ΔP and the flow through the vessel isQ.
The vessel has lumenD, wall width w, mid-wall diameterDm = D + w and cross-sectional wall areaAw = πwDm.

flow. The boundary conditions of this model are flexible and can be posed in terms of either a fixed flow
Q or fixed pressure dropΔP. We first consider a vessel with a fixed flow condition, and then move onto
the previously unexplored, but biologically relevant, case of a vessel with a fixed pressure drop. In both
cases, we hold the outlet pressure fixed.

The model ofPrieset al. (1998,2001a,b,2005) for microvascular adaptation describes how the
mid-wall diameterDm and cross-sectional areaAw of a vessel adapt over time (Prieset al.,2005). Their
model consists of a system of coupled differential equations for each vessel in a network,

dDm

dt
= f (Dm, Aw)Dm, (2.1)

dAw

dt
= g(Dm, Aw)Aw. (2.2)

The mid-wall diameter remodelling ratef and cross-sectional area remodelling rateg are each non-
linear functions ofDm andAw and depend on both hemodynamic and metabolic stimuli.

Vascular remodelling is driven by physical stresses on the vessel and chemical stimuli caused by
metabolic demand. The two primary physical stresses are shear stress (τ, dependent upon flow through
the vessel) and circumferential stress (σ, dependent on the pressure difference,PT, between the inside
and outside of the vessel) (Lehoux & Tedgui, 1998). These physical stresses are combined to form
physical stimuli which are functions of the vessel’s width, diameter, pressure, flow and other hemody-
namic parameters. In addition to these physical stimuli, the model also includes a metabolic stimulus
and a conducted stimulus, which depend on blood oxygen levels and represent the surrounding tissue’s
demand for oxygen.

2.1 Stresses

The wall shear stressτ describes the stress placed on the inner surface of a vessel due to the fluid moving
along the sides of the vessel. The shear stress,

τ =
DΔP

4L
, (2.3)
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canbe expressed as a function of the pressure dropΔP, the vessel lengthL and the vessel lumenD.
Depending on the boundary conditions that are investigated,Q can be substituted into (2.3) by using the
relationship between pressure drop and flow

ΔP =
128ηL Q

π D4
. (2.4)

Circumferentialstress is the stress within the vessel walls due to the transmural pressurePT. Trans-
mural pressure is the pressure difference between the outside of a vessel (Ptissue, as shown in Fig.1) and
the average interior pressure. Thus, the circumferential stress,

σ =
PT D

2w
, (2.5)

is a function of the transmural pressurePT, the lumenD and the widthw.

2.2 Metabolic stimulus

In addition to physical stresses on the blood vessel, the model includes a chemical stimulus dependent
on blood flow. Since tissues require oxygen and other metabolites, chemical signals are released into
the bloodstream to increase blood flow when these levels are low. Thus, the metabolic stimulus captures
the tissues’ demand for additional oxygen. Though a great deal of emphasis is typically placed upon the
physical stresses, the biological importance of this stimuli is mirrored by the observation that, mathe-
matically, the metabolic stimulus serves to stabilize vessel networks that would otherwise collapse with
only the influence of shear and circumferential stress (Prieset al.,2001a).

The level of available oxygen is described by the saturation of oxygen in the blood S(PO2). Oxygen
saturation is assumed to decrease linearly down the lengthL of the vessel due to consumption by the
surrounding tissue,

S(PO2)|x=L = S(PO2)|x=0 −
keL

2QC0H
, (2.6)

whereke is the rate at which vessels consume oxygen per unit length,C0 is the binding constant between
oxygen and hemoglobin andH is the hematocrit of blood (Prieset al.,2005). The saturation of oxygen
is then converted into partial pressure of oxygen using Hill’s equation (Prieset al.,2001a),

PO2 = P50

(
S(PO2)

1 − S(PO2)

)1/3

, (2.7)

where P50 is a reference pressure. This partial pressure is then used to define the level of metabolic
signalJdown

m at the downstream end of the vessel,

Jdown
m = Jup

m +

{
kmL

(
1 − PO2|x=L

PO2ref

)
PO2 6 PO2ref,

0 PO2 > PO2ref,
(2.8)

whereJup
m is the metabolic signal entering the vessel andkm is the maximum metabolic production rate

per unit length. Note that this metabolic signal is conditional on whether the partial pressure of oxygen
is above a level given by the reference pressure PO2ref. In other words, vessels with sufficient oxygen
will not produce this metabolic signal.
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The metabolic stimulus that acts on a vessel is determined by the amount of metabolite flowing past
a given wall area and decreases with increased flow rate. In particular, the metabolic stimulusSm,

Sm = ln

(
1 +

Jm

Q + Qref

)
, (2.9)

dependson the ratio of the average metabolic signalJm = 0.5(Jup
m + Jdown

m ) to the flow Q. Qref is
a small value that prevents singular behaviour in vessels with very low flow. Overall, increasing the
average metabolic signal increases this stimulus.

2.3 Conducted stimulus

In addition to the metabolic stimulus, vessels also transmit a conducted metabolic stimulus or a
metabolic signal that travels upstream, likely via ion channels between cells, when metabolite is needed
(Prieset al., 2001a). A conducted metabolic signalJdown

c entersa vessel and produces an upstream
signal Jup

c that is based on itself and the vessel’s metabolite. The combined signal depends onJdown
c ,

themetabolic stimulus, and is assumed to decay exponentially with vessel lengthL,

Jup
c = (Jdown

c + Sm)e
− L

Lref , (2.10)

whereL ref is a reference vessel length. The conducted stimulusSc,

Sc =
Jc

Jc + J0
, (2.11)

is a function of the average conducted signal in the vesselJc = 0.5(Jdown
c + Jup

c ) anda reference value
J0. This relationship creates a conducted stimulusSc thatincreases withSm andsaturates at 1.

2.4 Physical stimuli

While the metabolic stimulusSm, and conducted stimulusSc, have a direct effect on vessel adaptation,
the impacts of the physical stressesτ andσ are more oblique. The model specifies stimuliSτ andSσ ,

Sτ =
ln
(

τ
τref

)

1 + kwτ ln
(

w
wref

) , (2.12)

Sσ =
ln
(

σ
σref

)

1 + kwσ ln
(

w
wref

) , (2.13)

that define how shear and circumferential stresses affect vascular adaptation. These stimuli increase
monotonically with increasing stress and decrease with increased vessel width.τref, σref andwref give
threshold levels at which the stimuli start taking effect andkwτ andkwσ govern the stimuli’s depen-
dence on width. Both stimuli increase monotonically with their stress component and decrease with
width. These functions capture the natural tendency of vessels to normalize their shear and wall stresses
in response to changing stimuli. Specifically, these functions capture the biological observation that
increased shear stress tends to cause vasodilation or diameter increase, that in turn returns shear stress
to a baseline level. On the other hand, increased wall stress tends to cause vasoconstriction which
results in a thicker wall and lowered wall stress.
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2.5 Ordinary differential equations

Each vessel is assumed to respond to a linear combination of the four primary stimuli defined in
(2.9–2.13). For convenience, these four stimuli are condensed into two effective stimuliSτm andSσm,

Sτm = Sτ + kmd(Sm + kcSc) − ksd, (2.14)

Sσm = Sσ + kmg(Sm + kcSc) − ksg, (2.15)

wherekmd, kmg andkc are parameters that govern the relative strength of metabolic stimuli whileksd
andksg are background stimulus levels (Prieset al.,2001a).

The mid-wall diameter and the cross-sectional area remodelling rates may be expressed as a weighted
combination of the effective stimuliSτm andSσm,

dDm

dt
= (RτdSτm + RσdSσm) Dm, (2.16)

dAw

dt
= Rw

(
RτgSτm + RσgSσm

)
Aw. (2.17)

Rτd, Rτg, Rσd, andRσg define the relative contributions of each stimulus to the remodelling rate and
are normalized such thatR2

τd + R2
σd = 1 andR2

τg + R2
σg = 1. Rτd is assumed to vary on [0,1], while

the other coupling parameters are defined on [−1,1]. Rw defines the relative strength of wall mass
remodelling compared to lumen remodelling (Prieset al.,2005).

In Fig. 2, we show the 2D parameter space defined byPrieset al. (1998,2001a,b,2005) and used in
our analysis. Physiologically, shear stress is thought to primarily affect diameter, while circumferential
stress primarily affects wall mass. Thus, we define direct coupling as the case when diameter adaptation
is purely caused bySτm and changes in wall mass are due toSσm. These are reflected in the coupling
values centred nearRτd = 1, Rτg = 0, Rσd = 0 andRσg = 1 (see black marker in Fig.2). Notably,
cross-coupling, whereSτm affects Am and Sσm changesDm, is also possible and is represented by

FIG. 2. Two-dimensional coupling space ofRτd, Rτg, Rσd and Rσg used in our analysis. TheR-values represent the relative
strength of stimuli. The physiologically sensible direct-coupled set ofR-values is located in the centre of the space shown. These
R-values vary sinusoidally in the mapping above; arrows denote the direction of increase.
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regions whereRτg, Rσd > 0. However, large degrees of cross-coupling (see grey markers in Fig.2)
are physiologically abnormal. We will use this parameter space later when we discuss the stability of
microvessels under adaptation.

3. Single vessel under constant flow conditions

As previously mentioned, we begin by analyzing a single vessel subject to a fixed flow. We consider
a vessel at some initial mid-wall diameterDm andcross-sectional wall areaAw that adapts over time
according to the model presented in (2.3–2.17). The parameter values used in our analysis are typical
of a single vessel and are given in Table1. Without loss of generality, we assume that the metabolic
and conducted signals entering the vessel are zero (Jup

m = 0 and Jdown
c = 0). First, we consider the

equilibrium solutions and examine their stability.

3.1 Unique equilibrium

In the case when the flow is fixed, one equilibrium is present. To demonstrate this, we solve for the
width and diameter wheredDm

dt = dAw
dt = 0. This can occur when eitherDm = 0 and Aw = 0 or when

TABLE 1 Parameter values used in single-vessel analysis for fixed flow as previously specified byPries
et al. (1998;2001a;2005)

Parameter Value Description

τref 0.5598dyn
cm2 Referencevalue for shear stress

σref 32050dyn
cm2 Referencevalue for circumferential stress

wref 0.804μm Reference value for width
kc 1.66 Scale factor for conducted stimulus
kmd 0.955 Scale factor for shear metabolic contribution
kmg −0.374 Scale factor for circumferential metabolic contribution
ksd 3.077 Equilibrium level ofSτm
ksg 0.0177 Equilibrium level ofSσm
kwτ 0.114 Strength of width influence onSτm
kwσ 0.609 Strength of width influence onSσm
L 2000μm Vessel length used in analysis
Q 9 nl

min Flow used in analysis
Pout 46655dyn

cm2 Pressureat vessel outlet

Ptissue 0 dyn
cm2 Tissue pressure

C0 0.5 Percent of oxygen binding to red blood cells
P50 38KPa Partial pressure of oxygen reference
N 3 Defined in Hill’s Equation

ke 4 × 10−11 cm3

μm∙min Derivative of oxygen flux in the vessel
S(PO2)|x=0 0.9398 Initial saturation of oxygen in the vessel
L ref 14292μm Reference vessel length
J0 27.9 Basal conducted stimulus
Jdown

c 0 Downstream conducted signal
Jup

m 0 Upstream metabolic signal
PO2ref 94.4KPa ReferenceP O2 value
Qref 10−4 nl

min Referenceflow to avoid singularity
H 0.4 Hematocrit
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both Sτm = 0 andSσm = 0 simultaneously. The first case corresponds to a situation in which vessels
collapse, while the second case (in which we are interested) occurs when the net adaptation stimulus is
zero. To find this location computationally, we evaluateSτm and Sσm over a space ofD andw. This
produces two contours that correspond toSτm = 0 andSσm = 0, respectively. Thus, we are interested
in finding the intersection of these contours. Notably, when flow is fixed,Sm andSc are constant with
respect to width and diameter, so they are represented as positive constants,C1 andC2. Therefore, for
fixed flow

0 = Sτm =
ln
(

τ
τref

)

1 + kwτ ln
(

w
wref

) − C1 ⇒ C1 + kwτ C1 ln

(
w

wref

)
= ln

(
τ

τref

)
,

0 = Sσm =
ln
(

σ
σref

)

1 + kwσ ln
(

w
wref

) − C2 ⇒ C2 + kwσ C2 ln

(
w

wref

)
= ln

(
σ

τref

)
.

Since ln
(

w
wref

)
, ln

(
τ

τref

)
and ln

(
σ

σref

)
are monotonic functions ofw, τ andσ , they can only intersect

once in theD andw plane. The presence of one intersection corresponds to one equilibrium in the model.
Figure (3)a illustrates the presence of a unique equilibrium solution, while Figure (3)b shows that this
solution varies withQ such that higher flows lead to narrower vessels.

The existence of a unique equilibrium can also be verified analytically. By solving bothSτm = 0
and Sσm = 0 for D as a function ofw, we obtain closed-form solutions for the curves illustrated in
Fig. (3)a. By equating these closed-form functions, we find that there is one value ofw, and thus one
equilibrium geometry that produces an intersection if flow is fixed,

D =
(

32ηQ

πτref
e
(kmd(Sm+kcSc)−ksd)

(
1+kwτ ln

(
w

wref

)))1/3

(from Sτm),

D =
2wσref

PT
e
(kmg(Sm+kcSc)−ksg)

(
1+kwσ ln

(
w

wref

))

(from Sσm).

FIG. 3. Existence of a single equilibrium in width and diameter. (a) In the fixed flow case, only one intersection ofSτm = 0 and
Sσm = 0 is present, which corresponds to a single equilibrium. (b) The single equilibrium values ofD andw vary with Q.
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STABILITY OF A MICROVESSEL SUBJECT TO STRUCTURAL ADAPTATION 9 of 16

In addition to confirming the existence of a single equilibrium, we are also interested in the factors
that affect the location of the equilibrium. Figure3(b) illustrates the dependence of equilibrium diameter
and width on flow. Although the relationship is not linear due to the presence of metabolic effects,
varyingQ still produces only one equilibrium. Additionally, the location of the equilibrium is dependent
upon the parameters embedded inSτm andSσm, which represent environmental conditions. Notably, the
conditions under which the stimulus terms equal zero are not dependent upon the values ofRw, Rτd,
Rτg, Rσd andRσg.

Having determined the locations of equilibria in the model, we are interested in the behaviour of the
equilibrium. Depending on their type of stability, vessels may either approach the equilibrium solution
over time or be pushed away from it. Understanding both the equilibrium geometry and its type of
stability allows for a better understanding of how vessels adapt in this model.

3.2 Stability of a single equilibrium

Our exploration of stability begins with the numerical results produced in simulation byPrieset al.
(1998,2001a,b,2005). As mentioned above, the equilibrium geometry is not dependent uponRτd, Rτg,
Rσd, Rσg or Rw, but these values do influence the equilibrium’s stability.

The aim of our analytic stability investigation is to determine the behaviour of the system around
its equilibrium. To do this, we first consider a linear system of ordinary differential equations:ẋ = Ax.
Althoughour system is non-linear, our treatment of the linear case will set the stage for dealing with the
non-linear system. It is well accepted that the general solution to a linear system of ordinary differential
equations,

x(t) =
∑

j

cj eλ j tvj ,

is a linear combination of the eigenvectorsvj of the matrixA. These eigenvectors are weighted with
magnitudecj eλ j t thatdepends on the eigenvaluesλ j . By inspection of this solution, we conclude that
if all the real parts of the eigenvalues are negative, the solution will converge to zero. However, a single
eigenvalue with positive real part will lead to divergent behaviour. Thus, to determine the stability of our
system, it is necessary to determine the eigenvalues of the relevant linear differential equations. Recall
from earlier that our model consists of two coupled, first-order, non-linear differential equations (2.1)
and (2.2).

We first linearize the system about the single equilibrium using a Taylor series approximation. This
process is discussed in many texts (e.g.Strogatz,2001). The Jacobian of the system is evaluated at a
fixed point. By considering the eigenvalues of the Jacobian, it is found that the system is stable at the
fixed point if and only if the trace of the Jacobian is negative and the determinant is positive, and that
oscillatory solutions exist if tr2 < 4Δ.

Usingthis analytic method of determining stability, we map the stability regions in Fig.4(a) onto the
R-space shown in Fig.2. This is done by sweeping theR-values for a given equilibrium and determining
the resulting eigenvalues, which allow the equilibrium to be classified. As mentioned above, the type
of stability exhibited by an equilibrium depends on these cross-coupling parameters. Mapping these
classifications onto theR-space produces Fig.4(b). White regions represent vessels that converge as
a stable spiral, whereas vessels withR-values in the black and dark grey regions do not converge.
The centre of the plot, which corresponds to direct coupling, is stable as expected. The stable regions,
however, have some degree of cross-coupling, which indicates thatD andw are dependent on bothSτm
andSσm.
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FIG. 4. Analytical regions of stability. The characteristic stability types based on the trace tr and determinantΔ shown in (a) are
mapped to theR-space. This region ofRτd, Rτg, Rσd andRσg displayed in (b) is the same shown in Fig2. Examples of the type
of behaviour characteristic of the stability regions are provided in Fig.4(b).

A comparison with the results ofPrieset al. (1998,2001a,b,2005) confirms this analytical stability
portrait. The authors performed a stability analysis for the same single-vessel case and also focus on
obtaining the dependence of stability on theR-values. Using a simulation for vessel geometry,Pries
et al. (1998,2001a,b,2005) investigate the stability of a single vessel numerically (Prieset al.,1998).
After providing the microvessel with initial conditions forD and w, they numerically integrate the
system until the magnitudes ofdDm

dt and dAw
dt are below a threshold value. The time at which the vessel

reaches the equilibrium threshold is logged, where low convergence time indicates a stable vessel and
failure to converge in a given time limit denotes instability.

Figure5(a) shows the results obtained byPrieset al. (1998,2001a,b,2005) over the same space of
R-values. It is evident from the numerical results that there is a bounded region in this space where the
single vessel will converge to a fixed width and diameter. Notably, this space is akin to the analytical
region of stability we find in Fig.4(b).

AlthoughPrieset al. (1998,2001a,b,2005) classify stability by convergence time, it is possible to
compare these results to our stability analysis. One way of obtaining a metric that is similar to conver-
gence time uses the magnitude of the eigenvalues (Fig.5(b)). For eigenvalues with a negative real part,
a, the magnitude ofa determines how quickly the solutions converges along the associated eigenvector.
Therefore, when both eigenvalues have a negative real part, the one with the smaller magnitude indi-
cates the upper limit of convergence time. In Fig.5(b), if the real part of both eigenvalues is negative,
we plot the one with the smaller magnitude. Larger values (white) correspond to faster convergence to
equilibrium, while smaller values (grey) correspond to slower convergence. The black regions have at
least one eigenvalue with a positive real part, so the equilibrium is unstable and does not converge. This
classification by magnitude of eigenvalue (based on the analytical stability results) closely matches the
computational results fromPrieset al. (1998,2001a,b,2005) shown in Fig.5(a).

We further validate our stability predictions by simulating the model near the equilibrium. In Fig.6,
we show three examples of the model’s trajectory in the(D, w) phase plane corresponding to different
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FIG. 5. Comparison to results of Prieset al. (a) (used with permission (Prieset al., 2005)). The region ofRτd, Rτg, Rσd and
Rσg is identical to the region in Fig.4(b). The intensity of the regions in (b) corresponds toI = min(|Re{λ1}|, |Re{λ2}|), where
Re{λ1} and Re{λ2} are negative. White regions correspond to largerI , while grey regions have a smallerI . Black regions denote
equilibria with at least one eigenvalue that has a positive real part.

R-values chosen from Fig.4(b). The presence of stable nodes (a), stable spirals (b) and saddle points
(c) is evident. Unstable nodes and spirals are not shown but have phase portraits similar to (a) and
(b), respectively. When saddle points, unstable nodes or spirals are present, our modelled vessels either
collapse or become unreasonably large. In simulation, we find that these vessels approach a location in
the model that is ill defined; approaching zero inD orw produces singularities in the stimulus equations,
while moving towards∞ is highly non-physiological. Further work is needed to conclusively define the
behaviour of unstable vessels and the physical meaning of the model in these areas.

We have also found that the limit cycles exist in small regions of theR-space which correspond to
unstable spirals. To illustrate this, we choose the point in theR-space shown in Fig.7(a). The subsequent
limit cycle in the(D, w) phase plane is shown in Fig.7(b). If this limit cycle is viewed as a function
of time, we see the oscillations inD andw present in Fig.7(c). The cause of these oscillations and
subsequent limit-cycle behaviour is relatively complex. However, for the fixed flow case, it is important
to note thatSm and Sc are not dependent onD or w, so the metabolic and conducted stimuli do not
produce oscillations. Instead, the shear and circumferential stresses oscillate, as shown in Fig.7(d).
Although the oscillation of these stresses are both a cause and a result of the oscillation ofD and
w, the phase shift betweenτ and σ is not the same as that ofD and w. This is due to the cross-
coupling in the differential equations, which causes the remodelling ofD andw to be dependent on
bothτ andσ . These oscillations are surprising and raise questions about the limits of the model as well
as the long-term behaviour of blood vessels. However, the existence of such oscillations in the human
body is questionable because preliminary investigations suggest that the limit cycles tend to occur with
unrealistically strong cross-coupling and the behaviour of a single vessel may not be indicative of the
behaviour of a network.
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FIG. 6. Examples of dynamic behaviour in the(D, w) phase plane. Dots indicate the type of equilibrium. Each case has different
R-values corresponding to Fig.4(b).

4. Single vessel under constant pressure conditions

Unlike a single vessel, a vascular network has a fixed pressure drop and input flow that feeds vessels in
a series–parallel configuration. The result is that actual vessels are regulated by some combination of
a fixed flow and fixed pressure case. Therefore, in addition to considering the extreme fixed flow case,
we also explore the fixed pressure case for a single vessel. Our analytical work in this area suggests
that multiple equilibria are possible, and we examine the stability of these equilibria using the tools
developed in the previous section.

4.1 Multiple equilibria

When the pressureΔP across the vessel is fixed instead of flow, multiple equilibria are possible because
the metabolic-derived stimuliSm andSc are no longer constant. To determine the locations of multiple
equilibria in the(D, w) plane, we perform an analysis similar to the fixed flow case and find locations
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FIG. 7. Unstable spirals can give rise to limit cycles. (a) Location of limit cycle inR-space. (b) Example of limit cycle in(D, w)
phase plane. (c) Oscillation of the width and diameter. (d) Oscillation of the stresses,τ andσ . Note that the phase shift between
D andw is different from the shift betweenτ andσ .

where bothSτm andSσm are equal to zero. The resulting stimulus contours are shown in Fig.8(a) and
the two intersections represent the two equilibria.

The number of equilibria depends on the values ofΔP andPT. In Fig.8(b), we show the number of
equilibria as a function ofPT andΔP. For relatively small pressure drops, the vessel can support two
equilibrium geometries, while relatively large pressure drops produce no equilibria. The reason for this
is that large pressure drops cause high shear stress (τ ), which does not support equilibrium geometries.

Although two equilibria are present for many values ofΔP andPT, physiologically reasonableΔP
for the microvessels under investigation are probably on the order of 10−1 mmHg. At these lowΔP,
one equilibrium is present at a physiologically reasonable geometry and the other equilibrium is at a
much largerD andw. For example, atΔP = 0.1 mmHg, one equilibrium is present atD = 34.8 μm
andw = 8.4 μm, whereas the other is located atD = 635.0 μm andw = 8.4 μm. At higherΔP, the
two equilibria are closer, but such large pressures produce unreasonably large vessel widths. Therefore,
the model appears to have only one physiologically reasonable equilibrium even whenΔP andPT are
fixed and multiple equilibria can occur.
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FIG. 8. Existence of multiple equilibria (a) illustrates the existence of two equilibria based on the intersection of contoursSτm = 0
andSσm = 0 for PT = 10 mmHg andΔP = 1.5 mmHg and (b) shows the number of equilibria as a function ofPT andΔP
(white indicates no equilibrium while grey indicates two).

FIG. 9. Regions of stability for equilibrium that are (a) smaller inD andw and (b) larger inD andw. Note that the stability regions
are reversed—i.e. the location of saddles for the smaller equilibrium is opposite that of the larger equilibrium. These equilibria
are generated whenΔP = 10 mmHg andPT = 100 mmHg.

4.2 Stability of multiple equilibria

When multiple equilibria are present, a natural question concerns whether both equilibria can be stable.
That is, for a given set of conditions, are there multiple geometries to which a vessel could converge
over time, even if one is physiologically unreasonable? Although we have not obtained analytical con-
firmation, numerical results suggest that one of the two equilibria will always be a saddle. For example,
in Fig.9, we analyse the stability of the equilibria present whenPT = 100 mmHg andΔP = 10 mmHg.
Significantly, the phase portraits of the two equilibria appear to be ‘flipped’, indicating that for a given
set ofR-values, one of the fixed points is a saddle while the other is a node or spiral. Moreover, under di-
rect coupling (Rτd = 1, Rσg = 1), the physiologically sensible fixed point is a stable node (as expected)
while the unrealistic fixed point is a saddle. This suggests that only one of the system’s equilibria can
be stable for a given set of parameters, which means only one vessel geometry is possible in a particular
environment.
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5. Conclusion

We perform an analysis of the adaptation model proposed byPrieset al. (1998,2001a,b,2005). In
investigating a single vessel with a fixed flow, we compare the regions of stability we found using eigen-
values of our linearized differential equations to the regions of stability determined computationally by
Prieset al. (1998,2001a,b,2005) using convergence time. Our region of stable nodes and stable spirals
matches the region of stability previously determined computationally. Likewise, the region of unstable
spirals, nodes and saddles corresponds to the coupling parametersPrieset al. (1998,2001a,b,2005)
found were unstable. Moreover, in investigating the boundaries between these regions, we find evidence
of limit cycles, which suggests that oscillation of vascular geometry may occur. In an extension of the
model, we consider the case when the pressure dropΔP and transmural pressurePT areboth fixed. In
this situation, we find that multiple equilibria are present but that only one of these equilibria is stable
for a given set ofR-values. Although multiple equilibria are possible, only one equilibrium is physio-
logically reasonable, so vessels are unlikely to attain two distinct geometries under identical conditions.

A number of unanswered questions about these equilibria and the model remain—for example, the
meaning of the equilibrium atD = 0 andw = 0, where many relationships behave erratically. To ad-
dress this issue,Prieset al.(1998,2001a,b,2005) define ‘cut-off’ values for bothD andw below which
vessels are assumed to collapse. Implementing a continuous extension of this cut-off could provide a
better model of vessel collapse and generation. Also, there are certainR-values that can lead to run-
away growth of the vessel, which could be adjusted to eliminate this unrealistic feature of the current
model. More importantly, the mathematical analysis presented here could be extended to small networks
of vessels which could provide more insight into the nature and stability of equilibria in networks.

In general, analytical investigation of the model ofPrieset al. (1998,2001a,b,2005)—and similar
biological models—can yield stronger conclusions about the behaviour of the system than computa-
tional studies alone. For example, an analytical exploration of stability allows for determination of the
type of stability rather than simply a knowledge of convergence times. At a higher level, mathematical
analysis indicates the conditions that lead to stable vessels and the boundaries of a model, which are of
physiological interest. Often, this data cannot be obtained through direct experimentation, so mathemat-
ical analysis can be used as a tool for studying otherwise intractable systems. Finally, from a practical
standpoint, computational modelling can require long computer runtime, which can be dramatically
reduced with mathematical analysis, making complex systems practical to investigate.
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